Spaces:
Runtime error
Runtime error
Add ThinkSound module files to repository
Browse files- ThinkSound +0 -1
- ThinkSound/.DS_Store +0 -0
- ThinkSound/__init__.py +2 -0
- ThinkSound/__pycache__/__init__.cpython-313.pyc +0 -0
- ThinkSound/configs/model_configs/stable_audio_2_0_vae.json +122 -0
- ThinkSound/configs/model_configs/thinksound.json +147 -0
- ThinkSound/configs/multimodal_dataset_demo.json +53 -0
- ThinkSound/data/__init__.py +0 -0
- ThinkSound/data/datamodule.py +194 -0
- ThinkSound/data/dataset.py +1266 -0
- ThinkSound/data/utils.py +378 -0
- ThinkSound/inference/__init__.py +0 -0
- ThinkSound/inference/generation.py +274 -0
- ThinkSound/inference/sampling.py +232 -0
- ThinkSound/inference/utils.py +35 -0
- ThinkSound/models/__init__.py +1 -0
- ThinkSound/models/__pycache__/__init__.cpython-313.pyc +0 -0
- ThinkSound/models/__pycache__/factory.cpython-313.pyc +0 -0
- ThinkSound/models/__pycache__/pretrained.cpython-313.pyc +0 -0
- ThinkSound/models/__pycache__/utils.cpython-313.pyc +0 -0
- ThinkSound/models/autoencoders.py +800 -0
- ThinkSound/models/blocks.py +430 -0
- ThinkSound/models/bottleneck.py +355 -0
- ThinkSound/models/codebook_patterns.py +545 -0
- ThinkSound/models/conditioners.py +1005 -0
- ThinkSound/models/diffusion.py +920 -0
- ThinkSound/models/dit.py +439 -0
- ThinkSound/models/embeddings.py +85 -0
- ThinkSound/models/factory.py +156 -0
- ThinkSound/models/local_attention.py +278 -0
- ThinkSound/models/mmdit.py +578 -0
- ThinkSound/models/pretrained.py +25 -0
- ThinkSound/models/pretransforms.py +258 -0
- ThinkSound/models/transformer.py +821 -0
- ThinkSound/models/transformer_layers.py +271 -0
- ThinkSound/models/utils.py +164 -0
- ThinkSound/training/__init__.py +1 -0
- ThinkSound/training/autoencoders.py +504 -0
- ThinkSound/training/diffusion.py +1076 -0
- ThinkSound/training/factory.py +262 -0
- ThinkSound/training/losses/__init__.py +1 -0
- ThinkSound/training/losses/auraloss.py +691 -0
- ThinkSound/training/losses/losses.py +100 -0
- ThinkSound/training/utils.py +200 -0
ThinkSound
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
Subproject commit 600962ed922a87bf416a6c152a64a35756c9c97e
|
|
|
|
|
|
ThinkSound/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
ThinkSound/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .models.factory import create_model_from_config, create_model_from_config_path
|
| 2 |
+
from .models.pretrained import get_pretrained_model
|
ThinkSound/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (326 Bytes). View file
|
|
|
ThinkSound/configs/model_configs/stable_audio_2_0_vae.json
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "autoencoder",
|
| 3 |
+
"sample_size": 65536,
|
| 4 |
+
"sample_rate": 44100,
|
| 5 |
+
"audio_channels": 2,
|
| 6 |
+
"model": {
|
| 7 |
+
"encoder": {
|
| 8 |
+
"type": "oobleck",
|
| 9 |
+
"config": {
|
| 10 |
+
"in_channels": 2,
|
| 11 |
+
"channels": 128,
|
| 12 |
+
"c_mults": [1, 2, 4, 8, 16],
|
| 13 |
+
"strides": [2, 4, 4, 8, 8],
|
| 14 |
+
"latent_dim": 128,
|
| 15 |
+
"use_snake": true
|
| 16 |
+
}
|
| 17 |
+
},
|
| 18 |
+
"decoder": {
|
| 19 |
+
"type": "oobleck",
|
| 20 |
+
"config": {
|
| 21 |
+
"out_channels": 2,
|
| 22 |
+
"channels": 128,
|
| 23 |
+
"c_mults": [1, 2, 4, 8, 16],
|
| 24 |
+
"strides": [2, 4, 4, 8, 8],
|
| 25 |
+
"latent_dim": 64,
|
| 26 |
+
"use_snake": true,
|
| 27 |
+
"final_tanh": false
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"bottleneck": {
|
| 31 |
+
"type": "vae"
|
| 32 |
+
},
|
| 33 |
+
"latent_dim": 64,
|
| 34 |
+
"downsampling_ratio": 2048,
|
| 35 |
+
"io_channels": 2
|
| 36 |
+
},
|
| 37 |
+
"training": {
|
| 38 |
+
"learning_rate": 1.5e-4,
|
| 39 |
+
"warmup_steps": 0,
|
| 40 |
+
"use_ema": true,
|
| 41 |
+
"optimizer_configs": {
|
| 42 |
+
"autoencoder": {
|
| 43 |
+
"optimizer": {
|
| 44 |
+
"type": "AdamW",
|
| 45 |
+
"config": {
|
| 46 |
+
"betas": [0.8, 0.99],
|
| 47 |
+
"lr": 1.5e-4,
|
| 48 |
+
"weight_decay": 1e-3
|
| 49 |
+
}
|
| 50 |
+
},
|
| 51 |
+
"scheduler": {
|
| 52 |
+
"type": "InverseLR",
|
| 53 |
+
"config": {
|
| 54 |
+
"inv_gamma": 200000,
|
| 55 |
+
"power": 0.5,
|
| 56 |
+
"warmup": 0.999
|
| 57 |
+
}
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
"discriminator": {
|
| 61 |
+
"optimizer": {
|
| 62 |
+
"type": "AdamW",
|
| 63 |
+
"config": {
|
| 64 |
+
"betas": [0.8, 0.99],
|
| 65 |
+
"lr": 3e-4,
|
| 66 |
+
"weight_decay": 1e-3
|
| 67 |
+
}
|
| 68 |
+
},
|
| 69 |
+
"scheduler": {
|
| 70 |
+
"type": "InverseLR",
|
| 71 |
+
"config": {
|
| 72 |
+
"inv_gamma": 200000,
|
| 73 |
+
"power": 0.5,
|
| 74 |
+
"warmup": 0.999
|
| 75 |
+
}
|
| 76 |
+
}
|
| 77 |
+
}
|
| 78 |
+
},
|
| 79 |
+
"loss_configs": {
|
| 80 |
+
"discriminator": {
|
| 81 |
+
"type": "encodec",
|
| 82 |
+
"config": {
|
| 83 |
+
"filters": 64,
|
| 84 |
+
"n_ffts": [2048, 1024, 512, 256, 128],
|
| 85 |
+
"hop_lengths": [512, 256, 128, 64, 32],
|
| 86 |
+
"win_lengths": [2048, 1024, 512, 256, 128]
|
| 87 |
+
},
|
| 88 |
+
"weights": {
|
| 89 |
+
"adversarial": 0.1,
|
| 90 |
+
"feature_matching": 5.0
|
| 91 |
+
}
|
| 92 |
+
},
|
| 93 |
+
"spectral": {
|
| 94 |
+
"type": "mrstft",
|
| 95 |
+
"config": {
|
| 96 |
+
"fft_sizes": [2048, 1024, 512, 256, 128, 64, 32],
|
| 97 |
+
"hop_sizes": [512, 256, 128, 64, 32, 16, 8],
|
| 98 |
+
"win_lengths": [2048, 1024, 512, 256, 128, 64, 32],
|
| 99 |
+
"perceptual_weighting": true
|
| 100 |
+
},
|
| 101 |
+
"weights": {
|
| 102 |
+
"mrstft": 1.0
|
| 103 |
+
}
|
| 104 |
+
},
|
| 105 |
+
"time": {
|
| 106 |
+
"type": "l1",
|
| 107 |
+
"weights": {
|
| 108 |
+
"l1": 0.0
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
"bottleneck": {
|
| 112 |
+
"type": "kl",
|
| 113 |
+
"weights": {
|
| 114 |
+
"kl": 1e-4
|
| 115 |
+
}
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"demo": {
|
| 119 |
+
"demo_every": 10000
|
| 120 |
+
}
|
| 121 |
+
}
|
| 122 |
+
}
|
ThinkSound/configs/model_configs/thinksound.json
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "mm_diffusion_cond",
|
| 3 |
+
"sample_size": 397312,
|
| 4 |
+
"sample_rate": 44100,
|
| 5 |
+
"audio_channels": 2,
|
| 6 |
+
"model": {
|
| 7 |
+
"pretransform": {
|
| 8 |
+
"type": "autoencoder",
|
| 9 |
+
"iterate_batch": true,
|
| 10 |
+
"config": {
|
| 11 |
+
"encoder": {
|
| 12 |
+
"type": "oobleck",
|
| 13 |
+
"config": {
|
| 14 |
+
"in_channels": 2,
|
| 15 |
+
"channels": 128,
|
| 16 |
+
"c_mults": [1, 2, 4, 8, 16],
|
| 17 |
+
"strides": [2, 4, 4, 8, 8],
|
| 18 |
+
"latent_dim": 128,
|
| 19 |
+
"use_snake": true
|
| 20 |
+
}
|
| 21 |
+
},
|
| 22 |
+
"decoder": {
|
| 23 |
+
"type": "oobleck",
|
| 24 |
+
"config": {
|
| 25 |
+
"out_channels": 2,
|
| 26 |
+
"channels": 128,
|
| 27 |
+
"c_mults": [1, 2, 4, 8, 16],
|
| 28 |
+
"strides": [2, 4, 4, 8, 8],
|
| 29 |
+
"latent_dim": 64,
|
| 30 |
+
"use_snake": true,
|
| 31 |
+
"final_tanh": false
|
| 32 |
+
}
|
| 33 |
+
},
|
| 34 |
+
"bottleneck": {
|
| 35 |
+
"type": "vae"
|
| 36 |
+
},
|
| 37 |
+
"latent_dim": 64,
|
| 38 |
+
"downsampling_ratio": 2048,
|
| 39 |
+
"io_channels": 2
|
| 40 |
+
}
|
| 41 |
+
},
|
| 42 |
+
"conditioning": {
|
| 43 |
+
"configs": [
|
| 44 |
+
{
|
| 45 |
+
"id": "metaclip_features",
|
| 46 |
+
"type": "mm_unchang",
|
| 47 |
+
"config": {
|
| 48 |
+
"dim": 1024,
|
| 49 |
+
"output_dim": 1024
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"id": "metaclip_text_features",
|
| 54 |
+
"type": "mm_unchang",
|
| 55 |
+
"config": {
|
| 56 |
+
"dim": 1024,
|
| 57 |
+
"output_dim": 1024
|
| 58 |
+
}
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"id": "sync_features",
|
| 62 |
+
"type": "mm_unchang",
|
| 63 |
+
"config": {
|
| 64 |
+
"dim": 768,
|
| 65 |
+
"output_dim": 768
|
| 66 |
+
}
|
| 67 |
+
},
|
| 68 |
+
{
|
| 69 |
+
"id": "t5_features",
|
| 70 |
+
"type": "mm_unchang",
|
| 71 |
+
"config": {
|
| 72 |
+
"dim": 2048,
|
| 73 |
+
"output_dim": 2048
|
| 74 |
+
}
|
| 75 |
+
}
|
| 76 |
+
],
|
| 77 |
+
"cond_dim": 768
|
| 78 |
+
},
|
| 79 |
+
"diffusion": {
|
| 80 |
+
"mm_cond_ids": ["metaclip_features", "sync_features", "metaclip_text_features","t5_features"],
|
| 81 |
+
"type": "mmdit",
|
| 82 |
+
"diffusion_objective": "rectified_flow",
|
| 83 |
+
"config": {
|
| 84 |
+
"latent_dim":64,
|
| 85 |
+
"clip_dim":1024,
|
| 86 |
+
"sync_dim":768,
|
| 87 |
+
"text_dim":2048,
|
| 88 |
+
"hidden_dim":1024,
|
| 89 |
+
"depth":21,
|
| 90 |
+
"fused_depth":14,
|
| 91 |
+
"num_heads":16,
|
| 92 |
+
"latent_seq_len":194,
|
| 93 |
+
"clip_seq_len":72,
|
| 94 |
+
"sync_seq_len":216,
|
| 95 |
+
"v2": true,
|
| 96 |
+
"kernel_size": 3
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
"io_channels": 64
|
| 100 |
+
},
|
| 101 |
+
"training": {
|
| 102 |
+
"use_ema": true,
|
| 103 |
+
"log_loss_info": false,
|
| 104 |
+
"cfg_dropout_prob": 0.2,
|
| 105 |
+
"pre_encoded": true,
|
| 106 |
+
"timestep_sampler": "logit_normal",
|
| 107 |
+
"optimizer_configs": {
|
| 108 |
+
"diffusion": {
|
| 109 |
+
"optimizer": {
|
| 110 |
+
"type": "AdamW",
|
| 111 |
+
"config": {
|
| 112 |
+
"lr": 5e-5,
|
| 113 |
+
"betas": [0.9, 0.95],
|
| 114 |
+
"weight_decay": 1e-4,
|
| 115 |
+
"eps": 1e-6
|
| 116 |
+
}
|
| 117 |
+
},
|
| 118 |
+
"scheduler": {
|
| 119 |
+
"type": "InverseLR",
|
| 120 |
+
"config": {
|
| 121 |
+
"inv_gamma": 1000000,
|
| 122 |
+
"power": 0.5,
|
| 123 |
+
"warmup": 0.99
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
}
|
| 127 |
+
},
|
| 128 |
+
"demo": {
|
| 129 |
+
"demo_every": 5000,
|
| 130 |
+
"demo_steps": 24,
|
| 131 |
+
"num_demos": 10,
|
| 132 |
+
"demo_cond": [
|
| 133 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/0Cu33yBwAPg_000060.npz",
|
| 134 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/bmKtI808DsU_000009.npz",
|
| 135 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/VC0c22cJTbM_000424.npz",
|
| 136 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/F3gsbUTdc2U_000090.npz",
|
| 137 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/WatvT8A8iug_000100.npz",
|
| 138 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/0nvBTp-q7tU_000112.npz",
|
| 139 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/3-PFuDkTM48_000080.npz",
|
| 140 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/luSAuu-BoPs_000232.npz",
|
| 141 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/__8UJxW0aOQ_000002.npz",
|
| 142 |
+
"dataset/vggsound/video_latents_t5_clip_npz/test/_0m_YMpQayA_000168.npz"
|
| 143 |
+
],
|
| 144 |
+
"demo_cfg_scales": [5]
|
| 145 |
+
}
|
| 146 |
+
}
|
| 147 |
+
}
|
ThinkSound/configs/multimodal_dataset_demo.json
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"dataset_type": "multimodal_dir",
|
| 3 |
+
"video_datasets": [
|
| 4 |
+
{
|
| 5 |
+
"id": "vggsound",
|
| 6 |
+
"path": "dataset/vggsound/video_latents_t5_clip_npz/train",
|
| 7 |
+
"split_path": "dataset/vggsound/split_txt/train_cot.txt"
|
| 8 |
+
}
|
| 9 |
+
],
|
| 10 |
+
"audio_datasets": [
|
| 11 |
+
{
|
| 12 |
+
"id": "audiostock",
|
| 13 |
+
"path": "dataset/Laion-Audio-630k/audiostock_latents_npz",
|
| 14 |
+
"split_path": "dataset/Laion-Audio-630k/split_txt/cot_audiostock_1.txt"
|
| 15 |
+
},
|
| 16 |
+
{
|
| 17 |
+
"id": "freesound_no_overlap",
|
| 18 |
+
"path": "dataset/Laion-Audio-630k/freesound_no_overlap_latents_npz",
|
| 19 |
+
"split_path": "dataset/Laion-Audio-630k/split_txt/cot_freesound.txt"
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"id": "audioset_sl",
|
| 23 |
+
"path": "dataset/wavcaps/audioset_sl_latents_npz",
|
| 24 |
+
"split_path": "dataset/wavcaps/split_txt/cot_audio_sl_1.txt"
|
| 25 |
+
},
|
| 26 |
+
{
|
| 27 |
+
"id": "audiocaps",
|
| 28 |
+
"path": "dataset/1_audiocaps/audiocaps_latents_npz",
|
| 29 |
+
"split_path": "dataset/1_audiocaps/split_txt/train_cot.txt"
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"id": "bbc",
|
| 33 |
+
"path": "dataset/Laion-Audio-630k/bbc_latents_npz",
|
| 34 |
+
"split_path": "dataset/Laion-Audio-630k/split_txt/cot_bbc_1.txt"
|
| 35 |
+
}
|
| 36 |
+
],
|
| 37 |
+
"val_datasets": [
|
| 38 |
+
{
|
| 39 |
+
"id": "vggsound",
|
| 40 |
+
"path": "dataset/vggsound/video_latents_t5_clip_npz/test",
|
| 41 |
+
"split_path": "dataset/vggsound/split_txt/test_cot.txt"
|
| 42 |
+
}
|
| 43 |
+
],
|
| 44 |
+
"test_datasets": [
|
| 45 |
+
{
|
| 46 |
+
"id": "vggsound",
|
| 47 |
+
"path": "cot_coarse",
|
| 48 |
+
"split_path": "cot_vgg_demo_caption.txt"
|
| 49 |
+
}
|
| 50 |
+
],
|
| 51 |
+
"random_crop": true,
|
| 52 |
+
"input_type": "prompt"
|
| 53 |
+
}
|
ThinkSound/data/__init__.py
ADDED
|
File without changes
|
ThinkSound/data/datamodule.py
ADDED
|
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import lightning as L
|
| 2 |
+
from .dataset import LatentDataset, SampleDataset, VideoDataset, AudioDataset, MultiModalDataset, LocalDatasetConfig, collation_fn
|
| 3 |
+
import importlib
|
| 4 |
+
from torch.utils.data import DataLoader
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def get_configs(audio_configs):
|
| 8 |
+
configs = []
|
| 9 |
+
for config in audio_configs:
|
| 10 |
+
data_dir_path = config.get("path", None)
|
| 11 |
+
audio_dir_path = config.get("audio_dir", None)
|
| 12 |
+
split_path = config.get("split_path", None)
|
| 13 |
+
assert data_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 14 |
+
|
| 15 |
+
custom_metadata_fn = None
|
| 16 |
+
custom_metadata_module_path = config.get("custom_metadata_module", None)
|
| 17 |
+
|
| 18 |
+
if custom_metadata_module_path:
|
| 19 |
+
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
| 20 |
+
metadata_module = importlib.util.module_from_spec(spec)
|
| 21 |
+
spec.loader.exec_module(metadata_module)
|
| 22 |
+
custom_metadata_fn = metadata_module.get_custom_metadata
|
| 23 |
+
|
| 24 |
+
configs.append(
|
| 25 |
+
LocalDatasetConfig(
|
| 26 |
+
id=config["id"],
|
| 27 |
+
path=data_dir_path,
|
| 28 |
+
split_path=split_path,
|
| 29 |
+
custom_metadata_fn=custom_metadata_fn,
|
| 30 |
+
audio_dir=audio_dir_path
|
| 31 |
+
)
|
| 32 |
+
)
|
| 33 |
+
return configs
|
| 34 |
+
|
| 35 |
+
class DataModule(L.LightningDataModule):
|
| 36 |
+
def __init__(self, dataset_config, batch_size, test_batch_size, sample_size, sample_rate, audio_channels=2, num_workers=4,repeat_num=5,latent_length=194):
|
| 37 |
+
super().__init__()
|
| 38 |
+
dataset_type = dataset_config.get("dataset_type", None)
|
| 39 |
+
self.batch_size = batch_size
|
| 40 |
+
self.num_workers = num_workers
|
| 41 |
+
self.test_batch_size = test_batch_size
|
| 42 |
+
self.repeat_num = repeat_num
|
| 43 |
+
self.latent_length = latent_length
|
| 44 |
+
assert dataset_type is not None, "Dataset type must be specified in dataset config"
|
| 45 |
+
|
| 46 |
+
if audio_channels == 1:
|
| 47 |
+
force_channels = "mono"
|
| 48 |
+
elif audio_channels == 2:
|
| 49 |
+
force_channels = "stereo"
|
| 50 |
+
else:
|
| 51 |
+
force_channels = "foa"
|
| 52 |
+
val_dir_configs = dataset_config.get("val_datasets", None)
|
| 53 |
+
test_dir_configs = dataset_config.get("test_datasets", None)
|
| 54 |
+
configs = []
|
| 55 |
+
val_configs = []
|
| 56 |
+
test_configs = []
|
| 57 |
+
if dataset_type == "audio_dir":
|
| 58 |
+
audio_dir_configs = dataset_config.get("datasets", None)
|
| 59 |
+
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
| 60 |
+
configs = get_configs(audio_dir_configs)
|
| 61 |
+
val_configs = get_configs(val_dir_configs)
|
| 62 |
+
test_configs = get_configs(test_dir_configs)
|
| 63 |
+
elif dataset_type == "latent_dir" or dataset_type == "video_dataset":
|
| 64 |
+
audio_dir_configs = dataset_config.get("datasets", None)
|
| 65 |
+
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
| 66 |
+
for i, dataset in enumerate((audio_dir_configs, val_dir_configs, test_dir_configs)):
|
| 67 |
+
for config in dataset:
|
| 68 |
+
data_dir_path = config.get("path", None)
|
| 69 |
+
audio_dir_path = config.get("audio_dir", None)
|
| 70 |
+
split_path = config.get("split_path", None)
|
| 71 |
+
assert data_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 72 |
+
|
| 73 |
+
content = LocalDatasetConfig(
|
| 74 |
+
id=config["id"],
|
| 75 |
+
path=data_dir_path,
|
| 76 |
+
split_path=split_path,
|
| 77 |
+
audio_dir=audio_dir_path,
|
| 78 |
+
extra_cot=config.get("extra_cot", None)
|
| 79 |
+
)
|
| 80 |
+
if i == 0:
|
| 81 |
+
configs.append(content)
|
| 82 |
+
elif i == 1:
|
| 83 |
+
val_configs.append(content)
|
| 84 |
+
else:
|
| 85 |
+
test_configs.append(content)
|
| 86 |
+
elif dataset_type == "multimodal_dir":
|
| 87 |
+
self.audio_configs = []
|
| 88 |
+
self.video_configs = []
|
| 89 |
+
audio_dir_configs = dataset_config.get("audio_datasets", None)
|
| 90 |
+
video_dir_configs = dataset_config.get("video_datasets", None)
|
| 91 |
+
assert audio_dir_configs is not None and video_dir_configs is not None, "Directory configuration must be specified in video_datasets and audio_datasets"
|
| 92 |
+
for i, dataset in enumerate((audio_dir_configs, video_dir_configs, val_dir_configs, test_dir_configs)):
|
| 93 |
+
for config in dataset:
|
| 94 |
+
data_dir_path = config.get("path", None)
|
| 95 |
+
audio_dir_path = config.get("audio_dir", None)
|
| 96 |
+
split_path = config.get("split_path", None)
|
| 97 |
+
assert data_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 98 |
+
print(f'extra cot: {config.get("extra_cot", None)}')
|
| 99 |
+
content = LocalDatasetConfig(
|
| 100 |
+
id=config["id"],
|
| 101 |
+
path=data_dir_path,
|
| 102 |
+
split_path=split_path,
|
| 103 |
+
audio_dir=audio_dir_path,
|
| 104 |
+
extra_cot=config.get("extra_cot", None)
|
| 105 |
+
)
|
| 106 |
+
if i == 0:
|
| 107 |
+
self.audio_configs.append(content)
|
| 108 |
+
elif i == 1:
|
| 109 |
+
self.video_configs.append(content)
|
| 110 |
+
elif i == 2:
|
| 111 |
+
val_configs.append(content)
|
| 112 |
+
else:
|
| 113 |
+
test_configs.append(content)
|
| 114 |
+
self.dataset_type = dataset_type
|
| 115 |
+
self.configs = configs
|
| 116 |
+
self.val_configs = val_configs
|
| 117 |
+
self.test_configs = test_configs
|
| 118 |
+
self.sample_rate = sample_rate
|
| 119 |
+
self.sample_size = sample_size
|
| 120 |
+
self.random_crop = dataset_config.get("random_crop", True)
|
| 121 |
+
self.input_type = dataset_config.get("input_type", "video")
|
| 122 |
+
self.fps = dataset_config.get("fps", 4)
|
| 123 |
+
self.force_channels = force_channels
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def setup(self, stage: str):
|
| 127 |
+
if self.dataset_type == 'audio_dir':
|
| 128 |
+
dataset_class = SampleDataset
|
| 129 |
+
elif self.dataset_type == 'latent_dir':
|
| 130 |
+
dataset_class = LatentDataset
|
| 131 |
+
elif self.dataset_type == 'video_dataset':
|
| 132 |
+
dataset_class = VideoDataset
|
| 133 |
+
elif self.dataset_type == 'multimodal_dir':
|
| 134 |
+
dataset_class = VideoDataset
|
| 135 |
+
|
| 136 |
+
def create_dataset(configs, random_crop):
|
| 137 |
+
return dataset_class(
|
| 138 |
+
configs,
|
| 139 |
+
sample_rate=self.sample_rate,
|
| 140 |
+
sample_size=self.sample_size,
|
| 141 |
+
random_crop=random_crop,
|
| 142 |
+
input_type=self.input_type,
|
| 143 |
+
fps=self.input_type,
|
| 144 |
+
force_channels=self.force_channels,
|
| 145 |
+
latent_length=self.latent_length
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
if stage == 'fit':
|
| 149 |
+
if self.dataset_type != 'multimodal_dir':
|
| 150 |
+
self.train_set = create_dataset(self.configs, random_crop=self.random_crop)
|
| 151 |
+
else:
|
| 152 |
+
self.video_set = VideoDataset(
|
| 153 |
+
self.video_configs,
|
| 154 |
+
sample_rate=self.sample_rate,
|
| 155 |
+
sample_size=self.sample_size,
|
| 156 |
+
random_crop=self.random_crop,
|
| 157 |
+
input_type=self.input_type,
|
| 158 |
+
fps=self.input_type,
|
| 159 |
+
force_channels=self.force_channels
|
| 160 |
+
)
|
| 161 |
+
self.audio_set = AudioDataset(
|
| 162 |
+
self.audio_configs,
|
| 163 |
+
sample_rate=self.sample_rate,
|
| 164 |
+
sample_size=self.sample_size,
|
| 165 |
+
random_crop=self.random_crop,
|
| 166 |
+
input_type=self.input_type,
|
| 167 |
+
fps=self.input_type,
|
| 168 |
+
force_channels=self.force_channels
|
| 169 |
+
)
|
| 170 |
+
self.train_set = MultiModalDataset([self.video_set]*self.repeat_num, [self.audio_set])
|
| 171 |
+
self.val_set = create_dataset(self.val_configs, random_crop=False)
|
| 172 |
+
elif stage == 'validate':
|
| 173 |
+
self.val_set = create_dataset(self.val_configs, random_crop=False)
|
| 174 |
+
elif stage == 'predict':
|
| 175 |
+
self.test_set = create_dataset(self.test_configs, random_crop=False)
|
| 176 |
+
|
| 177 |
+
def train_dataloader(self):
|
| 178 |
+
return DataLoader(self.train_set, self.batch_size, shuffle=True,
|
| 179 |
+
num_workers=self.num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
|
| 180 |
+
|
| 181 |
+
def val_dataloader(self):
|
| 182 |
+
return DataLoader(self.val_set, self.batch_size, shuffle=False,
|
| 183 |
+
num_workers=self.num_workers, persistent_workers=False, pin_memory=False, drop_last=False, collate_fn=collation_fn)
|
| 184 |
+
|
| 185 |
+
def predict_dataloader(self):
|
| 186 |
+
return DataLoader(self.test_set, batch_size=self.test_batch_size, shuffle=False,
|
| 187 |
+
num_workers=self.num_workers, persistent_workers=False, pin_memory=False, drop_last=False, collate_fn=collation_fn)
|
| 188 |
+
|
| 189 |
+
# def predict_dataloader(self):
|
| 190 |
+
# return DataLoader(self.mnist_predict, batch_size=self.batch_size)
|
| 191 |
+
|
| 192 |
+
# def teardown(self, stage: str):
|
| 193 |
+
# # Used to clean-up when the run is finished
|
| 194 |
+
# ...
|
ThinkSound/data/dataset.py
ADDED
|
@@ -0,0 +1,1266 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import importlib
|
| 2 |
+
import numpy as np
|
| 3 |
+
import io
|
| 4 |
+
import os
|
| 5 |
+
import posixpath
|
| 6 |
+
import random
|
| 7 |
+
import re
|
| 8 |
+
import subprocess
|
| 9 |
+
import time
|
| 10 |
+
import torch
|
| 11 |
+
import torchaudio
|
| 12 |
+
import webdataset as wds
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from aeiou.core import is_silence
|
| 15 |
+
from os import path
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from pedalboard.io import AudioFile
|
| 18 |
+
from torchaudio import transforms as T
|
| 19 |
+
from typing import Optional, Callable, List
|
| 20 |
+
import bisect
|
| 21 |
+
|
| 22 |
+
from .utils import FOA, Stereo, Mono, PhaseFlipper, PadCrop_Normalized_T, PadCrop_Video_Normalized_T, PadCrop_Video_Hiera_Normalized_T, PadCrop_Video_Image_Normalized_T, PadCrop_DualVideo_Normalized_T
|
| 23 |
+
|
| 24 |
+
AUDIO_KEYS = ("flac", "wav", "mp3", "m4a", "ogg", "opus")
|
| 25 |
+
|
| 26 |
+
# fast_scandir implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
|
| 27 |
+
|
| 28 |
+
def fast_scandir(
|
| 29 |
+
dir:str, # top-level directory at which to begin scanning
|
| 30 |
+
ext:list, # list of allowed file extensions,
|
| 31 |
+
#max_size = 1 * 1000 * 1000 * 1000 # Only files < 1 GB
|
| 32 |
+
):
|
| 33 |
+
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
|
| 34 |
+
subfolders, files = [], []
|
| 35 |
+
ext = ['.'+x if x[0]!='.' else x for x in ext] # add starting period to extensions if needed
|
| 36 |
+
try: # hope to avoid 'permission denied' by this try
|
| 37 |
+
for f in os.scandir(dir):
|
| 38 |
+
try: # 'hope to avoid too many levels of symbolic links' error
|
| 39 |
+
if f.is_dir():
|
| 40 |
+
subfolders.append(f.path)
|
| 41 |
+
elif f.is_file():
|
| 42 |
+
file_ext = os.path.splitext(f.name)[1].lower()
|
| 43 |
+
is_hidden = os.path.basename(f.path).startswith(".")
|
| 44 |
+
|
| 45 |
+
if file_ext in ext and not is_hidden:
|
| 46 |
+
files.append(f.path)
|
| 47 |
+
except:
|
| 48 |
+
pass
|
| 49 |
+
except:
|
| 50 |
+
pass
|
| 51 |
+
|
| 52 |
+
for dir in list(subfolders):
|
| 53 |
+
sf, f = fast_scandir(dir, ext)
|
| 54 |
+
subfolders.extend(sf)
|
| 55 |
+
files.extend(f)
|
| 56 |
+
return subfolders, files
|
| 57 |
+
|
| 58 |
+
def keyword_scandir(
|
| 59 |
+
dir: str, # top-level directory at which to begin scanning
|
| 60 |
+
ext: list, # list of allowed file extensions
|
| 61 |
+
keywords: list, # list of keywords to search for in the file name
|
| 62 |
+
):
|
| 63 |
+
"very fast `glob` alternative. from https://stackoverflow.com/a/59803793/4259243"
|
| 64 |
+
subfolders, files = [], []
|
| 65 |
+
# make keywords case insensitive
|
| 66 |
+
keywords = [keyword.lower() for keyword in keywords]
|
| 67 |
+
# add starting period to extensions if needed
|
| 68 |
+
ext = ['.'+x if x[0] != '.' else x for x in ext]
|
| 69 |
+
banned_words = ["paxheader", "__macosx"]
|
| 70 |
+
try: # hope to avoid 'permission denied' by this try
|
| 71 |
+
for f in os.scandir(dir):
|
| 72 |
+
try: # 'hope to avoid too many levels of symbolic links' error
|
| 73 |
+
if f.is_dir():
|
| 74 |
+
subfolders.append(f.path)
|
| 75 |
+
elif f.is_file():
|
| 76 |
+
is_hidden = f.name.split("/")[-1][0] == '.'
|
| 77 |
+
has_ext = os.path.splitext(f.name)[1].lower() in ext
|
| 78 |
+
name_lower = f.name.lower()
|
| 79 |
+
has_keyword = any(
|
| 80 |
+
[keyword in name_lower for keyword in keywords])
|
| 81 |
+
has_banned = any(
|
| 82 |
+
[banned_word in name_lower for banned_word in banned_words])
|
| 83 |
+
if has_ext and has_keyword and not has_banned and not is_hidden and not os.path.basename(f.path).startswith("._"):
|
| 84 |
+
files.append(f.path)
|
| 85 |
+
except:
|
| 86 |
+
pass
|
| 87 |
+
except:
|
| 88 |
+
pass
|
| 89 |
+
|
| 90 |
+
for dir in list(subfolders):
|
| 91 |
+
sf, f = keyword_scandir(dir, ext, keywords)
|
| 92 |
+
subfolders.extend(sf)
|
| 93 |
+
files.extend(f)
|
| 94 |
+
return subfolders, files
|
| 95 |
+
|
| 96 |
+
def get_audio_filenames(
|
| 97 |
+
paths: list, # directories in which to search
|
| 98 |
+
keywords=None,
|
| 99 |
+
exts=['.wav', '.mp3', '.flac', '.ogg', '.aif', '.opus']
|
| 100 |
+
):
|
| 101 |
+
"recursively get a list of audio filenames"
|
| 102 |
+
filenames = []
|
| 103 |
+
if type(paths) is str:
|
| 104 |
+
paths = [paths]
|
| 105 |
+
for path in paths: # get a list of relevant filenames
|
| 106 |
+
if keywords is not None:
|
| 107 |
+
subfolders, files = keyword_scandir(path, exts, keywords)
|
| 108 |
+
else:
|
| 109 |
+
subfolders, files = fast_scandir(path, exts)
|
| 110 |
+
filenames.extend(files)
|
| 111 |
+
return filenames
|
| 112 |
+
|
| 113 |
+
class LocalDatasetConfig:
|
| 114 |
+
def __init__(
|
| 115 |
+
self,
|
| 116 |
+
id: str,
|
| 117 |
+
path: str,
|
| 118 |
+
split_path: str,
|
| 119 |
+
audio_dir: str = None,
|
| 120 |
+
extra_cot: str = None,
|
| 121 |
+
custom_metadata_fn: Optional[Callable[[str], str]] = None
|
| 122 |
+
):
|
| 123 |
+
self.id = id
|
| 124 |
+
self.path = path
|
| 125 |
+
self.split_path = split_path
|
| 126 |
+
self.audio_dir = audio_dir
|
| 127 |
+
self.custom_metadata_fn = custom_metadata_fn
|
| 128 |
+
self.extra_cot = extra_cot
|
| 129 |
+
class SampleDataset(torch.utils.data.Dataset):
|
| 130 |
+
def __init__(
|
| 131 |
+
self,
|
| 132 |
+
configs,
|
| 133 |
+
sample_size=65536,
|
| 134 |
+
sample_rate=48000,
|
| 135 |
+
keywords=None,
|
| 136 |
+
random_crop=True,
|
| 137 |
+
input_type="prompt",
|
| 138 |
+
fps=4,
|
| 139 |
+
force_channels="stereo"
|
| 140 |
+
):
|
| 141 |
+
super().__init__()
|
| 142 |
+
self.filenames = []
|
| 143 |
+
|
| 144 |
+
self.augs = torch.nn.Sequential(
|
| 145 |
+
PhaseFlipper(),
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
self.root_paths = []
|
| 149 |
+
if input_type == 'video':
|
| 150 |
+
self.pad_crop = PadCrop_Video_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 151 |
+
elif input_type == 'video_hiera':
|
| 152 |
+
self.pad_crop = PadCrop_Video_Hiera_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 153 |
+
elif input_type == 'video_image':
|
| 154 |
+
self.pad_crop = PadCrop_Video_Image_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 155 |
+
elif input_type == 'dual_video':
|
| 156 |
+
self.pad_crop = PadCrop_DualVideo_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 157 |
+
else:
|
| 158 |
+
self.pad_crop = PadCrop_Normalized_T(sample_size, sample_rate, randomize=random_crop)
|
| 159 |
+
|
| 160 |
+
self.force_channels = force_channels
|
| 161 |
+
print('######################')
|
| 162 |
+
print(f'input channels is: {force_channels}')
|
| 163 |
+
print('######################')
|
| 164 |
+
self.encoding = torch.nn.Sequential(
|
| 165 |
+
FOA() if self.force_channels == "foa" else torch.nn.Identity(),
|
| 166 |
+
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 167 |
+
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 168 |
+
)
|
| 169 |
+
self.input_type = input_type
|
| 170 |
+
self.sr = sample_rate
|
| 171 |
+
self.custom_metadata_fns = {}
|
| 172 |
+
|
| 173 |
+
for config in configs:
|
| 174 |
+
self.root_paths.append(config.path)
|
| 175 |
+
def add_prefix(s):
|
| 176 |
+
return str(os.path.join(config.path,f'{s.strip()}'))
|
| 177 |
+
with open(config.split_path,'r') as f:
|
| 178 |
+
item_names = f.readlines()
|
| 179 |
+
filenames = list(map(add_prefix, item_names))
|
| 180 |
+
self.filenames.extend(filenames)
|
| 181 |
+
# self.filenames.extend(get_audio_filenames(config.path, keywords))
|
| 182 |
+
if config.custom_metadata_fn is not None:
|
| 183 |
+
self.custom_metadata_fns[config.path] = config.custom_metadata_fn
|
| 184 |
+
|
| 185 |
+
print(f'Found {len(self.filenames)} files')
|
| 186 |
+
|
| 187 |
+
def load_file(self, filename):
|
| 188 |
+
ext = filename.split(".")[-1]
|
| 189 |
+
if ext == "mp3":
|
| 190 |
+
with AudioFile(filename) as f:
|
| 191 |
+
audio = f.read(f.frames)
|
| 192 |
+
audio = torch.from_numpy(audio)
|
| 193 |
+
in_sr = f.samplerate
|
| 194 |
+
else:
|
| 195 |
+
audio, in_sr = torchaudio.load(filename, format=ext)
|
| 196 |
+
|
| 197 |
+
if in_sr != self.sr:
|
| 198 |
+
try:
|
| 199 |
+
resample_tf = T.Resample(in_sr, self.sr)
|
| 200 |
+
audio = resample_tf(audio)
|
| 201 |
+
except:
|
| 202 |
+
print(f'{filename} resample errors')
|
| 203 |
+
|
| 204 |
+
assert not (torch.isnan(audio).any() or torch.isinf(audio).any()), f'file-{filename} contains nan or inf number, check it!'
|
| 205 |
+
return audio
|
| 206 |
+
|
| 207 |
+
def __len__(self):
|
| 208 |
+
return len(self.filenames)
|
| 209 |
+
|
| 210 |
+
def __getitem__(self, idx):
|
| 211 |
+
audio_filename = self.filenames[idx]
|
| 212 |
+
assert os.path.exists(audio_filename), f'{audio_filename}: file not exists'
|
| 213 |
+
try:
|
| 214 |
+
start_time = time.time()
|
| 215 |
+
audio = self.load_file(audio_filename)
|
| 216 |
+
info = {}
|
| 217 |
+
info["path"] = audio_filename
|
| 218 |
+
|
| 219 |
+
for root_path in self.root_paths:
|
| 220 |
+
if root_path in audio_filename:
|
| 221 |
+
info["relpath"] = path.relpath(audio_filename, root_path)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
for custom_md_path in self.custom_metadata_fns.keys():
|
| 225 |
+
if custom_md_path in audio_filename:
|
| 226 |
+
custom_metadata_fn = self.custom_metadata_fns[custom_md_path]
|
| 227 |
+
custom_metadata = custom_metadata_fn(info, audio)
|
| 228 |
+
info.update(custom_metadata)
|
| 229 |
+
|
| 230 |
+
if "__reject__" in info and info["__reject__"]:
|
| 231 |
+
return self[random.randrange(len(self))]
|
| 232 |
+
if self.input_type == 'video':
|
| 233 |
+
audio, video, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio, info['video'])
|
| 234 |
+
info['video'] = video
|
| 235 |
+
elif self.input_type == 'dual_video':
|
| 236 |
+
audio, video_360, video_fov, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio, info['video'], info['video_fov'])
|
| 237 |
+
info['video_360'] = video_360
|
| 238 |
+
info['video_fov'] = video_fov
|
| 239 |
+
else:
|
| 240 |
+
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio)
|
| 241 |
+
assert not (torch.isnan(audio).any() or torch.isinf(audio).any()), f'file-{filename} contains nan or inf number, check it!'
|
| 242 |
+
# Run augmentations on this sample (including random crop)
|
| 243 |
+
if self.augs is not None:
|
| 244 |
+
audio = self.augs(audio)
|
| 245 |
+
|
| 246 |
+
audio = audio.clamp(-1, 1)
|
| 247 |
+
|
| 248 |
+
# Encode the file to assist in prediction
|
| 249 |
+
if self.encoding is not None:
|
| 250 |
+
audio = self.encoding(audio)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
info["timestamps"] = (t_start, t_end)
|
| 255 |
+
info["seconds_start"] = seconds_start
|
| 256 |
+
info["seconds_total"] = seconds_total
|
| 257 |
+
info["padding_mask"] = padding_mask
|
| 258 |
+
|
| 259 |
+
end_time = time.time()
|
| 260 |
+
info["load_time"] = end_time - start_time
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
return (audio, info)
|
| 264 |
+
except Exception as e:
|
| 265 |
+
print(f'Couldn\'t load file {audio_filename}: {e}')
|
| 266 |
+
return self[random.randrange(len(self))]
|
| 267 |
+
|
| 268 |
+
class LatentDataset(torch.utils.data.Dataset):
|
| 269 |
+
def __init__(
|
| 270 |
+
self,
|
| 271 |
+
configs,
|
| 272 |
+
sample_size=65536,
|
| 273 |
+
sample_rate=48000,
|
| 274 |
+
keywords=None,
|
| 275 |
+
random_crop=True,
|
| 276 |
+
input_type="prompt",
|
| 277 |
+
fps=4,
|
| 278 |
+
force_channels="stereo"
|
| 279 |
+
):
|
| 280 |
+
super().__init__()
|
| 281 |
+
self.filenames = []
|
| 282 |
+
|
| 283 |
+
self.augs = torch.nn.Sequential(
|
| 284 |
+
PhaseFlipper(),
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
self.root_paths = []
|
| 288 |
+
|
| 289 |
+
self.force_channels = force_channels
|
| 290 |
+
print('######################')
|
| 291 |
+
print(f'input channels is: {force_channels}')
|
| 292 |
+
print('######################')
|
| 293 |
+
self.encoding = torch.nn.Sequential(
|
| 294 |
+
FOA() if self.force_channels == "foa" else torch.nn.Identity(),
|
| 295 |
+
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 296 |
+
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 297 |
+
)
|
| 298 |
+
self.input_type = input_type
|
| 299 |
+
self.sr = sample_rate
|
| 300 |
+
for config in configs:
|
| 301 |
+
self.root_paths.append(config.path)
|
| 302 |
+
def add_prefix(s):
|
| 303 |
+
return str(os.path.join(config.path,f'{s.strip()}'))
|
| 304 |
+
with open(config.split_path,'r') as f:
|
| 305 |
+
item_names = f.readlines()
|
| 306 |
+
filenames = list(map(add_prefix, item_names))
|
| 307 |
+
self.filenames.extend(filenames)
|
| 308 |
+
# self.filenames.extend(get_audio_filenames(config.path, keywords))
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
print(f'Found {len(self.filenames)} files')
|
| 312 |
+
|
| 313 |
+
def load_file(self, filename, info):
|
| 314 |
+
# try:
|
| 315 |
+
npz_file = filename.replace('.pth','.npz')
|
| 316 |
+
if os.path.exists(filename) and '.npz' not in filename:
|
| 317 |
+
data = torch.load(filename, weights_only=False)
|
| 318 |
+
elif os.path.exists(npz_file):
|
| 319 |
+
# print(filename)
|
| 320 |
+
npz_data = np.load(npz_file,allow_pickle=True)
|
| 321 |
+
data = {key: npz_data[key] for key in npz_data.files}
|
| 322 |
+
# print("data.keys()",data.keys())
|
| 323 |
+
for key in data.keys():
|
| 324 |
+
if isinstance(data[key], np.ndarray) and np.issubdtype(data[key].dtype, np.number):
|
| 325 |
+
data[key] = torch.from_numpy(data[key])
|
| 326 |
+
else:
|
| 327 |
+
raise ValueError(f'error load file: {filename}')
|
| 328 |
+
info.update(data)
|
| 329 |
+
audio = data['latent']
|
| 330 |
+
# except:
|
| 331 |
+
# print(f'error load file: {filename}')
|
| 332 |
+
return audio, info['metaclip_features']
|
| 333 |
+
|
| 334 |
+
def __len__(self):
|
| 335 |
+
return len(self.filenames)
|
| 336 |
+
|
| 337 |
+
def __getitem__(self, idx):
|
| 338 |
+
audio_filename = self.filenames[idx]
|
| 339 |
+
assert os.path.exists(audio_filename) or audio_filename.replace('.pth','.npz'), f'{audio_filename}: file not exists'
|
| 340 |
+
# try:
|
| 341 |
+
start_time = time.time()
|
| 342 |
+
info = {}
|
| 343 |
+
audio, video = self.load_file(audio_filename, info)
|
| 344 |
+
info["path"] = audio_filename
|
| 345 |
+
|
| 346 |
+
info['id'] = Path(audio_filename).stem
|
| 347 |
+
for root_path in self.root_paths:
|
| 348 |
+
if root_path in audio_filename:
|
| 349 |
+
info["relpath"] = path.relpath(audio_filename, root_path)
|
| 350 |
+
|
| 351 |
+
return (audio, info)
|
| 352 |
+
|
| 353 |
+
class AudioDataset(torch.utils.data.Dataset):
|
| 354 |
+
def __init__(
|
| 355 |
+
self,
|
| 356 |
+
configs,
|
| 357 |
+
sample_size=65536,
|
| 358 |
+
sample_rate=48000,
|
| 359 |
+
keywords=None,
|
| 360 |
+
random_crop=True,
|
| 361 |
+
input_type="prompt",
|
| 362 |
+
fps=4,
|
| 363 |
+
force_channels="stereo"
|
| 364 |
+
):
|
| 365 |
+
super().__init__()
|
| 366 |
+
self.filenames = []
|
| 367 |
+
|
| 368 |
+
self.augs = torch.nn.Sequential(
|
| 369 |
+
PhaseFlipper(),
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
self.root_paths = []
|
| 373 |
+
|
| 374 |
+
self.force_channels = force_channels
|
| 375 |
+
print('######################')
|
| 376 |
+
print(f'input channels is: {force_channels}')
|
| 377 |
+
print('######################')
|
| 378 |
+
self.encoding = torch.nn.Sequential(
|
| 379 |
+
FOA() if self.force_channels == "foa" else torch.nn.Identity(),
|
| 380 |
+
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 381 |
+
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 382 |
+
)
|
| 383 |
+
self.fake_clip_features = torch.zeros(72, 1024)
|
| 384 |
+
self.fake_sync_features = torch.zeros(216, 768)
|
| 385 |
+
self.video_exist = torch.tensor(0, dtype=torch.bool)
|
| 386 |
+
self.input_type = input_type
|
| 387 |
+
self.sr = sample_rate
|
| 388 |
+
for config in configs:
|
| 389 |
+
self.root_paths.append(config.path)
|
| 390 |
+
def add_prefix(s):
|
| 391 |
+
return str(os.path.join(config.path,f'{s.strip()}'))
|
| 392 |
+
with open(config.split_path,'r') as f:
|
| 393 |
+
item_names = f.readlines()
|
| 394 |
+
filenames = list(map(add_prefix, item_names))
|
| 395 |
+
self.filenames.extend(filenames)
|
| 396 |
+
# self.filenames.extend(get_audio_filenames(config.path, keywords))
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
print(f'Found {len(self.filenames)} files')
|
| 400 |
+
|
| 401 |
+
def load_file(self, filename, info):
|
| 402 |
+
# try:
|
| 403 |
+
npz_file = filename.replace('.pth','.npz')
|
| 404 |
+
if os.path.exists(filename) and '.npz' not in filename:
|
| 405 |
+
data = torch.load(filename, weights_only=False)
|
| 406 |
+
elif os.path.exists(npz_file):
|
| 407 |
+
# print(filename)
|
| 408 |
+
npz_data = np.load(npz_file,allow_pickle=True)
|
| 409 |
+
data = {key: npz_data[key] for key in npz_data.files}
|
| 410 |
+
# print("data.keys()",data.keys())
|
| 411 |
+
for key in data.keys():
|
| 412 |
+
if isinstance(data[key], np.ndarray) and np.issubdtype(data[key].dtype, np.number):
|
| 413 |
+
data[key] = torch.from_numpy(data[key])
|
| 414 |
+
else:
|
| 415 |
+
raise ValueError(f'error load file: {filename}')
|
| 416 |
+
info.update(data)
|
| 417 |
+
audio = data['latent']
|
| 418 |
+
info['metaclip_features'] = self.fake_clip_features
|
| 419 |
+
info['sync_features'] = self.fake_sync_features
|
| 420 |
+
info['video_exist'] = self.video_exist
|
| 421 |
+
# except:
|
| 422 |
+
# print(f'error load file: {filename}')
|
| 423 |
+
return audio, info['metaclip_features']
|
| 424 |
+
|
| 425 |
+
def __len__(self):
|
| 426 |
+
return len(self.filenames)
|
| 427 |
+
|
| 428 |
+
def __getitem__(self, idx):
|
| 429 |
+
audio_filename = self.filenames[idx]
|
| 430 |
+
assert os.path.exists(audio_filename) or audio_filename.replace('.pth','.npz'), f'{audio_filename}: file not exists'
|
| 431 |
+
# try:
|
| 432 |
+
start_time = time.time()
|
| 433 |
+
info = {}
|
| 434 |
+
audio, video = self.load_file(audio_filename, info)
|
| 435 |
+
info["path"] = audio_filename
|
| 436 |
+
|
| 437 |
+
info['id'] = Path(audio_filename).stem
|
| 438 |
+
for root_path in self.root_paths:
|
| 439 |
+
if root_path in audio_filename:
|
| 440 |
+
info["relpath"] = path.relpath(audio_filename, root_path)
|
| 441 |
+
|
| 442 |
+
return (audio, info)
|
| 443 |
+
|
| 444 |
+
class VideoDataset(torch.utils.data.Dataset):
|
| 445 |
+
def __init__(
|
| 446 |
+
self,
|
| 447 |
+
configs,
|
| 448 |
+
sample_size=65536,
|
| 449 |
+
sample_rate=48000,
|
| 450 |
+
keywords=None,
|
| 451 |
+
random_crop=True,
|
| 452 |
+
input_type="prompt",
|
| 453 |
+
fps=4,
|
| 454 |
+
force_channels="stereo",
|
| 455 |
+
latent_length=194, # default latent length for video dataset
|
| 456 |
+
):
|
| 457 |
+
self.latent_length = latent_length
|
| 458 |
+
super().__init__()
|
| 459 |
+
self.filenames = []
|
| 460 |
+
print(f'configs: {configs[0]}')
|
| 461 |
+
if configs[0].extra_cot is not None:
|
| 462 |
+
self.extra_cot = configs[0].extra_cot
|
| 463 |
+
print(f'load extra cot from {self.extra_cot}')
|
| 464 |
+
else:
|
| 465 |
+
self.extra_cot = None
|
| 466 |
+
self.augs = torch.nn.Sequential(
|
| 467 |
+
PhaseFlipper(),
|
| 468 |
+
)
|
| 469 |
+
|
| 470 |
+
self.root_paths = []
|
| 471 |
+
|
| 472 |
+
self.force_channels = force_channels
|
| 473 |
+
print('######################')
|
| 474 |
+
print(f'input channels is: {force_channels}')
|
| 475 |
+
print('######################')
|
| 476 |
+
self.encoding = torch.nn.Sequential(
|
| 477 |
+
FOA() if self.force_channels == "foa" else torch.nn.Identity(),
|
| 478 |
+
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 479 |
+
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 480 |
+
)
|
| 481 |
+
self.input_type = input_type
|
| 482 |
+
self.sr = sample_rate
|
| 483 |
+
self.video_exist = torch.tensor(1, dtype=torch.bool)
|
| 484 |
+
for config in configs:
|
| 485 |
+
self.root_paths.append(config.path)
|
| 486 |
+
def add_prefix(s):
|
| 487 |
+
return str(os.path.join(config.path,f'{s.strip()}'))
|
| 488 |
+
with open(config.split_path,'r') as f:
|
| 489 |
+
item_names = f.readlines()
|
| 490 |
+
filenames = list(map(add_prefix, item_names))
|
| 491 |
+
self.filenames.extend(filenames)
|
| 492 |
+
# self.filenames.extend(get_audio_filenames(config.path, keywords))
|
| 493 |
+
|
| 494 |
+
|
| 495 |
+
print(f'Found {len(self.filenames)} files')
|
| 496 |
+
|
| 497 |
+
def load_file(self, filename, info):
|
| 498 |
+
# try:
|
| 499 |
+
npz_file = filename.replace('.pth','.npz')
|
| 500 |
+
if os.path.exists(filename) and '.npz' not in filename:
|
| 501 |
+
data = torch.load(filename, weights_only=False)
|
| 502 |
+
elif os.path.exists(npz_file):
|
| 503 |
+
# print(filename)
|
| 504 |
+
npz_data = np.load(npz_file,allow_pickle=True)
|
| 505 |
+
data = {key: npz_data[key] for key in npz_data.files}
|
| 506 |
+
# print("data.keys()",data.keys())
|
| 507 |
+
for key in data.keys():
|
| 508 |
+
if isinstance(data[key], np.ndarray) and np.issubdtype(data[key].dtype, np.number):
|
| 509 |
+
data[key] = torch.from_numpy(data[key])
|
| 510 |
+
if self.extra_cot is not None:
|
| 511 |
+
extra_pth = filename.replace('.npz','.pth')
|
| 512 |
+
extra_pth = os.path.join(self.extra_cot, os.path.basename(extra_pth))
|
| 513 |
+
if os.path.exists(extra_pth):
|
| 514 |
+
extra_data = torch.load(extra_pth, weights_only=False)
|
| 515 |
+
for key in extra_data.keys():
|
| 516 |
+
if isinstance(extra_data[key], torch.Tensor):
|
| 517 |
+
# print(f'load extra cot {key}')
|
| 518 |
+
data[key] = extra_data[key]
|
| 519 |
+
else:
|
| 520 |
+
raise ValueError(f'error load file: {filename}')
|
| 521 |
+
info.update(data)
|
| 522 |
+
if 'latent' in data.keys():
|
| 523 |
+
audio = data['latent']
|
| 524 |
+
else:
|
| 525 |
+
audio = torch.zeros(64,self.latent_length)
|
| 526 |
+
info['video_exist'] = self.video_exist
|
| 527 |
+
# except:
|
| 528 |
+
# print(f'error load file: {filename}')
|
| 529 |
+
return audio, info['metaclip_features']
|
| 530 |
+
|
| 531 |
+
def __len__(self):
|
| 532 |
+
return len(self.filenames)
|
| 533 |
+
|
| 534 |
+
def __getitem__(self, idx):
|
| 535 |
+
audio_filename = self.filenames[idx]
|
| 536 |
+
assert os.path.exists(audio_filename) or audio_filename.replace('.pth','.npz'), f'{audio_filename}: file not exists'
|
| 537 |
+
# try:
|
| 538 |
+
start_time = time.time()
|
| 539 |
+
info = {}
|
| 540 |
+
audio, video = self.load_file(audio_filename, info)
|
| 541 |
+
info["path"] = audio_filename
|
| 542 |
+
|
| 543 |
+
info['id'] = Path(audio_filename).stem
|
| 544 |
+
for root_path in self.root_paths:
|
| 545 |
+
if root_path in audio_filename:
|
| 546 |
+
info["relpath"] = path.relpath(audio_filename, root_path)
|
| 547 |
+
|
| 548 |
+
return (audio, info)
|
| 549 |
+
|
| 550 |
+
# modified from https://pytorch.org/docs/stable/_modules/torch/utils/data/dataset.html#ConcatDataset
|
| 551 |
+
class MultiModalDataset(torch.utils.data.Dataset):
|
| 552 |
+
datasets: list[torch.utils.data.Dataset]
|
| 553 |
+
cumulative_sizes: list[int]
|
| 554 |
+
|
| 555 |
+
@staticmethod
|
| 556 |
+
def cumsum(sequence):
|
| 557 |
+
r, s = [], 0
|
| 558 |
+
for e in sequence:
|
| 559 |
+
l = len(e)
|
| 560 |
+
r.append(l + s)
|
| 561 |
+
s += l
|
| 562 |
+
return r
|
| 563 |
+
|
| 564 |
+
def __init__(self, video_datasets: list[torch.utils.data.Dataset], audio_datasets: list[torch.utils.data.Dataset]):
|
| 565 |
+
super().__init__()
|
| 566 |
+
self.video_datasets = list(video_datasets)
|
| 567 |
+
self.audio_datasets = list(audio_datasets)
|
| 568 |
+
self.datasets = self.video_datasets + self.audio_datasets
|
| 569 |
+
|
| 570 |
+
self.cumulative_sizes = self.cumsum(self.datasets)
|
| 571 |
+
print(f'Found {self.cumulative_sizes[-1]} files')
|
| 572 |
+
|
| 573 |
+
def __len__(self):
|
| 574 |
+
return self.cumulative_sizes[-1]
|
| 575 |
+
|
| 576 |
+
def __getitem__(self, idx):
|
| 577 |
+
if idx < 0:
|
| 578 |
+
if -idx > len(self):
|
| 579 |
+
raise ValueError("absolute value of index should not exceed dataset length")
|
| 580 |
+
idx = len(self) + idx
|
| 581 |
+
dataset_idx = bisect.bisect_right(self.cumulative_sizes, idx)
|
| 582 |
+
if dataset_idx == 0:
|
| 583 |
+
sample_idx = idx
|
| 584 |
+
else:
|
| 585 |
+
sample_idx = idx - self.cumulative_sizes[dataset_idx - 1]
|
| 586 |
+
return self.datasets[dataset_idx][sample_idx]
|
| 587 |
+
|
| 588 |
+
def compute_latent_stats(self) -> tuple[torch.Tensor, torch.Tensor]:
|
| 589 |
+
return self.video_datasets[0].compute_latent_stats()
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
# class MultiModalDataset(torch.utils.data.Dataset):
|
| 593 |
+
# def __init__(
|
| 594 |
+
# self,
|
| 595 |
+
# configs,
|
| 596 |
+
# sample_size=65536,
|
| 597 |
+
# sample_rate=48000,
|
| 598 |
+
# keywords=None,
|
| 599 |
+
# random_crop=True,
|
| 600 |
+
# input_type="prompt",
|
| 601 |
+
# fps=4,
|
| 602 |
+
# force_channels="stereo"
|
| 603 |
+
# ):
|
| 604 |
+
# super().__init__()
|
| 605 |
+
# self.filenames = []
|
| 606 |
+
# self.captions = []
|
| 607 |
+
# self.caption_t5s = []
|
| 608 |
+
# self.ids = []
|
| 609 |
+
# self.augs = torch.nn.Sequential(
|
| 610 |
+
# PhaseFlipper(),
|
| 611 |
+
# )
|
| 612 |
+
|
| 613 |
+
# self.root_paths = []
|
| 614 |
+
# if input_type == 'video':
|
| 615 |
+
# self.pad_crop = PadCrop_Video_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 616 |
+
# elif input_type == 'video_hiera':
|
| 617 |
+
# self.pad_crop = PadCrop_Video_Hiera_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 618 |
+
# elif input_type == 'video_image':
|
| 619 |
+
# self.pad_crop = PadCrop_Video_Image_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 620 |
+
# elif input_type == 'dual_video':
|
| 621 |
+
# self.pad_crop = PadCrop_DualVideo_Normalized_T(sample_size, sample_rate, fps, randomize=random_crop)
|
| 622 |
+
# else:
|
| 623 |
+
# self.pad_crop = PadCrop_Normalized_T(sample_size, sample_rate, randomize=random_crop)
|
| 624 |
+
|
| 625 |
+
# self.force_channels = force_channels
|
| 626 |
+
# print('######################')
|
| 627 |
+
# print(f'input channels is: {force_channels}')
|
| 628 |
+
# print('######################')
|
| 629 |
+
# self.encoding = torch.nn.Sequential(
|
| 630 |
+
# FOA() if self.force_channels == "foa" else torch.nn.Identity(),
|
| 631 |
+
# Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 632 |
+
# Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 633 |
+
# )
|
| 634 |
+
# self.input_type = input_type
|
| 635 |
+
# self.sr = sample_rate
|
| 636 |
+
# self.custom_metadata_fns = {}
|
| 637 |
+
|
| 638 |
+
# for config in configs:
|
| 639 |
+
# print(config.split_path)
|
| 640 |
+
# self.root_paths.append(config.path)
|
| 641 |
+
# def add_prefix(s):
|
| 642 |
+
# return str(os.path.join(config.path,f'{s.strip()}'))
|
| 643 |
+
# with open(config.split_path,'r') as f:
|
| 644 |
+
# item_names = f.readlines()
|
| 645 |
+
# csv_path = config.split_path.replace('.txt','.csv')
|
| 646 |
+
# df = pd.read_csv(csv_path)
|
| 647 |
+
# # 检查是否存在 'caption_t5' 列,如果不存在则创建并复制 'caption' 的值
|
| 648 |
+
# if 'caption_t5' not in df.columns:
|
| 649 |
+
# df['caption_t5'] = df['caption']
|
| 650 |
+
|
| 651 |
+
# captions = df['caption'].tolist()
|
| 652 |
+
# caption_t5s = df['caption_t5'].tolist()
|
| 653 |
+
# filenames = list(map(add_prefix, item_names))
|
| 654 |
+
# assert len(captions) == len(caption_t5s) and len(captions) == len(filenames), f'{config.path} has wrong filename and caption'
|
| 655 |
+
# if config.id == 'vggsound':
|
| 656 |
+
# self.filenames.extend(filenames*5)
|
| 657 |
+
# self.captions.extend(captions*5)
|
| 658 |
+
# self.caption_t5s.extend(caption_t5s*5)
|
| 659 |
+
# self.ids.extend(df['id'].tolist()*5)
|
| 660 |
+
# else:
|
| 661 |
+
# self.filenames.extend(filenames)
|
| 662 |
+
# self.captions.extend(captions)
|
| 663 |
+
# self.caption_t5s.extend(caption_t5s)
|
| 664 |
+
# self.ids.extend(df['id'].tolist())
|
| 665 |
+
# # self.filenames.extend(get_audio_filenames(config.path, keywords))
|
| 666 |
+
# if config.custom_metadata_fn is not None:
|
| 667 |
+
# self.custom_metadata_fns[config.path] = config.custom_metadata_fn
|
| 668 |
+
|
| 669 |
+
# assert len(self.ids) == len(self.captions) and len(self.caption_t5s) == len(self.filenames), 'length need to be same'
|
| 670 |
+
# print(f'Found {len(self.filenames)} files')
|
| 671 |
+
|
| 672 |
+
|
| 673 |
+
# def load_file(self, filename):
|
| 674 |
+
# ext = filename.split(".")[-1]
|
| 675 |
+
# if ext == "mp3":
|
| 676 |
+
# with AudioFile(filename) as f:
|
| 677 |
+
# audio = f.read(f.frames)
|
| 678 |
+
# audio = torch.from_numpy(audio)
|
| 679 |
+
# in_sr = f.samplerate
|
| 680 |
+
# else:
|
| 681 |
+
# audio, in_sr = torchaudio.load(filename, format=ext)
|
| 682 |
+
|
| 683 |
+
# if in_sr != self.sr:
|
| 684 |
+
# try:
|
| 685 |
+
# resample_tf = T.Resample(in_sr, self.sr)
|
| 686 |
+
# audio = resample_tf(audio)
|
| 687 |
+
# except:
|
| 688 |
+
# print(f'{filename} resample errors')
|
| 689 |
+
|
| 690 |
+
# assert not (torch.isnan(audio).any() or torch.isinf(audio).any()), f'file-{filename} contains nan or inf number, check it!'
|
| 691 |
+
# return audio
|
| 692 |
+
|
| 693 |
+
# def __len__(self):
|
| 694 |
+
# return len(self.filenames)
|
| 695 |
+
|
| 696 |
+
# def __getitem__(self, idx):
|
| 697 |
+
# audio_filename = self.filenames[idx]
|
| 698 |
+
# id = self.ids[idx]
|
| 699 |
+
# assert str(id) == str(Path(audio_filename).stem), f'audio_file: {audio_filename} needs to be same as {id} '
|
| 700 |
+
# assert os.path.exists(audio_filename), f'{audio_filename}: file not exists'
|
| 701 |
+
# try:
|
| 702 |
+
# start_time = time.time()
|
| 703 |
+
# audio = self.load_file(audio_filename)
|
| 704 |
+
# caption = self.captions[idx]
|
| 705 |
+
# caption_t5 = self.caption_t5s[idx]
|
| 706 |
+
# if pd.isna(caption_t5) or caption_t5 == '':
|
| 707 |
+
# caption_t5 = caption
|
| 708 |
+
# info = {}
|
| 709 |
+
# info["path"] = audio_filename
|
| 710 |
+
# info['caption'] = caption
|
| 711 |
+
# info['caption_t5'] = caption_t5
|
| 712 |
+
|
| 713 |
+
# for root_path in self.root_paths:
|
| 714 |
+
# if root_path in audio_filename:
|
| 715 |
+
# info["relpath"] = path.relpath(audio_filename, root_path)
|
| 716 |
+
|
| 717 |
+
|
| 718 |
+
# for custom_md_path in self.custom_metadata_fns.keys():
|
| 719 |
+
# if custom_md_path in audio_filename:
|
| 720 |
+
# custom_metadata_fn = self.custom_metadata_fns[custom_md_path]
|
| 721 |
+
# custom_metadata = custom_metadata_fn(info, audio)
|
| 722 |
+
# info.update(custom_metadata)
|
| 723 |
+
|
| 724 |
+
# if "__reject__" in info and info["__reject__"]:
|
| 725 |
+
# return self[random.randrange(len(self))]
|
| 726 |
+
# # if self.input_type == 'video':
|
| 727 |
+
# # audio, video, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio, info['clip_features'])
|
| 728 |
+
# # info['clip_features'] = video
|
| 729 |
+
# # else:
|
| 730 |
+
# if info['flag']:
|
| 731 |
+
# audio, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio,randomize=False)
|
| 732 |
+
# else:
|
| 733 |
+
# audio, t_start, t_end, seconds_start, seconds_total, padding_mask = self.pad_crop(audio,randomize=True)
|
| 734 |
+
# assert not (torch.isnan(audio).any() or torch.isinf(audio).any()), f'file-{filename} contains nan or inf number, check it!'
|
| 735 |
+
# # Run augmentations on this sample (including random crop)
|
| 736 |
+
# if self.augs is not None:
|
| 737 |
+
# audio = self.augs(audio)
|
| 738 |
+
|
| 739 |
+
# audio = audio.clamp(-1, 1)
|
| 740 |
+
|
| 741 |
+
# # Encode the file to assist in prediction
|
| 742 |
+
# if self.encoding is not None:
|
| 743 |
+
# audio = self.encoding(audio)
|
| 744 |
+
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
# info["timestamps"] = (t_start, t_end)
|
| 748 |
+
# info["seconds_start"] = seconds_start
|
| 749 |
+
# info["seconds_total"] = seconds_total
|
| 750 |
+
# info["padding_mask"] = padding_mask
|
| 751 |
+
|
| 752 |
+
# end_time = time.time()
|
| 753 |
+
# info["load_time"] = end_time - start_time
|
| 754 |
+
|
| 755 |
+
|
| 756 |
+
# return (audio, info)
|
| 757 |
+
# except Exception as e:
|
| 758 |
+
# print(f'Couldn\'t load file {audio_filename}: {e}')
|
| 759 |
+
# return self[random.randrange(len(self))]
|
| 760 |
+
|
| 761 |
+
def group_by_keys(data, keys=wds.tariterators.base_plus_ext, lcase=True, suffixes=None, handler=None):
|
| 762 |
+
"""Return function over iterator that groups key, value pairs into samples.
|
| 763 |
+
:param keys: function that splits the key into key and extension (base_plus_ext)
|
| 764 |
+
:param lcase: convert suffixes to lower case (Default value = True)
|
| 765 |
+
"""
|
| 766 |
+
current_sample = None
|
| 767 |
+
for filesample in data:
|
| 768 |
+
assert isinstance(filesample, dict)
|
| 769 |
+
fname, value = filesample["fname"], filesample["data"]
|
| 770 |
+
prefix, suffix = keys(fname)
|
| 771 |
+
if wds.tariterators.trace:
|
| 772 |
+
print(
|
| 773 |
+
prefix,
|
| 774 |
+
suffix,
|
| 775 |
+
current_sample.keys() if isinstance(current_sample, dict) else None,
|
| 776 |
+
)
|
| 777 |
+
if prefix is None:
|
| 778 |
+
continue
|
| 779 |
+
if lcase:
|
| 780 |
+
suffix = suffix.lower()
|
| 781 |
+
if current_sample is None or prefix != current_sample["__key__"]:
|
| 782 |
+
if wds.tariterators.valid_sample(current_sample):
|
| 783 |
+
yield current_sample
|
| 784 |
+
current_sample = dict(__key__=prefix, __url__=filesample["__url__"])
|
| 785 |
+
if suffix in current_sample:
|
| 786 |
+
print(f"{fname}: duplicate file name in tar file {suffix} {current_sample.keys()}")
|
| 787 |
+
if suffixes is None or suffix in suffixes:
|
| 788 |
+
current_sample[suffix] = value
|
| 789 |
+
if wds.tariterators.valid_sample(current_sample):
|
| 790 |
+
yield current_sample
|
| 791 |
+
|
| 792 |
+
wds.tariterators.group_by_keys = group_by_keys
|
| 793 |
+
|
| 794 |
+
# S3 code and WDS preprocessing code based on implementation by Scott Hawley originally in https://github.com/zqevans/audio-diffusion/blob/main/dataset/dataset.py
|
| 795 |
+
|
| 796 |
+
def get_s3_contents(dataset_path, s3_url_prefix=None, filter='', recursive=True, debug=False, profile=None):
|
| 797 |
+
"""
|
| 798 |
+
Returns a list of full S3 paths to files in a given S3 bucket and directory path.
|
| 799 |
+
"""
|
| 800 |
+
# Ensure dataset_path ends with a trailing slash
|
| 801 |
+
if dataset_path != '' and not dataset_path.endswith('/'):
|
| 802 |
+
dataset_path += '/'
|
| 803 |
+
# Use posixpath to construct the S3 URL path
|
| 804 |
+
bucket_path = posixpath.join(s3_url_prefix or '', dataset_path)
|
| 805 |
+
# Construct the `aws s3 ls` command
|
| 806 |
+
cmd = ['aws', 's3', 'ls', bucket_path]
|
| 807 |
+
|
| 808 |
+
if profile is not None:
|
| 809 |
+
cmd.extend(['--profile', profile])
|
| 810 |
+
|
| 811 |
+
if recursive:
|
| 812 |
+
# Add the --recursive flag if requested
|
| 813 |
+
cmd.append('--recursive')
|
| 814 |
+
|
| 815 |
+
# Run the `aws s3 ls` command and capture the output
|
| 816 |
+
run_ls = subprocess.run(cmd, capture_output=True, check=True)
|
| 817 |
+
# Split the output into lines and strip whitespace from each line
|
| 818 |
+
contents = run_ls.stdout.decode('utf-8').split('\n')
|
| 819 |
+
contents = [x.strip() for x in contents if x]
|
| 820 |
+
# Remove the timestamp from lines that begin with a timestamp
|
| 821 |
+
contents = [re.sub(r'^\S+\s+\S+\s+\d+\s+', '', x)
|
| 822 |
+
if re.match(r'^\S+\s+\S+\s+\d+\s+', x) else x for x in contents]
|
| 823 |
+
# Construct a full S3 path for each file in the contents list
|
| 824 |
+
contents = [posixpath.join(s3_url_prefix or '', x)
|
| 825 |
+
for x in contents if not x.endswith('/')]
|
| 826 |
+
# Apply the filter, if specified
|
| 827 |
+
if filter:
|
| 828 |
+
contents = [x for x in contents if filter in x]
|
| 829 |
+
# Remove redundant directory names in the S3 URL
|
| 830 |
+
if recursive:
|
| 831 |
+
# Get the main directory name from the S3 URL
|
| 832 |
+
main_dir = "/".join(bucket_path.split('/')[3:])
|
| 833 |
+
# Remove the redundant directory names from each file path
|
| 834 |
+
contents = [x.replace(f'{main_dir}', '').replace(
|
| 835 |
+
'//', '/') for x in contents]
|
| 836 |
+
# Print debugging information, if requested
|
| 837 |
+
if debug:
|
| 838 |
+
print("contents = \n", contents)
|
| 839 |
+
# Return the list of S3 paths to files
|
| 840 |
+
return contents
|
| 841 |
+
|
| 842 |
+
|
| 843 |
+
def get_all_s3_urls(
|
| 844 |
+
names=[], # list of all valid [LAION AudioDataset] dataset names
|
| 845 |
+
# list of subsets you want from those datasets, e.g. ['train','valid']
|
| 846 |
+
subsets=[''],
|
| 847 |
+
s3_url_prefix=None, # prefix for those dataset names
|
| 848 |
+
recursive=True, # recursively list all tar files in all subdirs
|
| 849 |
+
filter_str='tar', # only grab files with this substring
|
| 850 |
+
# print debugging info -- note: info displayed likely to change at dev's whims
|
| 851 |
+
debug=False,
|
| 852 |
+
profiles={}, # dictionary of profiles for each item in names, e.g. {'dataset1': 'profile1', 'dataset2': 'profile2'}
|
| 853 |
+
):
|
| 854 |
+
"get urls of shards (tar files) for multiple datasets in one s3 bucket"
|
| 855 |
+
urls = []
|
| 856 |
+
for name in names:
|
| 857 |
+
# If s3_url_prefix is not specified, assume the full S3 path is included in each element of the names list
|
| 858 |
+
if s3_url_prefix is None:
|
| 859 |
+
contents_str = name
|
| 860 |
+
else:
|
| 861 |
+
# Construct the S3 path using the s3_url_prefix and the current name value
|
| 862 |
+
contents_str = posixpath.join(s3_url_prefix, name)
|
| 863 |
+
if debug:
|
| 864 |
+
print(f"get_all_s3_urls: {contents_str}:")
|
| 865 |
+
for subset in subsets:
|
| 866 |
+
subset_str = posixpath.join(contents_str, subset)
|
| 867 |
+
if debug:
|
| 868 |
+
print(f"subset_str = {subset_str}")
|
| 869 |
+
# Get the list of tar files in the current subset directory
|
| 870 |
+
profile = profiles.get(name, None)
|
| 871 |
+
tar_list = get_s3_contents(
|
| 872 |
+
subset_str, s3_url_prefix=None, recursive=recursive, filter=filter_str, debug=debug, profile=profile)
|
| 873 |
+
for tar in tar_list:
|
| 874 |
+
# Escape spaces and parentheses in the tar filename for use in the shell command
|
| 875 |
+
tar = tar.replace(" ", "\ ").replace(
|
| 876 |
+
"(", "\(").replace(")", "\)")
|
| 877 |
+
# Construct the S3 path to the current tar file
|
| 878 |
+
s3_path = posixpath.join(name, subset, tar) + " -"
|
| 879 |
+
# Construct the AWS CLI command to download the current tar file
|
| 880 |
+
if s3_url_prefix is None:
|
| 881 |
+
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {s3_path}"
|
| 882 |
+
else:
|
| 883 |
+
request_str = f"pipe:aws s3 --cli-connect-timeout 0 cp {posixpath.join(s3_url_prefix, s3_path)}"
|
| 884 |
+
if profiles.get(name):
|
| 885 |
+
request_str += f" --profile {profiles.get(name)}"
|
| 886 |
+
if debug:
|
| 887 |
+
print("request_str = ", request_str)
|
| 888 |
+
# Add the constructed URL to the list of URLs
|
| 889 |
+
urls.append(request_str)
|
| 890 |
+
return urls
|
| 891 |
+
|
| 892 |
+
|
| 893 |
+
def log_and_continue(exn):
|
| 894 |
+
"""Call in an exception handler to ignore any exception, isssue a warning, and continue."""
|
| 895 |
+
print(f"Handling webdataset error ({repr(exn)}). Ignoring.")
|
| 896 |
+
return True
|
| 897 |
+
|
| 898 |
+
|
| 899 |
+
def is_valid_sample(sample):
|
| 900 |
+
has_json = "json" in sample
|
| 901 |
+
has_audio = "audio" in sample
|
| 902 |
+
is_silent = is_silence(sample["audio"])
|
| 903 |
+
is_rejected = "__reject__" in sample["json"] and sample["json"]["__reject__"]
|
| 904 |
+
|
| 905 |
+
return has_json and has_audio and not is_silent and not is_rejected
|
| 906 |
+
|
| 907 |
+
class S3DatasetConfig:
|
| 908 |
+
def __init__(
|
| 909 |
+
self,
|
| 910 |
+
id: str,
|
| 911 |
+
s3_path: str,
|
| 912 |
+
custom_metadata_fn: Optional[Callable[[str], str]] = None,
|
| 913 |
+
profile: Optional[str] = None,
|
| 914 |
+
):
|
| 915 |
+
self.id = id
|
| 916 |
+
self.path = s3_path
|
| 917 |
+
self.custom_metadata_fn = custom_metadata_fn
|
| 918 |
+
self.profile = profile
|
| 919 |
+
self.urls = []
|
| 920 |
+
|
| 921 |
+
def load_data_urls(self):
|
| 922 |
+
self.urls = get_all_s3_urls(
|
| 923 |
+
names=[self.path],
|
| 924 |
+
s3_url_prefix=None,
|
| 925 |
+
recursive=True,
|
| 926 |
+
profiles={self.path: self.profile} if self.profile else {},
|
| 927 |
+
)
|
| 928 |
+
|
| 929 |
+
return self.urls
|
| 930 |
+
|
| 931 |
+
class LocalWebDatasetConfig:
|
| 932 |
+
def __init__(
|
| 933 |
+
self,
|
| 934 |
+
id: str,
|
| 935 |
+
path: str,
|
| 936 |
+
custom_metadata_fn: Optional[Callable[[str], str]] = None,
|
| 937 |
+
profile: Optional[str] = None,
|
| 938 |
+
):
|
| 939 |
+
self.id = id
|
| 940 |
+
self.path = path
|
| 941 |
+
self.custom_metadata_fn = custom_metadata_fn
|
| 942 |
+
self.urls = []
|
| 943 |
+
|
| 944 |
+
def load_data_urls(self):
|
| 945 |
+
|
| 946 |
+
self.urls = fast_scandir(self.path, ["tar"])[1]
|
| 947 |
+
|
| 948 |
+
return self.urls
|
| 949 |
+
|
| 950 |
+
def audio_decoder(key, value):
|
| 951 |
+
# Get file extension from key
|
| 952 |
+
ext = key.split(".")[-1]
|
| 953 |
+
|
| 954 |
+
if ext in AUDIO_KEYS:
|
| 955 |
+
return torchaudio.load(io.BytesIO(value))
|
| 956 |
+
else:
|
| 957 |
+
return None
|
| 958 |
+
|
| 959 |
+
def collation_fn(samples):
|
| 960 |
+
batched = list(zip(*samples))
|
| 961 |
+
result = []
|
| 962 |
+
for b in batched:
|
| 963 |
+
if isinstance(b[0], (int, float)):
|
| 964 |
+
b = np.array(b)
|
| 965 |
+
elif isinstance(b[0], torch.Tensor):
|
| 966 |
+
b = torch.stack(b)
|
| 967 |
+
elif isinstance(b[0], np.ndarray):
|
| 968 |
+
b = np.array(b)
|
| 969 |
+
else:
|
| 970 |
+
b = b
|
| 971 |
+
result.append(b)
|
| 972 |
+
return result
|
| 973 |
+
|
| 974 |
+
class WebDatasetDataLoader():
|
| 975 |
+
def __init__(
|
| 976 |
+
self,
|
| 977 |
+
datasets: List[S3DatasetConfig],
|
| 978 |
+
batch_size,
|
| 979 |
+
sample_size,
|
| 980 |
+
sample_rate=48000,
|
| 981 |
+
num_workers=8,
|
| 982 |
+
epoch_steps=1000,
|
| 983 |
+
random_crop=True,
|
| 984 |
+
force_channels="stereo",
|
| 985 |
+
augment_phase=True,
|
| 986 |
+
**data_loader_kwargs
|
| 987 |
+
):
|
| 988 |
+
|
| 989 |
+
self.datasets = datasets
|
| 990 |
+
|
| 991 |
+
self.sample_size = sample_size
|
| 992 |
+
self.sample_rate = sample_rate
|
| 993 |
+
self.random_crop = random_crop
|
| 994 |
+
self.force_channels = force_channels
|
| 995 |
+
self.augment_phase = augment_phase
|
| 996 |
+
|
| 997 |
+
urls = [dataset.load_data_urls() for dataset in datasets]
|
| 998 |
+
|
| 999 |
+
# Flatten the list of lists of URLs
|
| 1000 |
+
urls = [url for dataset_urls in urls for url in dataset_urls]
|
| 1001 |
+
|
| 1002 |
+
# Shuffle the urls
|
| 1003 |
+
random.shuffle(urls)
|
| 1004 |
+
|
| 1005 |
+
self.dataset = wds.DataPipeline(
|
| 1006 |
+
wds.ResampledShards(urls),
|
| 1007 |
+
wds.tarfile_to_samples(handler=log_and_continue),
|
| 1008 |
+
wds.decode(audio_decoder, handler=log_and_continue),
|
| 1009 |
+
wds.map(self.wds_preprocess, handler=log_and_continue),
|
| 1010 |
+
wds.select(is_valid_sample),
|
| 1011 |
+
wds.to_tuple("audio", "json", handler=log_and_continue),
|
| 1012 |
+
#wds.shuffle(bufsize=1000, initial=5000),
|
| 1013 |
+
wds.batched(batch_size, partial=False, collation_fn=collation_fn),
|
| 1014 |
+
).with_epoch(epoch_steps//num_workers if num_workers > 0 else epoch_steps)
|
| 1015 |
+
|
| 1016 |
+
self.data_loader = wds.WebLoader(self.dataset, num_workers=num_workers, **data_loader_kwargs)
|
| 1017 |
+
|
| 1018 |
+
def wds_preprocess(self, sample):
|
| 1019 |
+
|
| 1020 |
+
found_key, rewrite_key = '', ''
|
| 1021 |
+
for k, v in sample.items(): # print the all entries in dict
|
| 1022 |
+
for akey in AUDIO_KEYS:
|
| 1023 |
+
if k.endswith(akey):
|
| 1024 |
+
# to rename long/weird key with its simpler counterpart
|
| 1025 |
+
found_key, rewrite_key = k, akey
|
| 1026 |
+
break
|
| 1027 |
+
if '' != found_key:
|
| 1028 |
+
break
|
| 1029 |
+
if '' == found_key: # got no audio!
|
| 1030 |
+
return None # try returning None to tell WebDataset to skip this one
|
| 1031 |
+
|
| 1032 |
+
audio, in_sr = sample[found_key]
|
| 1033 |
+
if in_sr != self.sample_rate:
|
| 1034 |
+
resample_tf = T.Resample(in_sr, self.sample_rate)
|
| 1035 |
+
audio = resample_tf(audio)
|
| 1036 |
+
|
| 1037 |
+
if self.sample_size is not None:
|
| 1038 |
+
# Pad/crop and get the relative timestamp
|
| 1039 |
+
pad_crop = PadCrop_Normalized_T(
|
| 1040 |
+
self.sample_size, randomize=self.random_crop, sample_rate=self.sample_rate)
|
| 1041 |
+
audio, t_start, t_end, seconds_start, seconds_total, padding_mask = pad_crop(
|
| 1042 |
+
audio)
|
| 1043 |
+
sample["json"]["seconds_start"] = seconds_start
|
| 1044 |
+
sample["json"]["seconds_total"] = seconds_total
|
| 1045 |
+
sample["json"]["padding_mask"] = padding_mask
|
| 1046 |
+
else:
|
| 1047 |
+
t_start, t_end = 0, 1
|
| 1048 |
+
|
| 1049 |
+
# Check if audio is length zero, initialize to a single zero if so
|
| 1050 |
+
if audio.shape[-1] == 0:
|
| 1051 |
+
audio = torch.zeros(1, 1)
|
| 1052 |
+
|
| 1053 |
+
# Make the audio stereo and augment by randomly inverting phase
|
| 1054 |
+
augs = torch.nn.Sequential(
|
| 1055 |
+
Stereo() if self.force_channels == "stereo" else torch.nn.Identity(),
|
| 1056 |
+
Mono() if self.force_channels == "mono" else torch.nn.Identity(),
|
| 1057 |
+
PhaseFlipper() if self.augment_phase else torch.nn.Identity()
|
| 1058 |
+
)
|
| 1059 |
+
|
| 1060 |
+
audio = augs(audio)
|
| 1061 |
+
|
| 1062 |
+
sample["json"]["timestamps"] = (t_start, t_end)
|
| 1063 |
+
|
| 1064 |
+
if "text" in sample["json"]:
|
| 1065 |
+
sample["json"]["prompt"] = sample["json"]["text"]
|
| 1066 |
+
|
| 1067 |
+
# Check for custom metadata functions
|
| 1068 |
+
for dataset in self.datasets:
|
| 1069 |
+
if dataset.custom_metadata_fn is None:
|
| 1070 |
+
continue
|
| 1071 |
+
|
| 1072 |
+
if dataset.path in sample["__url__"]:
|
| 1073 |
+
custom_metadata = dataset.custom_metadata_fn(sample["json"], audio)
|
| 1074 |
+
sample["json"].update(custom_metadata)
|
| 1075 |
+
|
| 1076 |
+
if found_key != rewrite_key: # rename long/weird key with its simpler counterpart
|
| 1077 |
+
del sample[found_key]
|
| 1078 |
+
|
| 1079 |
+
sample["audio"] = audio
|
| 1080 |
+
|
| 1081 |
+
# Add audio to the metadata as well for conditioning
|
| 1082 |
+
sample["json"]["audio"] = audio
|
| 1083 |
+
|
| 1084 |
+
return sample
|
| 1085 |
+
|
| 1086 |
+
def create_dataloader_from_config(dataset_config, batch_size, sample_size, sample_rate, audio_channels=2, num_workers=4):
|
| 1087 |
+
|
| 1088 |
+
dataset_type = dataset_config.get("dataset_type", None)
|
| 1089 |
+
|
| 1090 |
+
assert dataset_type is not None, "Dataset type must be specified in dataset config"
|
| 1091 |
+
|
| 1092 |
+
if audio_channels == 1:
|
| 1093 |
+
force_channels = "mono"
|
| 1094 |
+
elif audio_channels == 2:
|
| 1095 |
+
force_channels = "stereo"
|
| 1096 |
+
else:
|
| 1097 |
+
force_channels = "foa"
|
| 1098 |
+
|
| 1099 |
+
if dataset_type == "audio_dir":
|
| 1100 |
+
|
| 1101 |
+
audio_dir_configs = dataset_config.get("datasets", None)
|
| 1102 |
+
|
| 1103 |
+
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
| 1104 |
+
|
| 1105 |
+
configs = []
|
| 1106 |
+
|
| 1107 |
+
for audio_dir_config in audio_dir_configs:
|
| 1108 |
+
audio_dir_path = audio_dir_config.get("path", None)
|
| 1109 |
+
split_path = audio_dir_config.get("split_path", None)
|
| 1110 |
+
assert audio_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 1111 |
+
custom_metadata_fn = None
|
| 1112 |
+
custom_metadata_module_path = audio_dir_config.get("custom_metadata_module", None)
|
| 1113 |
+
|
| 1114 |
+
if custom_metadata_module_path is not None:
|
| 1115 |
+
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
| 1116 |
+
metadata_module = importlib.util.module_from_spec(spec)
|
| 1117 |
+
spec.loader.exec_module(metadata_module)
|
| 1118 |
+
|
| 1119 |
+
custom_metadata_fn = metadata_module.get_custom_metadata
|
| 1120 |
+
|
| 1121 |
+
configs.append(
|
| 1122 |
+
LocalDatasetConfig(
|
| 1123 |
+
id=audio_dir_config["id"],
|
| 1124 |
+
path=audio_dir_path,
|
| 1125 |
+
split_path=split_path,
|
| 1126 |
+
custom_metadata_fn=custom_metadata_fn
|
| 1127 |
+
)
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
train_set = SampleDataset(
|
| 1131 |
+
configs,
|
| 1132 |
+
sample_rate=sample_rate,
|
| 1133 |
+
sample_size=sample_size,
|
| 1134 |
+
random_crop=dataset_config.get("random_crop", True),
|
| 1135 |
+
input_type=dataset_config.get("input_type", "video"),
|
| 1136 |
+
fps=dataset_config.get("fps", 4),
|
| 1137 |
+
force_channels=force_channels
|
| 1138 |
+
)
|
| 1139 |
+
|
| 1140 |
+
return torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
|
| 1141 |
+
num_workers=num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
|
| 1142 |
+
|
| 1143 |
+
elif dataset_type in ["s3", "wds"]: # Support "s3" type for backwards compatibility
|
| 1144 |
+
|
| 1145 |
+
wds_configs = []
|
| 1146 |
+
|
| 1147 |
+
for wds_config in dataset_config["datasets"]:
|
| 1148 |
+
|
| 1149 |
+
custom_metadata_fn = None
|
| 1150 |
+
custom_metadata_module_path = wds_config.get("custom_metadata_module", None)
|
| 1151 |
+
|
| 1152 |
+
if custom_metadata_module_path is not None:
|
| 1153 |
+
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
| 1154 |
+
metadata_module = importlib.util.module_from_spec(spec)
|
| 1155 |
+
spec.loader.exec_module(metadata_module)
|
| 1156 |
+
|
| 1157 |
+
custom_metadata_fn = metadata_module.get_custom_metadata
|
| 1158 |
+
|
| 1159 |
+
if "s3_path" in wds_config:
|
| 1160 |
+
|
| 1161 |
+
wds_configs.append(
|
| 1162 |
+
S3DatasetConfig(
|
| 1163 |
+
id=wds_config["id"],
|
| 1164 |
+
s3_path=wds_config["s3_path"],
|
| 1165 |
+
custom_metadata_fn=custom_metadata_fn,
|
| 1166 |
+
profile=wds_config.get("profile", None),
|
| 1167 |
+
)
|
| 1168 |
+
)
|
| 1169 |
+
|
| 1170 |
+
elif "path" in wds_config:
|
| 1171 |
+
|
| 1172 |
+
wds_configs.append(
|
| 1173 |
+
LocalWebDatasetConfig(
|
| 1174 |
+
id=wds_config["id"],
|
| 1175 |
+
path=wds_config["path"],
|
| 1176 |
+
custom_metadata_fn=custom_metadata_fn
|
| 1177 |
+
)
|
| 1178 |
+
)
|
| 1179 |
+
|
| 1180 |
+
return WebDatasetDataLoader(
|
| 1181 |
+
wds_configs,
|
| 1182 |
+
sample_rate=sample_rate,
|
| 1183 |
+
sample_size=sample_size,
|
| 1184 |
+
batch_size=batch_size,
|
| 1185 |
+
random_crop=dataset_config.get("random_crop", True),
|
| 1186 |
+
num_workers=num_workers,
|
| 1187 |
+
persistent_workers=True,
|
| 1188 |
+
force_channels=force_channels,
|
| 1189 |
+
epoch_steps=dataset_config.get("epoch_steps", 2000)
|
| 1190 |
+
).data_loader
|
| 1191 |
+
|
| 1192 |
+
elif dataset_type == "latent_dir":
|
| 1193 |
+
|
| 1194 |
+
audio_dir_configs = dataset_config.get("datasets", None)
|
| 1195 |
+
|
| 1196 |
+
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
| 1197 |
+
|
| 1198 |
+
configs = []
|
| 1199 |
+
|
| 1200 |
+
for audio_dir_config in audio_dir_configs:
|
| 1201 |
+
audio_dir_path = audio_dir_config.get("path", None)
|
| 1202 |
+
split_path = audio_dir_config.get("split_path", None)
|
| 1203 |
+
assert audio_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 1204 |
+
|
| 1205 |
+
configs.append(
|
| 1206 |
+
LocalDatasetConfig(
|
| 1207 |
+
id=audio_dir_config["id"],
|
| 1208 |
+
path=audio_dir_path,
|
| 1209 |
+
split_path=split_path,
|
| 1210 |
+
)
|
| 1211 |
+
)
|
| 1212 |
+
|
| 1213 |
+
train_set = LatentDataset(
|
| 1214 |
+
configs,
|
| 1215 |
+
sample_rate=sample_rate,
|
| 1216 |
+
sample_size=sample_size,
|
| 1217 |
+
random_crop=dataset_config.get("random_crop", True),
|
| 1218 |
+
input_type=dataset_config.get("input_type", "video"),
|
| 1219 |
+
fps=dataset_config.get("fps", 4),
|
| 1220 |
+
force_channels=force_channels
|
| 1221 |
+
)
|
| 1222 |
+
|
| 1223 |
+
return torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
|
| 1224 |
+
num_workers=num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
|
| 1225 |
+
elif dataset_type == 'multimodal_dir':
|
| 1226 |
+
audio_dir_configs = dataset_config.get("datasets", None)
|
| 1227 |
+
|
| 1228 |
+
assert audio_dir_configs is not None, "Directory configuration must be specified in datasets[\"dataset\"]"
|
| 1229 |
+
|
| 1230 |
+
configs = []
|
| 1231 |
+
|
| 1232 |
+
for audio_dir_config in audio_dir_configs:
|
| 1233 |
+
audio_dir_path = audio_dir_config.get("path", None)
|
| 1234 |
+
split_path = audio_dir_config.get("split_path", None)
|
| 1235 |
+
assert audio_dir_path is not None, "Path must be set for local audio directory configuration"
|
| 1236 |
+
custom_metadata_fn = None
|
| 1237 |
+
custom_metadata_module_path = audio_dir_config.get("custom_metadata_module", None)
|
| 1238 |
+
|
| 1239 |
+
if custom_metadata_module_path is not None:
|
| 1240 |
+
spec = importlib.util.spec_from_file_location("metadata_module", custom_metadata_module_path)
|
| 1241 |
+
metadata_module = importlib.util.module_from_spec(spec)
|
| 1242 |
+
spec.loader.exec_module(metadata_module)
|
| 1243 |
+
|
| 1244 |
+
custom_metadata_fn = metadata_module.get_custom_metadata
|
| 1245 |
+
|
| 1246 |
+
configs.append(
|
| 1247 |
+
LocalDatasetConfig(
|
| 1248 |
+
id=audio_dir_config["id"],
|
| 1249 |
+
path=audio_dir_path,
|
| 1250 |
+
split_path=split_path,
|
| 1251 |
+
custom_metadata_fn=custom_metadata_fn
|
| 1252 |
+
)
|
| 1253 |
+
)
|
| 1254 |
+
|
| 1255 |
+
train_set = MultiModalDataset(
|
| 1256 |
+
configs,
|
| 1257 |
+
sample_rate=sample_rate,
|
| 1258 |
+
sample_size=sample_size,
|
| 1259 |
+
random_crop=dataset_config.get("random_crop", True),
|
| 1260 |
+
input_type=dataset_config.get("input_type", "video"),
|
| 1261 |
+
fps=dataset_config.get("fps", 4),
|
| 1262 |
+
force_channels=force_channels
|
| 1263 |
+
)
|
| 1264 |
+
|
| 1265 |
+
return torch.utils.data.DataLoader(train_set, batch_size, shuffle=True,
|
| 1266 |
+
num_workers=num_workers, persistent_workers=True, pin_memory=True, drop_last=True, collate_fn=collation_fn)
|
ThinkSound/data/utils.py
ADDED
|
@@ -0,0 +1,378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch import nn
|
| 6 |
+
from typing import Tuple
|
| 7 |
+
import numpy as np
|
| 8 |
+
|
| 9 |
+
class PadCrop(nn.Module):
|
| 10 |
+
def __init__(self, n_samples, randomize=True):
|
| 11 |
+
super().__init__()
|
| 12 |
+
self.n_samples = n_samples
|
| 13 |
+
self.randomize = randomize
|
| 14 |
+
|
| 15 |
+
def __call__(self, signal):
|
| 16 |
+
n, s = signal.shape
|
| 17 |
+
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
|
| 18 |
+
end = start + self.n_samples
|
| 19 |
+
output = signal.new_zeros([n, self.n_samples])
|
| 20 |
+
output[:, :min(s, self.n_samples)] = signal[:, start:end]
|
| 21 |
+
return output
|
| 22 |
+
|
| 23 |
+
class PadCrop_Normalized_T(nn.Module):
|
| 24 |
+
|
| 25 |
+
def __init__(self, n_samples: int, sample_rate: int, randomize: bool = True):
|
| 26 |
+
|
| 27 |
+
super().__init__()
|
| 28 |
+
|
| 29 |
+
self.n_samples = n_samples
|
| 30 |
+
self.sample_rate = sample_rate
|
| 31 |
+
self.randomize = randomize
|
| 32 |
+
|
| 33 |
+
def __call__(self, source: torch.Tensor, randomize=True) -> Tuple[torch.Tensor, float, float, int, int]:
|
| 34 |
+
|
| 35 |
+
n_channels, n_samples = source.shape
|
| 36 |
+
|
| 37 |
+
# If the audio is shorter than the desired length, pad it
|
| 38 |
+
upper_bound = max(0, n_samples - self.n_samples)
|
| 39 |
+
|
| 40 |
+
# If randomize is False, always start at the beginning of the audio
|
| 41 |
+
offset = 0
|
| 42 |
+
if(randomize and n_samples > self.n_samples):
|
| 43 |
+
offset = random.randint(0, upper_bound)
|
| 44 |
+
|
| 45 |
+
# Calculate the start and end times of the chunk
|
| 46 |
+
t_start = offset / (upper_bound + self.n_samples)
|
| 47 |
+
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
| 48 |
+
|
| 49 |
+
# Create the chunk
|
| 50 |
+
chunk = source.new_zeros([n_channels, self.n_samples])
|
| 51 |
+
|
| 52 |
+
# Copy the audio into the chunk
|
| 53 |
+
chunk[:, :min(n_samples, self.n_samples)] = source[:, offset:offset + self.n_samples]
|
| 54 |
+
|
| 55 |
+
# Calculate the start and end times of the chunk in seconds
|
| 56 |
+
seconds_start = math.floor(offset / self.sample_rate)
|
| 57 |
+
seconds_total = math.ceil(n_samples / self.sample_rate)
|
| 58 |
+
|
| 59 |
+
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
| 60 |
+
padding_mask = torch.zeros([self.n_samples])
|
| 61 |
+
padding_mask[:min(n_samples, self.n_samples)] = 1
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
return (
|
| 65 |
+
chunk,
|
| 66 |
+
t_start,
|
| 67 |
+
t_end,
|
| 68 |
+
seconds_start,
|
| 69 |
+
seconds_total,
|
| 70 |
+
padding_mask
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
class PadCrop_Video_Normalized_T(nn.Module):
|
| 74 |
+
|
| 75 |
+
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
|
| 76 |
+
|
| 77 |
+
super().__init__()
|
| 78 |
+
|
| 79 |
+
self.n_samples = n_samples
|
| 80 |
+
self.sample_rate = sample_rate
|
| 81 |
+
self.randomize = randomize
|
| 82 |
+
self.fps = fps
|
| 83 |
+
self.n_frames = int(self.fps * self.n_samples / self.sample_rate)
|
| 84 |
+
|
| 85 |
+
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
|
| 86 |
+
n_channels, n_samples = audio.shape
|
| 87 |
+
# print(video.shape)
|
| 88 |
+
n_frames, dim = video.shape
|
| 89 |
+
if not torch.is_tensor(video):
|
| 90 |
+
video = torch.from_numpy(video)
|
| 91 |
+
# If the audio is shorter than the desired length, pad it
|
| 92 |
+
audio_upper_bound = max(0, n_samples - self.n_samples)
|
| 93 |
+
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
|
| 94 |
+
upper_bound = min(audio_upper_bound,video_upper_bound)
|
| 95 |
+
|
| 96 |
+
# If randomize is False, always start at the beginning of the audio
|
| 97 |
+
offset = 0
|
| 98 |
+
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
|
| 99 |
+
offset = random.randint(0, upper_bound)
|
| 100 |
+
|
| 101 |
+
# Calculate the start and end times of the chunk
|
| 102 |
+
t_start = offset / (upper_bound + self.n_samples)
|
| 103 |
+
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
| 104 |
+
frame_offset = int(self.fps * offset / self.sample_rate)
|
| 105 |
+
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
|
| 106 |
+
# Create the chunk
|
| 107 |
+
chunk = audio.new_zeros([n_channels, self.n_samples])
|
| 108 |
+
video_chunk = video.new_zeros([self.n_frames, video.shape[1]])
|
| 109 |
+
# Copy the audio into the chunk
|
| 110 |
+
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
|
| 111 |
+
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames,:]
|
| 112 |
+
# Calculate the start and end times of the chunk in seconds
|
| 113 |
+
seconds_start = math.floor(offset / self.sample_rate)
|
| 114 |
+
seconds_total = math.ceil(n_samples / self.sample_rate)
|
| 115 |
+
|
| 116 |
+
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
| 117 |
+
padding_mask = torch.zeros([self.n_samples])
|
| 118 |
+
padding_mask[:min(n_samples, self.n_samples)] = 1
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
return (
|
| 122 |
+
chunk,
|
| 123 |
+
video_chunk,
|
| 124 |
+
t_start,
|
| 125 |
+
t_end,
|
| 126 |
+
seconds_start,
|
| 127 |
+
seconds_total,
|
| 128 |
+
padding_mask
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
class PadCrop_Video_Image_Normalized_T(nn.Module):
|
| 132 |
+
|
| 133 |
+
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
|
| 134 |
+
|
| 135 |
+
super().__init__()
|
| 136 |
+
|
| 137 |
+
self.n_samples = n_samples
|
| 138 |
+
self.sample_rate = sample_rate
|
| 139 |
+
self.randomize = randomize
|
| 140 |
+
self.fps = fps
|
| 141 |
+
self.n_frames = int(self.fps * self.n_samples / self.sample_rate)
|
| 142 |
+
|
| 143 |
+
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
|
| 144 |
+
n_channels, n_samples = audio.shape
|
| 145 |
+
# import ipdb
|
| 146 |
+
# ipdb.set_trace()
|
| 147 |
+
n_frames, channel, width, height= video.shape
|
| 148 |
+
video = torch.from_numpy(video)
|
| 149 |
+
# If the audio is shorter than the desired length, pad it
|
| 150 |
+
audio_upper_bound = max(0, n_samples - self.n_samples)
|
| 151 |
+
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
|
| 152 |
+
upper_bound = min(audio_upper_bound,video_upper_bound)
|
| 153 |
+
|
| 154 |
+
# If randomize is False, always start at the beginning of the audio
|
| 155 |
+
offset = 0
|
| 156 |
+
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
|
| 157 |
+
offset = random.randint(0, upper_bound)
|
| 158 |
+
|
| 159 |
+
# Calculate the start and end times of the chunk
|
| 160 |
+
t_start = offset / (upper_bound + self.n_samples)
|
| 161 |
+
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
| 162 |
+
frame_offset = int(self.fps * offset / self.sample_rate)
|
| 163 |
+
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
|
| 164 |
+
# Create the chunk
|
| 165 |
+
chunk = audio.new_zeros([n_channels, self.n_samples])
|
| 166 |
+
video_chunk = video.new_zeros([self.n_frames, channel, width, height])
|
| 167 |
+
# Copy the audio into the chunk
|
| 168 |
+
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
|
| 169 |
+
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames]
|
| 170 |
+
# Calculate the start and end times of the chunk in seconds
|
| 171 |
+
seconds_start = math.floor(offset / self.sample_rate)
|
| 172 |
+
seconds_total = math.ceil(n_samples / self.sample_rate)
|
| 173 |
+
|
| 174 |
+
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
| 175 |
+
padding_mask = torch.zeros([self.n_samples])
|
| 176 |
+
padding_mask[:min(n_samples, self.n_samples)] = 1
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
return (
|
| 180 |
+
chunk,
|
| 181 |
+
video_chunk,
|
| 182 |
+
t_start,
|
| 183 |
+
t_end,
|
| 184 |
+
seconds_start,
|
| 185 |
+
seconds_total,
|
| 186 |
+
padding_mask
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
class PadCrop_Video_Hiera_Normalized_T(nn.Module):
|
| 190 |
+
|
| 191 |
+
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
|
| 192 |
+
|
| 193 |
+
super().__init__()
|
| 194 |
+
|
| 195 |
+
self.n_samples = n_samples
|
| 196 |
+
self.sample_rate = sample_rate
|
| 197 |
+
self.randomize = randomize
|
| 198 |
+
self.fps = fps
|
| 199 |
+
self.n_frames = int(self.fps * self.n_samples / self.sample_rate)
|
| 200 |
+
|
| 201 |
+
def __call__(self, audio: torch.Tensor, video: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
|
| 202 |
+
|
| 203 |
+
n_channels, n_samples = audio.shape
|
| 204 |
+
n_frames, heigh, width, channel = video.shape
|
| 205 |
+
video = torch.from_numpy(video)
|
| 206 |
+
# If the audio is shorter than the desired length, pad it
|
| 207 |
+
audio_upper_bound = max(0, n_samples - self.n_samples)
|
| 208 |
+
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
|
| 209 |
+
upper_bound = min(audio_upper_bound,video_upper_bound)
|
| 210 |
+
|
| 211 |
+
# If randomize is False, always start at the beginning of the audio
|
| 212 |
+
offset = 0
|
| 213 |
+
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
|
| 214 |
+
offset = random.randint(0, upper_bound)
|
| 215 |
+
|
| 216 |
+
# Calculate the start and end times of the chunk
|
| 217 |
+
t_start = offset / (upper_bound + self.n_samples)
|
| 218 |
+
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
| 219 |
+
frame_offset = int(self.fps * offset / self.sample_rate)
|
| 220 |
+
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
|
| 221 |
+
# Create the chunk
|
| 222 |
+
chunk = audio.new_zeros([n_channels, self.n_samples])
|
| 223 |
+
video_chunk = video.new_zeros([self.n_frames, heigh, width, channel])
|
| 224 |
+
# Copy the audio into the chunk
|
| 225 |
+
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
|
| 226 |
+
video_chunk[:min(n_frames, self.n_frames)] = video[frame_offset:frame_offset + self.n_frames]
|
| 227 |
+
# video_chunk = video_chunk[None].permute(0, 4, 1, 2, 3).contiguous()
|
| 228 |
+
# print(video_chunk.shape)
|
| 229 |
+
# video_chunk = F.interpolate(
|
| 230 |
+
# video_chunk[0],
|
| 231 |
+
# size=(224, 224, 3), # 输出的空间尺寸
|
| 232 |
+
# scale_factor=(target_frames / video_tensor.shape[1], 1, 1), # 时间轴的缩放因子
|
| 233 |
+
# mode='trilinear', # 使用三线性插值
|
| 234 |
+
# align_corners=False
|
| 235 |
+
# )
|
| 236 |
+
|
| 237 |
+
# video_chunk = F.interpolate(video_chunk, size=(64, 224, 224), mode="trilinear")[0]
|
| 238 |
+
# video_chunk = video_chunk.view(3,4,16,224,224).transpose(0,1)
|
| 239 |
+
# Calculate the start and end times of the chunk in seconds
|
| 240 |
+
seconds_start = math.floor(offset / self.sample_rate)
|
| 241 |
+
seconds_total = math.ceil(n_samples / self.sample_rate)
|
| 242 |
+
|
| 243 |
+
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
| 244 |
+
padding_mask = torch.zeros([self.n_samples])
|
| 245 |
+
padding_mask[:min(n_samples, self.n_samples)] = 1
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
return (
|
| 249 |
+
chunk,
|
| 250 |
+
video_chunk,
|
| 251 |
+
t_start,
|
| 252 |
+
t_end,
|
| 253 |
+
seconds_start,
|
| 254 |
+
seconds_total,
|
| 255 |
+
padding_mask
|
| 256 |
+
)
|
| 257 |
+
|
| 258 |
+
class PadCrop_DualVideo_Normalized_T(nn.Module):
|
| 259 |
+
|
| 260 |
+
def __init__(self, n_samples: int, sample_rate: int, fps: int, randomize: bool = True):
|
| 261 |
+
|
| 262 |
+
super().__init__()
|
| 263 |
+
|
| 264 |
+
self.n_samples = n_samples
|
| 265 |
+
self.sample_rate = sample_rate
|
| 266 |
+
self.randomize = randomize
|
| 267 |
+
self.fps = fps
|
| 268 |
+
self.n_frames = int(self.fps * self.n_samples / self.sample_rate)
|
| 269 |
+
|
| 270 |
+
def __call__(self, audio: torch.Tensor, video_360: torch.Tensor, video_fov: torch.Tensor) -> Tuple[torch.Tensor, float, float, int, int]:
|
| 271 |
+
n_channels, n_samples = audio.shape
|
| 272 |
+
# print(video.shape)
|
| 273 |
+
n_frames, dim = video_360.shape
|
| 274 |
+
video_360 = torch.from_numpy(video_360)
|
| 275 |
+
video_fov = torch.from_numpy(video_fov)
|
| 276 |
+
# If the audio is shorter than the desired length, pad it
|
| 277 |
+
audio_upper_bound = max(0, n_samples - self.n_samples)
|
| 278 |
+
video_upper_bound = int(max(0, n_frames - self.n_frames) * self.sample_rate / self.fps)
|
| 279 |
+
upper_bound = min(audio_upper_bound,video_upper_bound)
|
| 280 |
+
|
| 281 |
+
# If randomize is False, always start at the beginning of the audio
|
| 282 |
+
offset = 0
|
| 283 |
+
if(self.randomize and n_samples > self.n_samples and n_frames > self.n_frames):
|
| 284 |
+
offset = random.randint(0, upper_bound)
|
| 285 |
+
|
| 286 |
+
# Calculate the start and end times of the chunk
|
| 287 |
+
t_start = offset / (upper_bound + self.n_samples)
|
| 288 |
+
t_end = (offset + self.n_samples) / (upper_bound + self.n_samples)
|
| 289 |
+
frame_offset = int(self.fps * offset / self.sample_rate)
|
| 290 |
+
# frame_end = frame_offset + int(self.fps * self.n_samples / self.sample_rate)
|
| 291 |
+
# Create the chunk
|
| 292 |
+
chunk = audio.new_zeros([n_channels, self.n_samples])
|
| 293 |
+
video_360_chunk = video_360.new_zeros([self.n_frames, video_360.shape[1]])
|
| 294 |
+
video_fov_chunk = video_fov.new_zeros([self.n_frames, video_fov.shape[1]])
|
| 295 |
+
# Copy the audio into the chunk
|
| 296 |
+
chunk[:, :min(n_samples, self.n_samples)] = audio[:, offset:offset + self.n_samples]
|
| 297 |
+
video_360_chunk[:min(n_frames, self.n_frames)] = video_360[frame_offset:frame_offset + self.n_frames,:]
|
| 298 |
+
video_fov_chunk[:min(n_frames, self.n_frames)] = video_fov[frame_offset:frame_offset + self.n_frames,:]
|
| 299 |
+
# Calculate the start and end times of the chunk in seconds
|
| 300 |
+
seconds_start = math.floor(offset / self.sample_rate)
|
| 301 |
+
seconds_total = math.ceil(n_samples / self.sample_rate)
|
| 302 |
+
|
| 303 |
+
# Create a mask the same length as the chunk with 1s where the audio is and 0s where it isn't
|
| 304 |
+
padding_mask = torch.zeros([self.n_samples])
|
| 305 |
+
padding_mask[:min(n_samples, self.n_samples)] = 1
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
return (
|
| 309 |
+
chunk,
|
| 310 |
+
video_360_chunk,
|
| 311 |
+
video_fov_chunk,
|
| 312 |
+
t_start,
|
| 313 |
+
t_end,
|
| 314 |
+
seconds_start,
|
| 315 |
+
seconds_total,
|
| 316 |
+
padding_mask
|
| 317 |
+
)
|
| 318 |
+
|
| 319 |
+
class PhaseFlipper(nn.Module):
|
| 320 |
+
"Randomly invert the phase of a signal"
|
| 321 |
+
def __init__(self, p=0.5):
|
| 322 |
+
super().__init__()
|
| 323 |
+
self.p = p
|
| 324 |
+
def __call__(self, signal):
|
| 325 |
+
return -signal if (random.random() < self.p) else signal
|
| 326 |
+
|
| 327 |
+
class Mono(nn.Module):
|
| 328 |
+
def __call__(self, signal):
|
| 329 |
+
return torch.mean(signal, dim=0, keepdims=True) if len(signal.shape) > 1 else signal
|
| 330 |
+
|
| 331 |
+
class Stereo(nn.Module):
|
| 332 |
+
def __call__(self, signal):
|
| 333 |
+
signal_shape = signal.shape
|
| 334 |
+
# Check if it's mono
|
| 335 |
+
if len(signal_shape) == 1: # s -> 2, s
|
| 336 |
+
signal = signal.unsqueeze(0).repeat(2, 1)
|
| 337 |
+
elif len(signal_shape) == 2:
|
| 338 |
+
if signal_shape[0] == 1: #1, s -> 2, s
|
| 339 |
+
signal = signal.repeat(2, 1)
|
| 340 |
+
elif signal_shape[0] > 2: #?, s -> 2,s
|
| 341 |
+
signal = signal[:2, :]
|
| 342 |
+
|
| 343 |
+
return signal
|
| 344 |
+
|
| 345 |
+
class FOA(nn.Module):
|
| 346 |
+
def __call__(self, signal):
|
| 347 |
+
signal_shape = signal.shape
|
| 348 |
+
# Check if it's mono
|
| 349 |
+
if len(signal_shape) == 1: # s -> (4, s)
|
| 350 |
+
foa = torch.zeros(4, signal_shape[0], device=signal.device) # 与输入信号一致的设备类型
|
| 351 |
+
foa[0, :] = signal # W通道: 全方位声源
|
| 352 |
+
foa[1, :] = 0 # X通道
|
| 353 |
+
foa[2, :] = 0 # Y通道
|
| 354 |
+
foa[3, :] = 0 # Z通道
|
| 355 |
+
elif len(signal_shape) == 2:
|
| 356 |
+
foa = torch.zeros(4, signal_shape[1], device=signal.device) # 与输入信号一致的设备类型
|
| 357 |
+
if signal_shape[0] == 1: # (1, s) -> (4, s)
|
| 358 |
+
foa[0, :] = signal[0] # W通道: 全方位声源
|
| 359 |
+
foa[1, :] = 0 # X通道
|
| 360 |
+
foa[2, :] = 0 # Y通道
|
| 361 |
+
foa[3, :] = 0 # Z通道
|
| 362 |
+
elif signal_shape[0] == 2: # (2, s) -> (4, s)
|
| 363 |
+
left = signal[0]
|
| 364 |
+
right = signal[1]
|
| 365 |
+
# 将立体声信号映射到FOA信号通道
|
| 366 |
+
foa[0, :] = (left + right) / np.sqrt(2) # W通道: 全方位声源
|
| 367 |
+
foa[1, :] = (left - right) / np.sqrt(2) # X通道: 前后方向
|
| 368 |
+
foa[2, :] = 0 # Y通道: 左右方向,简单实现先置零
|
| 369 |
+
foa[3, :] = 0 # Z通道: 垂直方向,这里置零
|
| 370 |
+
else:
|
| 371 |
+
foa = signal
|
| 372 |
+
|
| 373 |
+
else:
|
| 374 |
+
raise ValueError(f"Unsupported signal shape: {signal_shape}")
|
| 375 |
+
|
| 376 |
+
assert foa.shape[0] == 4, f'inputs not FOA format'
|
| 377 |
+
|
| 378 |
+
return foa
|
ThinkSound/inference/__init__.py
ADDED
|
File without changes
|
ThinkSound/inference/generation.py
ADDED
|
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
import typing as tp
|
| 4 |
+
import math
|
| 5 |
+
from torchaudio import transforms as T
|
| 6 |
+
|
| 7 |
+
from .utils import prepare_audio
|
| 8 |
+
from .sampling import sample, sample_k, sample_rf
|
| 9 |
+
from ..data.utils import PadCrop
|
| 10 |
+
|
| 11 |
+
def generate_diffusion_uncond(
|
| 12 |
+
model,
|
| 13 |
+
steps: int = 250,
|
| 14 |
+
batch_size: int = 1,
|
| 15 |
+
sample_size: int = 2097152,
|
| 16 |
+
seed: int = -1,
|
| 17 |
+
device: str = "cuda",
|
| 18 |
+
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
|
| 19 |
+
init_noise_level: float = 1.0,
|
| 20 |
+
return_latents = False,
|
| 21 |
+
**sampler_kwargs
|
| 22 |
+
) -> torch.Tensor:
|
| 23 |
+
|
| 24 |
+
# The length of the output in audio samples
|
| 25 |
+
audio_sample_size = sample_size
|
| 26 |
+
|
| 27 |
+
# If this is latent diffusion, change sample_size instead to the downsampled latent size
|
| 28 |
+
if model.pretransform is not None:
|
| 29 |
+
sample_size = sample_size // model.pretransform.downsampling_ratio
|
| 30 |
+
|
| 31 |
+
# Seed
|
| 32 |
+
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
|
| 33 |
+
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
|
| 34 |
+
print(seed)
|
| 35 |
+
torch.manual_seed(seed)
|
| 36 |
+
# Define the initial noise immediately after setting the seed
|
| 37 |
+
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
|
| 38 |
+
|
| 39 |
+
if init_audio is not None:
|
| 40 |
+
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
|
| 41 |
+
in_sr, init_audio = init_audio
|
| 42 |
+
|
| 43 |
+
io_channels = model.io_channels
|
| 44 |
+
|
| 45 |
+
# For latent models, set the io_channels to the autoencoder's io_channels
|
| 46 |
+
if model.pretransform is not None:
|
| 47 |
+
io_channels = model.pretransform.io_channels
|
| 48 |
+
|
| 49 |
+
# Prepare the initial audio for use by the model
|
| 50 |
+
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
|
| 51 |
+
|
| 52 |
+
# For latent models, encode the initial audio into latents
|
| 53 |
+
if model.pretransform is not None:
|
| 54 |
+
init_audio = model.pretransform.encode(init_audio)
|
| 55 |
+
|
| 56 |
+
init_audio = init_audio.repeat(batch_size, 1, 1)
|
| 57 |
+
else:
|
| 58 |
+
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
|
| 59 |
+
init_audio = None
|
| 60 |
+
init_noise_level = None
|
| 61 |
+
|
| 62 |
+
# Inpainting mask
|
| 63 |
+
|
| 64 |
+
if init_audio is not None:
|
| 65 |
+
# variations
|
| 66 |
+
sampler_kwargs["sigma_max"] = init_noise_level
|
| 67 |
+
mask = None
|
| 68 |
+
else:
|
| 69 |
+
mask = None
|
| 70 |
+
|
| 71 |
+
# Now the generative AI part:
|
| 72 |
+
|
| 73 |
+
diff_objective = model.diffusion_objective
|
| 74 |
+
|
| 75 |
+
if diff_objective == "v":
|
| 76 |
+
# k-diffusion denoising process go!
|
| 77 |
+
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, device=device)
|
| 78 |
+
elif diff_objective == "rectified_flow":
|
| 79 |
+
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, device=device)
|
| 80 |
+
|
| 81 |
+
# Denoising process done.
|
| 82 |
+
# If this is latent diffusion, decode latents back into audio
|
| 83 |
+
if model.pretransform is not None and not return_latents:
|
| 84 |
+
sampled = model.pretransform.decode(sampled)
|
| 85 |
+
|
| 86 |
+
# Return audio
|
| 87 |
+
return sampled
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
def generate_diffusion_cond(
|
| 91 |
+
model,
|
| 92 |
+
steps: int = 250,
|
| 93 |
+
cfg_scale=6,
|
| 94 |
+
conditioning: dict = None,
|
| 95 |
+
conditioning_tensors: tp.Optional[dict] = None,
|
| 96 |
+
negative_conditioning: dict = None,
|
| 97 |
+
negative_conditioning_tensors: tp.Optional[dict] = None,
|
| 98 |
+
batch_size: int = 1,
|
| 99 |
+
sample_size: int = 2097152,
|
| 100 |
+
sample_rate: int = 48000,
|
| 101 |
+
seed: int = -1,
|
| 102 |
+
device: str = "cuda",
|
| 103 |
+
init_audio: tp.Optional[tp.Tuple[int, torch.Tensor]] = None,
|
| 104 |
+
init_noise_level: float = 1.0,
|
| 105 |
+
mask_args: dict = None,
|
| 106 |
+
return_latents = False,
|
| 107 |
+
**sampler_kwargs
|
| 108 |
+
) -> torch.Tensor:
|
| 109 |
+
"""
|
| 110 |
+
Generate audio from a prompt using a diffusion model.
|
| 111 |
+
|
| 112 |
+
Args:
|
| 113 |
+
model: The diffusion model to use for generation.
|
| 114 |
+
steps: The number of diffusion steps to use.
|
| 115 |
+
cfg_scale: Classifier-free guidance scale
|
| 116 |
+
conditioning: A dictionary of conditioning parameters to use for generation.
|
| 117 |
+
conditioning_tensors: A dictionary of precomputed conditioning tensors to use for generation.
|
| 118 |
+
batch_size: The batch size to use for generation.
|
| 119 |
+
sample_size: The length of the audio to generate, in samples.
|
| 120 |
+
sample_rate: The sample rate of the audio to generate (Deprecated, now pulled from the model directly)
|
| 121 |
+
seed: The random seed to use for generation, or -1 to use a random seed.
|
| 122 |
+
device: The device to use for generation.
|
| 123 |
+
init_audio: A tuple of (sample_rate, audio) to use as the initial audio for generation.
|
| 124 |
+
init_noise_level: The noise level to use when generating from an initial audio sample.
|
| 125 |
+
return_latents: Whether to return the latents used for generation instead of the decoded audio.
|
| 126 |
+
**sampler_kwargs: Additional keyword arguments to pass to the sampler.
|
| 127 |
+
"""
|
| 128 |
+
|
| 129 |
+
# The length of the output in audio samples
|
| 130 |
+
audio_sample_size = sample_size
|
| 131 |
+
|
| 132 |
+
# If this is latent diffusion, change sample_size instead to the downsampled latent size
|
| 133 |
+
if model.pretransform is not None:
|
| 134 |
+
sample_size = sample_size // model.pretransform.downsampling_ratio
|
| 135 |
+
|
| 136 |
+
# Seed
|
| 137 |
+
# The user can explicitly set the seed to deterministically generate the same output. Otherwise, use a random seed.
|
| 138 |
+
seed = seed if seed != -1 else np.random.randint(0, 2**32 - 1, dtype=np.uint32)
|
| 139 |
+
print(seed)
|
| 140 |
+
torch.manual_seed(seed)
|
| 141 |
+
# Define the initial noise immediately after setting the seed
|
| 142 |
+
noise = torch.randn([batch_size, model.io_channels, sample_size], device=device)
|
| 143 |
+
|
| 144 |
+
torch.backends.cuda.matmul.allow_tf32 = False
|
| 145 |
+
torch.backends.cudnn.allow_tf32 = False
|
| 146 |
+
torch.backends.cuda.matmul.allow_fp16_reduced_precision_reduction = False
|
| 147 |
+
torch.backends.cudnn.benchmark = False
|
| 148 |
+
import ipdb
|
| 149 |
+
# ipdb.set_trace()
|
| 150 |
+
# Conditioning
|
| 151 |
+
assert conditioning is not None or conditioning_tensors is not None, "Must provide either conditioning or conditioning_tensors"
|
| 152 |
+
if conditioning_tensors is None:
|
| 153 |
+
conditioning_tensors = model.conditioner(conditioning, device)
|
| 154 |
+
conditioning_inputs = model.get_conditioning_inputs(conditioning_tensors)
|
| 155 |
+
|
| 156 |
+
if negative_conditioning is not None or negative_conditioning_tensors is not None:
|
| 157 |
+
|
| 158 |
+
if negative_conditioning_tensors is None:
|
| 159 |
+
negative_conditioning_tensors = model.conditioner(negative_conditioning, device)
|
| 160 |
+
|
| 161 |
+
negative_conditioning_tensors = model.get_conditioning_inputs(negative_conditioning_tensors, negative=True)
|
| 162 |
+
else:
|
| 163 |
+
negative_conditioning_tensors = {}
|
| 164 |
+
|
| 165 |
+
if init_audio is not None:
|
| 166 |
+
# The user supplied some initial audio (for inpainting or variation). Let us prepare the input audio.
|
| 167 |
+
in_sr, init_audio = init_audio
|
| 168 |
+
|
| 169 |
+
io_channels = model.io_channels
|
| 170 |
+
|
| 171 |
+
# For latent models, set the io_channels to the autoencoder's io_channels
|
| 172 |
+
if model.pretransform is not None:
|
| 173 |
+
io_channels = model.pretransform.io_channels
|
| 174 |
+
|
| 175 |
+
# Prepare the initial audio for use by the model
|
| 176 |
+
init_audio = prepare_audio(init_audio, in_sr=in_sr, target_sr=model.sample_rate, target_length=audio_sample_size, target_channels=io_channels, device=device)
|
| 177 |
+
|
| 178 |
+
# For latent models, encode the initial audio into latents
|
| 179 |
+
if model.pretransform is not None:
|
| 180 |
+
init_audio = model.pretransform.encode(init_audio)
|
| 181 |
+
|
| 182 |
+
init_audio = init_audio.repeat(batch_size, 1, 1)
|
| 183 |
+
else:
|
| 184 |
+
# The user did not supply any initial audio for inpainting or variation. Generate new output from scratch.
|
| 185 |
+
init_audio = None
|
| 186 |
+
init_noise_level = None
|
| 187 |
+
mask_args = None
|
| 188 |
+
|
| 189 |
+
# Inpainting mask
|
| 190 |
+
if init_audio is not None and mask_args is not None:
|
| 191 |
+
# Cut and paste init_audio according to cropfrom, pastefrom, pasteto
|
| 192 |
+
# This is helpful for forward and reverse outpainting
|
| 193 |
+
cropfrom = math.floor(mask_args["cropfrom"]/100.0 * sample_size)
|
| 194 |
+
pastefrom = math.floor(mask_args["pastefrom"]/100.0 * sample_size)
|
| 195 |
+
pasteto = math.ceil(mask_args["pasteto"]/100.0 * sample_size)
|
| 196 |
+
assert pastefrom < pasteto, "Paste From should be less than Paste To"
|
| 197 |
+
croplen = pasteto - pastefrom
|
| 198 |
+
if cropfrom + croplen > sample_size:
|
| 199 |
+
croplen = sample_size - cropfrom
|
| 200 |
+
cropto = cropfrom + croplen
|
| 201 |
+
pasteto = pastefrom + croplen
|
| 202 |
+
cutpaste = init_audio.new_zeros(init_audio.shape)
|
| 203 |
+
cutpaste[:, :, pastefrom:pasteto] = init_audio[:,:,cropfrom:cropto]
|
| 204 |
+
#print(cropfrom, cropto, pastefrom, pasteto)
|
| 205 |
+
init_audio = cutpaste
|
| 206 |
+
# Build a soft mask (list of floats 0 to 1, the size of the latent) from the given args
|
| 207 |
+
mask = build_mask(sample_size, mask_args)
|
| 208 |
+
mask = mask.to(device)
|
| 209 |
+
elif init_audio is not None and mask_args is None:
|
| 210 |
+
# variations
|
| 211 |
+
sampler_kwargs["sigma_max"] = init_noise_level
|
| 212 |
+
mask = None
|
| 213 |
+
else:
|
| 214 |
+
mask = None
|
| 215 |
+
|
| 216 |
+
model_dtype = next(model.model.parameters()).dtype
|
| 217 |
+
noise = noise.type(model_dtype)
|
| 218 |
+
conditioning_inputs = {k: v.type(model_dtype) if v is not None else v for k, v in conditioning_inputs.items()}
|
| 219 |
+
# Now the generative AI part:
|
| 220 |
+
# k-diffusion denoising process go!
|
| 221 |
+
diff_objective = model.diffusion_objective
|
| 222 |
+
if diff_objective == "v":
|
| 223 |
+
# k-diffusion denoising process go!
|
| 224 |
+
# sampled = sample(model.model, noise, steps, 0, **conditioning_inputs)
|
| 225 |
+
sampled = sample_k(model.model, noise, init_audio, mask, steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
|
| 226 |
+
elif diff_objective == "rectified_flow":
|
| 227 |
+
|
| 228 |
+
if "sigma_min" in sampler_kwargs:
|
| 229 |
+
del sampler_kwargs["sigma_min"]
|
| 230 |
+
|
| 231 |
+
if "sampler_type" in sampler_kwargs:
|
| 232 |
+
del sampler_kwargs["sampler_type"]
|
| 233 |
+
|
| 234 |
+
sampled = sample_rf(model.model, noise, init_data=init_audio, steps=steps, **sampler_kwargs, **conditioning_inputs, **negative_conditioning_tensors, cfg_scale=cfg_scale, batch_cfg=True, rescale_cfg=True, device=device)
|
| 235 |
+
|
| 236 |
+
# v-diffusion:
|
| 237 |
+
#sampled = sample(model.model, noise, steps, 0, **conditioning_tensors, embedding_scale=cfg_scale)
|
| 238 |
+
del noise
|
| 239 |
+
del conditioning_tensors
|
| 240 |
+
del conditioning_inputs
|
| 241 |
+
torch.cuda.empty_cache()
|
| 242 |
+
# Denoising process done.
|
| 243 |
+
# If this is latent diffusion, decode latents back into audio
|
| 244 |
+
if model.pretransform is not None and not return_latents:
|
| 245 |
+
#cast sampled latents to pretransform dtype
|
| 246 |
+
sampled = sampled.to(next(model.pretransform.parameters()).dtype)
|
| 247 |
+
sampled = model.pretransform.decode(sampled)
|
| 248 |
+
|
| 249 |
+
# Return audio
|
| 250 |
+
return sampled
|
| 251 |
+
|
| 252 |
+
# builds a softmask given the parameters
|
| 253 |
+
# returns array of values 0 to 1, size sample_size, where 0 means noise / fresh generation, 1 means keep the input audio,
|
| 254 |
+
# and anything between is a mixture of old/new
|
| 255 |
+
# ideally 0.5 is half/half mixture but i haven't figured this out yet
|
| 256 |
+
def build_mask(sample_size, mask_args):
|
| 257 |
+
maskstart = math.floor(mask_args["maskstart"]/100.0 * sample_size)
|
| 258 |
+
maskend = math.ceil(mask_args["maskend"]/100.0 * sample_size)
|
| 259 |
+
softnessL = round(mask_args["softnessL"]/100.0 * sample_size)
|
| 260 |
+
softnessR = round(mask_args["softnessR"]/100.0 * sample_size)
|
| 261 |
+
marination = mask_args["marination"]
|
| 262 |
+
# use hann windows for softening the transition (i don't know if this is correct)
|
| 263 |
+
hannL = torch.hann_window(softnessL*2, periodic=False)[:softnessL]
|
| 264 |
+
hannR = torch.hann_window(softnessR*2, periodic=False)[softnessR:]
|
| 265 |
+
# build the mask.
|
| 266 |
+
mask = torch.zeros((sample_size))
|
| 267 |
+
mask[maskstart:maskend] = 1
|
| 268 |
+
mask[maskstart:maskstart+softnessL] = hannL
|
| 269 |
+
mask[maskend-softnessR:maskend] = hannR
|
| 270 |
+
# marination finishes the inpainting early in the denoising schedule, and lets audio get changed in the final rounds
|
| 271 |
+
if marination > 0:
|
| 272 |
+
mask = mask * (1-marination)
|
| 273 |
+
#print(mask)
|
| 274 |
+
return mask
|
ThinkSound/inference/sampling.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
from tqdm import trange, tqdm
|
| 4 |
+
|
| 5 |
+
import k_diffusion as K
|
| 6 |
+
|
| 7 |
+
# Define the noise schedule and sampling loop
|
| 8 |
+
def get_alphas_sigmas(t):
|
| 9 |
+
"""Returns the scaling factors for the clean image (alpha) and for the
|
| 10 |
+
noise (sigma), given a timestep."""
|
| 11 |
+
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
| 12 |
+
|
| 13 |
+
def alpha_sigma_to_t(alpha, sigma):
|
| 14 |
+
"""Returns a timestep, given the scaling factors for the clean image and for
|
| 15 |
+
the noise."""
|
| 16 |
+
return torch.atan2(sigma, alpha) / math.pi * 2
|
| 17 |
+
|
| 18 |
+
def t_to_alpha_sigma(t):
|
| 19 |
+
"""Returns the scaling factors for the clean image and for the noise, given
|
| 20 |
+
a timestep."""
|
| 21 |
+
return torch.cos(t * math.pi / 2), torch.sin(t * math.pi / 2)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@torch.no_grad()
|
| 25 |
+
def sample_discrete_euler(model, x, steps, sigma_max=1, **extra_args):
|
| 26 |
+
"""Draws samples from a model given starting noise. Euler method"""
|
| 27 |
+
|
| 28 |
+
# Make tensor of ones to broadcast the single t values
|
| 29 |
+
ts = x.new_ones([x.shape[0]])
|
| 30 |
+
|
| 31 |
+
# Create the noise schedule
|
| 32 |
+
t = torch.linspace(sigma_max, 0, steps + 1)
|
| 33 |
+
|
| 34 |
+
#alphas, sigmas = 1-t, t
|
| 35 |
+
|
| 36 |
+
for t_curr, t_prev in tqdm(zip(t[:-1], t[1:])):
|
| 37 |
+
# Broadcast the current timestep to the correct shape
|
| 38 |
+
t_curr_tensor = t_curr * torch.ones(
|
| 39 |
+
(x.shape[0],), dtype=x.dtype, device=x.device
|
| 40 |
+
)
|
| 41 |
+
dt = t_prev - t_curr # we solve backwards in our formulation
|
| 42 |
+
x = x + dt * model(x, t_curr_tensor, **extra_args) #.denoise(x, denoiser, t_curr_tensor, cond, uc)
|
| 43 |
+
|
| 44 |
+
# If we are on the last timestep, output the denoised image
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
@torch.no_grad()
|
| 48 |
+
def sample(model, x, steps, eta, **extra_args):
|
| 49 |
+
"""Draws samples from a model given starting noise. v-diffusion"""
|
| 50 |
+
ts = x.new_ones([x.shape[0]])
|
| 51 |
+
|
| 52 |
+
# Create the noise schedule
|
| 53 |
+
t = torch.linspace(1, 0, steps + 1)[:-1]
|
| 54 |
+
|
| 55 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
| 56 |
+
|
| 57 |
+
# The sampling loop
|
| 58 |
+
for i in trange(steps):
|
| 59 |
+
|
| 60 |
+
# Get the model output (v, the predicted velocity)
|
| 61 |
+
with torch.cuda.amp.autocast():
|
| 62 |
+
v = model(x, ts * t[i], **extra_args).float()
|
| 63 |
+
|
| 64 |
+
# Predict the noise and the denoised image
|
| 65 |
+
pred = x * alphas[i] - v * sigmas[i]
|
| 66 |
+
eps = x * sigmas[i] + v * alphas[i]
|
| 67 |
+
|
| 68 |
+
# If we are not on the last timestep, compute the noisy image for the
|
| 69 |
+
# next timestep.
|
| 70 |
+
if i < steps - 1:
|
| 71 |
+
# If eta > 0, adjust the scaling factor for the predicted noise
|
| 72 |
+
# downward according to the amount of additional noise to add
|
| 73 |
+
ddim_sigma = eta * (sigmas[i + 1]**2 / sigmas[i]**2).sqrt() * \
|
| 74 |
+
(1 - alphas[i]**2 / alphas[i + 1]**2).sqrt()
|
| 75 |
+
adjusted_sigma = (sigmas[i + 1]**2 - ddim_sigma**2).sqrt()
|
| 76 |
+
|
| 77 |
+
# Recombine the predicted noise and predicted denoised image in the
|
| 78 |
+
# correct proportions for the next step
|
| 79 |
+
x = pred * alphas[i + 1] + eps * adjusted_sigma
|
| 80 |
+
|
| 81 |
+
# Add the correct amount of fresh noise
|
| 82 |
+
if eta:
|
| 83 |
+
x += torch.randn_like(x) * ddim_sigma
|
| 84 |
+
|
| 85 |
+
# If we are on the last timestep, output the denoised image
|
| 86 |
+
return pred
|
| 87 |
+
|
| 88 |
+
# Soft mask inpainting is just shrinking hard (binary) mask inpainting
|
| 89 |
+
# Given a float-valued soft mask (values between 0 and 1), get the binary mask for this particular step
|
| 90 |
+
def get_bmask(i, steps, mask):
|
| 91 |
+
strength = (i+1)/(steps)
|
| 92 |
+
# convert to binary mask
|
| 93 |
+
bmask = torch.where(mask<=strength,1,0)
|
| 94 |
+
return bmask
|
| 95 |
+
|
| 96 |
+
def make_cond_model_fn(model, cond_fn):
|
| 97 |
+
def cond_model_fn(x, sigma, **kwargs):
|
| 98 |
+
with torch.enable_grad():
|
| 99 |
+
x = x.detach().requires_grad_()
|
| 100 |
+
denoised = model(x, sigma, **kwargs)
|
| 101 |
+
cond_grad = cond_fn(x, sigma, denoised=denoised, **kwargs).detach()
|
| 102 |
+
cond_denoised = denoised.detach() + cond_grad * K.utils.append_dims(sigma**2, x.ndim)
|
| 103 |
+
return cond_denoised
|
| 104 |
+
return cond_model_fn
|
| 105 |
+
|
| 106 |
+
# Uses k-diffusion from https://github.com/crowsonkb/k-diffusion
|
| 107 |
+
# init_data is init_audio as latents (if this is latent diffusion)
|
| 108 |
+
# For sampling, set both init_data and mask to None
|
| 109 |
+
# For variations, set init_data
|
| 110 |
+
# For inpainting, set both init_data & mask
|
| 111 |
+
def sample_k(
|
| 112 |
+
model_fn,
|
| 113 |
+
noise,
|
| 114 |
+
init_data=None,
|
| 115 |
+
mask=None,
|
| 116 |
+
steps=100,
|
| 117 |
+
sampler_type="dpmpp-2m-sde",
|
| 118 |
+
sigma_min=0.5,
|
| 119 |
+
sigma_max=50,
|
| 120 |
+
rho=1.0, device="cuda",
|
| 121 |
+
callback=None,
|
| 122 |
+
cond_fn=None,
|
| 123 |
+
**extra_args
|
| 124 |
+
):
|
| 125 |
+
|
| 126 |
+
denoiser = K.external.VDenoiser(model_fn)
|
| 127 |
+
|
| 128 |
+
if cond_fn is not None:
|
| 129 |
+
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
| 130 |
+
|
| 131 |
+
# Make the list of sigmas. Sigma values are scalars related to the amount of noise each denoising step has
|
| 132 |
+
sigmas = K.sampling.get_sigmas_polyexponential(steps, sigma_min, sigma_max, rho, device=device)
|
| 133 |
+
# Scale the initial noise by sigma
|
| 134 |
+
noise = noise * sigmas[0]
|
| 135 |
+
|
| 136 |
+
wrapped_callback = callback
|
| 137 |
+
|
| 138 |
+
if mask is None and init_data is not None:
|
| 139 |
+
# VARIATION (no inpainting)
|
| 140 |
+
# set the initial latent to the init_data, and noise it with initial sigma
|
| 141 |
+
x = init_data + noise
|
| 142 |
+
elif mask is not None and init_data is not None:
|
| 143 |
+
# INPAINTING
|
| 144 |
+
bmask = get_bmask(0, steps, mask)
|
| 145 |
+
# initial noising
|
| 146 |
+
input_noised = init_data + noise
|
| 147 |
+
# set the initial latent to a mix of init_data and noise, based on step 0's binary mask
|
| 148 |
+
x = input_noised * bmask + noise * (1-bmask)
|
| 149 |
+
# define the inpainting callback function (Note: side effects, it mutates x)
|
| 150 |
+
# See https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/sampling.py#L596C13-L596C105
|
| 151 |
+
# callback({'x': x, 'i': i, 'sigma': sigmas[i], 'sigma_hat': sigmas[i], 'denoised': denoised})
|
| 152 |
+
# This is called immediately after `denoised = model(x, sigmas[i] * s_in, **extra_args)`
|
| 153 |
+
def inpainting_callback(args):
|
| 154 |
+
i = args["i"]
|
| 155 |
+
x = args["x"]
|
| 156 |
+
sigma = args["sigma"]
|
| 157 |
+
#denoised = args["denoised"]
|
| 158 |
+
# noise the init_data input with this step's appropriate amount of noise
|
| 159 |
+
input_noised = init_data + torch.randn_like(init_data) * sigma
|
| 160 |
+
# shrinking hard mask
|
| 161 |
+
bmask = get_bmask(i, steps, mask)
|
| 162 |
+
# mix input_noise with x, using binary mask
|
| 163 |
+
new_x = input_noised * bmask + x * (1-bmask)
|
| 164 |
+
# mutate x
|
| 165 |
+
x[:,:,:] = new_x[:,:,:]
|
| 166 |
+
# wrap together the inpainting callback and the user-submitted callback.
|
| 167 |
+
if callback is None:
|
| 168 |
+
wrapped_callback = inpainting_callback
|
| 169 |
+
else:
|
| 170 |
+
wrapped_callback = lambda args: (inpainting_callback(args), callback(args))
|
| 171 |
+
else:
|
| 172 |
+
# SAMPLING
|
| 173 |
+
# set the initial latent to noise
|
| 174 |
+
x = noise
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
with torch.cuda.amp.autocast():
|
| 178 |
+
if sampler_type == "k-heun":
|
| 179 |
+
return K.sampling.sample_heun(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 180 |
+
elif sampler_type == "k-lms":
|
| 181 |
+
return K.sampling.sample_lms(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 182 |
+
elif sampler_type == "k-dpmpp-2s-ancestral":
|
| 183 |
+
return K.sampling.sample_dpmpp_2s_ancestral(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 184 |
+
elif sampler_type == "k-dpm-2":
|
| 185 |
+
return K.sampling.sample_dpm_2(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 186 |
+
elif sampler_type == "k-dpm-fast":
|
| 187 |
+
return K.sampling.sample_dpm_fast(denoiser, x, sigma_min, sigma_max, steps, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 188 |
+
elif sampler_type == "k-dpm-adaptive":
|
| 189 |
+
return K.sampling.sample_dpm_adaptive(denoiser, x, sigma_min, sigma_max, rtol=0.01, atol=0.01, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 190 |
+
elif sampler_type == "dpmpp-2m-sde":
|
| 191 |
+
return K.sampling.sample_dpmpp_2m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 192 |
+
elif sampler_type == "dpmpp-3m-sde":
|
| 193 |
+
return K.sampling.sample_dpmpp_3m_sde(denoiser, x, sigmas, disable=False, callback=wrapped_callback, extra_args=extra_args)
|
| 194 |
+
|
| 195 |
+
# Uses discrete Euler sampling for rectified flow models
|
| 196 |
+
# init_data is init_audio as latents (if this is latent diffusion)
|
| 197 |
+
# For sampling, set both init_data and mask to None
|
| 198 |
+
# For variations, set init_data
|
| 199 |
+
# For inpainting, set both init_data & mask
|
| 200 |
+
def sample_rf(
|
| 201 |
+
model_fn,
|
| 202 |
+
noise,
|
| 203 |
+
init_data=None,
|
| 204 |
+
steps=100,
|
| 205 |
+
sigma_max=1,
|
| 206 |
+
device="cuda",
|
| 207 |
+
callback=None,
|
| 208 |
+
cond_fn=None,
|
| 209 |
+
**extra_args
|
| 210 |
+
):
|
| 211 |
+
|
| 212 |
+
if sigma_max > 1:
|
| 213 |
+
sigma_max = 1
|
| 214 |
+
|
| 215 |
+
if cond_fn is not None:
|
| 216 |
+
denoiser = make_cond_model_fn(denoiser, cond_fn)
|
| 217 |
+
|
| 218 |
+
wrapped_callback = callback
|
| 219 |
+
|
| 220 |
+
if init_data is not None:
|
| 221 |
+
# VARIATION (no inpainting)
|
| 222 |
+
# Interpolate the init data and the noise for init audio
|
| 223 |
+
x = init_data * (1 - sigma_max) + noise * sigma_max
|
| 224 |
+
else:
|
| 225 |
+
# SAMPLING
|
| 226 |
+
# set the initial latent to noise
|
| 227 |
+
x = noise
|
| 228 |
+
|
| 229 |
+
with torch.cuda.amp.autocast():
|
| 230 |
+
# TODO: Add callback support
|
| 231 |
+
#return sample_discrete_euler(model_fn, x, steps, sigma_max, callback=wrapped_callback, **extra_args)
|
| 232 |
+
return sample_discrete_euler(model_fn, x, steps, sigma_max, **extra_args)
|
ThinkSound/inference/utils.py
ADDED
|
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ..data.utils import PadCrop
|
| 2 |
+
|
| 3 |
+
from torchaudio import transforms as T
|
| 4 |
+
|
| 5 |
+
def set_audio_channels(audio, target_channels):
|
| 6 |
+
if target_channels == 1:
|
| 7 |
+
# Convert to mono
|
| 8 |
+
audio = audio.mean(1, keepdim=True)
|
| 9 |
+
elif target_channels == 2:
|
| 10 |
+
# Convert to stereo
|
| 11 |
+
if audio.shape[1] == 1:
|
| 12 |
+
audio = audio.repeat(1, 2, 1)
|
| 13 |
+
elif audio.shape[1] > 2:
|
| 14 |
+
audio = audio[:, :2, :]
|
| 15 |
+
return audio
|
| 16 |
+
|
| 17 |
+
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
|
| 18 |
+
|
| 19 |
+
audio = audio.to(device)
|
| 20 |
+
|
| 21 |
+
if in_sr != target_sr:
|
| 22 |
+
resample_tf = T.Resample(in_sr, target_sr).to(device)
|
| 23 |
+
audio = resample_tf(audio)
|
| 24 |
+
|
| 25 |
+
audio = PadCrop(target_length, randomize=False)(audio)
|
| 26 |
+
|
| 27 |
+
# Add batch dimension
|
| 28 |
+
if audio.dim() == 1:
|
| 29 |
+
audio = audio.unsqueeze(0).unsqueeze(0)
|
| 30 |
+
elif audio.dim() == 2:
|
| 31 |
+
audio = audio.unsqueeze(0)
|
| 32 |
+
|
| 33 |
+
audio = set_audio_channels(audio, target_channels)
|
| 34 |
+
|
| 35 |
+
return audio
|
ThinkSound/models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .factory import create_model_from_config, create_model_from_config_path
|
ThinkSound/models/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (266 Bytes). View file
|
|
|
ThinkSound/models/__pycache__/factory.cpython-313.pyc
ADDED
|
Binary file (5.77 kB). View file
|
|
|
ThinkSound/models/__pycache__/pretrained.cpython-313.pyc
ADDED
|
Binary file (1.2 kB). View file
|
|
|
ThinkSound/models/__pycache__/utils.cpython-313.pyc
ADDED
|
Binary file (8.39 kB). View file
|
|
|
ThinkSound/models/autoencoders.py
ADDED
|
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
from torchaudio import transforms as T
|
| 8 |
+
from alias_free_torch import Activation1d
|
| 9 |
+
from dac.nn.layers import WNConv1d, WNConvTranspose1d
|
| 10 |
+
from typing import Literal, Dict, Any
|
| 11 |
+
|
| 12 |
+
from ..inference.sampling import sample
|
| 13 |
+
from ..inference.utils import prepare_audio
|
| 14 |
+
from .blocks import SnakeBeta
|
| 15 |
+
from .bottleneck import Bottleneck, DiscreteBottleneck
|
| 16 |
+
from .diffusion import ConditionedDiffusionModel, DAU1DCondWrapper, UNet1DCondWrapper, DiTWrapper
|
| 17 |
+
from .factory import create_pretransform_from_config, create_bottleneck_from_config
|
| 18 |
+
from .pretransforms import Pretransform
|
| 19 |
+
|
| 20 |
+
def checkpoint(function, *args, **kwargs):
|
| 21 |
+
kwargs.setdefault("use_reentrant", False)
|
| 22 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
| 23 |
+
|
| 24 |
+
def get_activation(activation: Literal["elu", "snake", "none"], antialias=False, channels=None) -> nn.Module:
|
| 25 |
+
if activation == "elu":
|
| 26 |
+
act = nn.ELU()
|
| 27 |
+
elif activation == "snake":
|
| 28 |
+
act = SnakeBeta(channels)
|
| 29 |
+
elif activation == "none":
|
| 30 |
+
act = nn.Identity()
|
| 31 |
+
else:
|
| 32 |
+
raise ValueError(f"Unknown activation {activation}")
|
| 33 |
+
|
| 34 |
+
if antialias:
|
| 35 |
+
act = Activation1d(act)
|
| 36 |
+
|
| 37 |
+
return act
|
| 38 |
+
|
| 39 |
+
class ResidualUnit(nn.Module):
|
| 40 |
+
def __init__(self, in_channels, out_channels, dilation, use_snake=False, antialias_activation=False):
|
| 41 |
+
super().__init__()
|
| 42 |
+
|
| 43 |
+
self.dilation = dilation
|
| 44 |
+
|
| 45 |
+
padding = (dilation * (7-1)) // 2
|
| 46 |
+
|
| 47 |
+
self.layers = nn.Sequential(
|
| 48 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
| 49 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
| 50 |
+
kernel_size=7, dilation=dilation, padding=padding),
|
| 51 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=out_channels),
|
| 52 |
+
WNConv1d(in_channels=out_channels, out_channels=out_channels,
|
| 53 |
+
kernel_size=1)
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
def forward(self, x):
|
| 57 |
+
res = x
|
| 58 |
+
|
| 59 |
+
#x = checkpoint(self.layers, x)
|
| 60 |
+
x = self.layers(x)
|
| 61 |
+
|
| 62 |
+
return x + res
|
| 63 |
+
|
| 64 |
+
class EncoderBlock(nn.Module):
|
| 65 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False):
|
| 66 |
+
super().__init__()
|
| 67 |
+
|
| 68 |
+
self.layers = nn.Sequential(
|
| 69 |
+
ResidualUnit(in_channels=in_channels,
|
| 70 |
+
out_channels=in_channels, dilation=1, use_snake=use_snake),
|
| 71 |
+
ResidualUnit(in_channels=in_channels,
|
| 72 |
+
out_channels=in_channels, dilation=3, use_snake=use_snake),
|
| 73 |
+
ResidualUnit(in_channels=in_channels,
|
| 74 |
+
out_channels=in_channels, dilation=9, use_snake=use_snake),
|
| 75 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
| 76 |
+
WNConv1d(in_channels=in_channels, out_channels=out_channels,
|
| 77 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2)),
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
return self.layers(x)
|
| 82 |
+
|
| 83 |
+
class DecoderBlock(nn.Module):
|
| 84 |
+
def __init__(self, in_channels, out_channels, stride, use_snake=False, antialias_activation=False, use_nearest_upsample=False):
|
| 85 |
+
super().__init__()
|
| 86 |
+
|
| 87 |
+
if use_nearest_upsample:
|
| 88 |
+
upsample_layer = nn.Sequential(
|
| 89 |
+
nn.Upsample(scale_factor=stride, mode="nearest"),
|
| 90 |
+
WNConv1d(in_channels=in_channels,
|
| 91 |
+
out_channels=out_channels,
|
| 92 |
+
kernel_size=2*stride,
|
| 93 |
+
stride=1,
|
| 94 |
+
bias=False,
|
| 95 |
+
padding='same')
|
| 96 |
+
)
|
| 97 |
+
else:
|
| 98 |
+
upsample_layer = WNConvTranspose1d(in_channels=in_channels,
|
| 99 |
+
out_channels=out_channels,
|
| 100 |
+
kernel_size=2*stride, stride=stride, padding=math.ceil(stride/2))
|
| 101 |
+
|
| 102 |
+
self.layers = nn.Sequential(
|
| 103 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=in_channels),
|
| 104 |
+
upsample_layer,
|
| 105 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
| 106 |
+
dilation=1, use_snake=use_snake),
|
| 107 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
| 108 |
+
dilation=3, use_snake=use_snake),
|
| 109 |
+
ResidualUnit(in_channels=out_channels, out_channels=out_channels,
|
| 110 |
+
dilation=9, use_snake=use_snake),
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def forward(self, x):
|
| 114 |
+
return self.layers(x)
|
| 115 |
+
|
| 116 |
+
class OobleckEncoder(nn.Module):
|
| 117 |
+
def __init__(self,
|
| 118 |
+
in_channels=2,
|
| 119 |
+
channels=128,
|
| 120 |
+
latent_dim=32,
|
| 121 |
+
c_mults = [1, 2, 4, 8],
|
| 122 |
+
strides = [2, 4, 8, 8],
|
| 123 |
+
use_snake=False,
|
| 124 |
+
antialias_activation=False
|
| 125 |
+
):
|
| 126 |
+
super().__init__()
|
| 127 |
+
|
| 128 |
+
c_mults = [1] + c_mults
|
| 129 |
+
|
| 130 |
+
self.depth = len(c_mults)
|
| 131 |
+
|
| 132 |
+
layers = [
|
| 133 |
+
WNConv1d(in_channels=in_channels, out_channels=c_mults[0] * channels, kernel_size=7, padding=3)
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
for i in range(self.depth-1):
|
| 137 |
+
layers += [EncoderBlock(in_channels=c_mults[i]*channels, out_channels=c_mults[i+1]*channels, stride=strides[i], use_snake=use_snake)]
|
| 138 |
+
|
| 139 |
+
layers += [
|
| 140 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[-1] * channels),
|
| 141 |
+
WNConv1d(in_channels=c_mults[-1]*channels, out_channels=latent_dim, kernel_size=3, padding=1)
|
| 142 |
+
]
|
| 143 |
+
|
| 144 |
+
self.layers = nn.Sequential(*layers)
|
| 145 |
+
|
| 146 |
+
def forward(self, x):
|
| 147 |
+
return self.layers(x)
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class OobleckDecoder(nn.Module):
|
| 151 |
+
def __init__(self,
|
| 152 |
+
out_channels=2,
|
| 153 |
+
channels=128,
|
| 154 |
+
latent_dim=32,
|
| 155 |
+
c_mults = [1, 2, 4, 8],
|
| 156 |
+
strides = [2, 4, 8, 8],
|
| 157 |
+
use_snake=False,
|
| 158 |
+
antialias_activation=False,
|
| 159 |
+
use_nearest_upsample=False,
|
| 160 |
+
final_tanh=True):
|
| 161 |
+
super().__init__()
|
| 162 |
+
|
| 163 |
+
c_mults = [1] + c_mults
|
| 164 |
+
|
| 165 |
+
self.depth = len(c_mults)
|
| 166 |
+
|
| 167 |
+
layers = [
|
| 168 |
+
WNConv1d(in_channels=latent_dim, out_channels=c_mults[-1]*channels, kernel_size=7, padding=3),
|
| 169 |
+
]
|
| 170 |
+
|
| 171 |
+
for i in range(self.depth-1, 0, -1):
|
| 172 |
+
layers += [DecoderBlock(
|
| 173 |
+
in_channels=c_mults[i]*channels,
|
| 174 |
+
out_channels=c_mults[i-1]*channels,
|
| 175 |
+
stride=strides[i-1],
|
| 176 |
+
use_snake=use_snake,
|
| 177 |
+
antialias_activation=antialias_activation,
|
| 178 |
+
use_nearest_upsample=use_nearest_upsample
|
| 179 |
+
)
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
layers += [
|
| 183 |
+
get_activation("snake" if use_snake else "elu", antialias=antialias_activation, channels=c_mults[0] * channels),
|
| 184 |
+
WNConv1d(in_channels=c_mults[0] * channels, out_channels=out_channels, kernel_size=7, padding=3, bias=False),
|
| 185 |
+
nn.Tanh() if final_tanh else nn.Identity()
|
| 186 |
+
]
|
| 187 |
+
|
| 188 |
+
self.layers = nn.Sequential(*layers)
|
| 189 |
+
|
| 190 |
+
def forward(self, x):
|
| 191 |
+
return self.layers(x)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
class DACEncoderWrapper(nn.Module):
|
| 195 |
+
def __init__(self, in_channels=1, **kwargs):
|
| 196 |
+
super().__init__()
|
| 197 |
+
|
| 198 |
+
from dac.model.dac import Encoder as DACEncoder
|
| 199 |
+
|
| 200 |
+
latent_dim = kwargs.pop("latent_dim", None)
|
| 201 |
+
|
| 202 |
+
encoder_out_dim = kwargs["d_model"] * (2 ** len(kwargs["strides"]))
|
| 203 |
+
self.encoder = DACEncoder(d_latent=encoder_out_dim, **kwargs)
|
| 204 |
+
self.latent_dim = latent_dim
|
| 205 |
+
|
| 206 |
+
# Latent-dim support was added to DAC after this was first written, and implemented differently, so this is for backwards compatibility
|
| 207 |
+
self.proj_out = nn.Conv1d(self.encoder.enc_dim, latent_dim, kernel_size=1) if latent_dim is not None else nn.Identity()
|
| 208 |
+
|
| 209 |
+
if in_channels != 1:
|
| 210 |
+
self.encoder.block[0] = WNConv1d(in_channels, kwargs.get("d_model", 64), kernel_size=7, padding=3)
|
| 211 |
+
|
| 212 |
+
def forward(self, x):
|
| 213 |
+
x = self.encoder(x)
|
| 214 |
+
x = self.proj_out(x)
|
| 215 |
+
return x
|
| 216 |
+
|
| 217 |
+
class DACDecoderWrapper(nn.Module):
|
| 218 |
+
def __init__(self, latent_dim, out_channels=1, **kwargs):
|
| 219 |
+
super().__init__()
|
| 220 |
+
|
| 221 |
+
from dac.model.dac import Decoder as DACDecoder
|
| 222 |
+
|
| 223 |
+
self.decoder = DACDecoder(**kwargs, input_channel = latent_dim, d_out=out_channels)
|
| 224 |
+
|
| 225 |
+
self.latent_dim = latent_dim
|
| 226 |
+
|
| 227 |
+
def forward(self, x):
|
| 228 |
+
return self.decoder(x)
|
| 229 |
+
|
| 230 |
+
class AudioAutoencoder(nn.Module):
|
| 231 |
+
def __init__(
|
| 232 |
+
self,
|
| 233 |
+
encoder,
|
| 234 |
+
decoder,
|
| 235 |
+
latent_dim,
|
| 236 |
+
downsampling_ratio,
|
| 237 |
+
sample_rate,
|
| 238 |
+
io_channels=2,
|
| 239 |
+
bottleneck: Bottleneck = None,
|
| 240 |
+
pretransform: Pretransform = None,
|
| 241 |
+
in_channels = None,
|
| 242 |
+
out_channels = None,
|
| 243 |
+
soft_clip = False
|
| 244 |
+
):
|
| 245 |
+
super().__init__()
|
| 246 |
+
|
| 247 |
+
self.downsampling_ratio = downsampling_ratio
|
| 248 |
+
self.sample_rate = sample_rate
|
| 249 |
+
|
| 250 |
+
self.latent_dim = latent_dim
|
| 251 |
+
self.io_channels = io_channels
|
| 252 |
+
self.in_channels = io_channels
|
| 253 |
+
self.out_channels = io_channels
|
| 254 |
+
|
| 255 |
+
self.min_length = self.downsampling_ratio
|
| 256 |
+
|
| 257 |
+
if in_channels is not None:
|
| 258 |
+
self.in_channels = in_channels
|
| 259 |
+
|
| 260 |
+
if out_channels is not None:
|
| 261 |
+
self.out_channels = out_channels
|
| 262 |
+
|
| 263 |
+
self.bottleneck = bottleneck
|
| 264 |
+
|
| 265 |
+
self.encoder = encoder
|
| 266 |
+
|
| 267 |
+
self.decoder = decoder
|
| 268 |
+
|
| 269 |
+
self.pretransform = pretransform
|
| 270 |
+
|
| 271 |
+
self.soft_clip = soft_clip
|
| 272 |
+
|
| 273 |
+
self.is_discrete = self.bottleneck is not None and self.bottleneck.is_discrete
|
| 274 |
+
|
| 275 |
+
def encode(self, audio, return_info=False, skip_pretransform=False, iterate_batch=False, **kwargs):
|
| 276 |
+
|
| 277 |
+
info = {}
|
| 278 |
+
# import ipdb
|
| 279 |
+
# ipdb.set_trace()
|
| 280 |
+
if self.pretransform is not None and not skip_pretransform:
|
| 281 |
+
if self.pretransform.enable_grad:
|
| 282 |
+
if iterate_batch:
|
| 283 |
+
audios = []
|
| 284 |
+
for i in range(audio.shape[0]):
|
| 285 |
+
audios.append(self.pretransform.encode(audio[i:i+1]))
|
| 286 |
+
audio = torch.cat(audios, dim=0)
|
| 287 |
+
else:
|
| 288 |
+
audio = self.pretransform.encode(audio)
|
| 289 |
+
else:
|
| 290 |
+
with torch.no_grad():
|
| 291 |
+
if iterate_batch:
|
| 292 |
+
audios = []
|
| 293 |
+
for i in range(audio.shape[0]):
|
| 294 |
+
audios.append(self.pretransform.encode(audio[i:i+1]))
|
| 295 |
+
audio = torch.cat(audios, dim=0)
|
| 296 |
+
else:
|
| 297 |
+
audio = self.pretransform.encode(audio)
|
| 298 |
+
|
| 299 |
+
if self.encoder is not None:
|
| 300 |
+
if iterate_batch:
|
| 301 |
+
latents = []
|
| 302 |
+
for i in range(audio.shape[0]):
|
| 303 |
+
latents.append(self.encoder(audio[i:i+1]))
|
| 304 |
+
latents = torch.cat(latents, dim=0)
|
| 305 |
+
else:
|
| 306 |
+
latents = self.encoder(audio)
|
| 307 |
+
else:
|
| 308 |
+
latents = audio
|
| 309 |
+
|
| 310 |
+
if self.bottleneck is not None:
|
| 311 |
+
# TODO: Add iterate batch logic, needs to merge the info dicts
|
| 312 |
+
latents, bottleneck_info = self.bottleneck.encode(latents, return_info=True, **kwargs)
|
| 313 |
+
|
| 314 |
+
info.update(bottleneck_info)
|
| 315 |
+
|
| 316 |
+
if return_info:
|
| 317 |
+
return latents, info
|
| 318 |
+
|
| 319 |
+
return latents
|
| 320 |
+
|
| 321 |
+
def decode(self, latents, iterate_batch=False, **kwargs):
|
| 322 |
+
|
| 323 |
+
if self.bottleneck is not None:
|
| 324 |
+
if iterate_batch:
|
| 325 |
+
decoded = []
|
| 326 |
+
for i in range(latents.shape[0]):
|
| 327 |
+
decoded.append(self.bottleneck.decode(latents[i:i+1]))
|
| 328 |
+
latents = torch.cat(decoded, dim=0)
|
| 329 |
+
else:
|
| 330 |
+
latents = self.bottleneck.decode(latents)
|
| 331 |
+
|
| 332 |
+
if iterate_batch:
|
| 333 |
+
decoded = []
|
| 334 |
+
for i in range(latents.shape[0]):
|
| 335 |
+
decoded.append(self.decoder(latents[i:i+1]))
|
| 336 |
+
decoded = torch.cat(decoded, dim=0)
|
| 337 |
+
else:
|
| 338 |
+
decoded = self.decoder(latents, **kwargs)
|
| 339 |
+
|
| 340 |
+
if self.pretransform is not None:
|
| 341 |
+
if self.pretransform.enable_grad:
|
| 342 |
+
if iterate_batch:
|
| 343 |
+
decodeds = []
|
| 344 |
+
for i in range(decoded.shape[0]):
|
| 345 |
+
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
| 346 |
+
decoded = torch.cat(decodeds, dim=0)
|
| 347 |
+
else:
|
| 348 |
+
decoded = self.pretransform.decode(decoded)
|
| 349 |
+
else:
|
| 350 |
+
with torch.no_grad():
|
| 351 |
+
if iterate_batch:
|
| 352 |
+
decodeds = []
|
| 353 |
+
for i in range(latents.shape[0]):
|
| 354 |
+
decodeds.append(self.pretransform.decode(decoded[i:i+1]))
|
| 355 |
+
decoded = torch.cat(decodeds, dim=0)
|
| 356 |
+
else:
|
| 357 |
+
decoded = self.pretransform.decode(decoded)
|
| 358 |
+
|
| 359 |
+
if self.soft_clip:
|
| 360 |
+
decoded = torch.tanh(decoded)
|
| 361 |
+
|
| 362 |
+
return decoded
|
| 363 |
+
|
| 364 |
+
def decode_tokens(self, tokens, **kwargs):
|
| 365 |
+
'''
|
| 366 |
+
Decode discrete tokens to audio
|
| 367 |
+
Only works with discrete autoencoders
|
| 368 |
+
'''
|
| 369 |
+
|
| 370 |
+
assert isinstance(self.bottleneck, DiscreteBottleneck), "decode_tokens only works with discrete autoencoders"
|
| 371 |
+
|
| 372 |
+
latents = self.bottleneck.decode_tokens(tokens, **kwargs)
|
| 373 |
+
|
| 374 |
+
return self.decode(latents, **kwargs)
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def preprocess_audio_for_encoder(self, audio, in_sr):
|
| 378 |
+
'''
|
| 379 |
+
Preprocess single audio tensor (Channels x Length) to be compatible with the encoder.
|
| 380 |
+
If the model is mono, stereo audio will be converted to mono.
|
| 381 |
+
Audio will be silence-padded to be a multiple of the model's downsampling ratio.
|
| 382 |
+
Audio will be resampled to the model's sample rate.
|
| 383 |
+
The output will have batch size 1 and be shape (1 x Channels x Length)
|
| 384 |
+
'''
|
| 385 |
+
return self.preprocess_audio_list_for_encoder([audio], [in_sr])
|
| 386 |
+
|
| 387 |
+
def preprocess_audio_list_for_encoder(self, audio_list, in_sr_list):
|
| 388 |
+
'''
|
| 389 |
+
Preprocess a [list] of audio (Channels x Length) into a batch tensor to be compatable with the encoder.
|
| 390 |
+
The audio in that list can be of different lengths and channels.
|
| 391 |
+
in_sr can be an integer or list. If it's an integer it will be assumed it is the input sample_rate for every audio.
|
| 392 |
+
All audio will be resampled to the model's sample rate.
|
| 393 |
+
Audio will be silence-padded to the longest length, and further padded to be a multiple of the model's downsampling ratio.
|
| 394 |
+
If the model is mono, all audio will be converted to mono.
|
| 395 |
+
The output will be a tensor of shape (Batch x Channels x Length)
|
| 396 |
+
'''
|
| 397 |
+
batch_size = len(audio_list)
|
| 398 |
+
if isinstance(in_sr_list, int):
|
| 399 |
+
in_sr_list = [in_sr_list]*batch_size
|
| 400 |
+
assert len(in_sr_list) == batch_size, "list of sample rates must be the same length of audio_list"
|
| 401 |
+
new_audio = []
|
| 402 |
+
max_length = 0
|
| 403 |
+
# resample & find the max length
|
| 404 |
+
for i in range(batch_size):
|
| 405 |
+
audio = audio_list[i]
|
| 406 |
+
in_sr = in_sr_list[i]
|
| 407 |
+
if len(audio.shape) == 3 and audio.shape[0] == 1:
|
| 408 |
+
# batchsize 1 was given by accident. Just squeeze it.
|
| 409 |
+
audio = audio.squeeze(0)
|
| 410 |
+
elif len(audio.shape) == 1:
|
| 411 |
+
# Mono signal, channel dimension is missing, unsqueeze it in
|
| 412 |
+
audio = audio.unsqueeze(0)
|
| 413 |
+
assert len(audio.shape)==2, "Audio should be shape (Channels x Length) with no batch dimension"
|
| 414 |
+
# Resample audio
|
| 415 |
+
if in_sr != self.sample_rate:
|
| 416 |
+
resample_tf = T.Resample(in_sr, self.sample_rate).to(audio.device)
|
| 417 |
+
audio = resample_tf(audio)
|
| 418 |
+
new_audio.append(audio)
|
| 419 |
+
if audio.shape[-1] > max_length:
|
| 420 |
+
max_length = audio.shape[-1]
|
| 421 |
+
# Pad every audio to the same length, multiple of model's downsampling ratio
|
| 422 |
+
padded_audio_length = max_length + (self.min_length - (max_length % self.min_length)) % self.min_length
|
| 423 |
+
for i in range(batch_size):
|
| 424 |
+
# Pad it & if necessary, mixdown/duplicate stereo/mono channels to support model
|
| 425 |
+
new_audio[i] = prepare_audio(new_audio[i], in_sr=in_sr, target_sr=in_sr, target_length=padded_audio_length,
|
| 426 |
+
target_channels=self.in_channels, device=new_audio[i].device).squeeze(0)
|
| 427 |
+
# convert to tensor
|
| 428 |
+
return torch.stack(new_audio)
|
| 429 |
+
|
| 430 |
+
def encode_audio(self, audio, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
| 431 |
+
'''
|
| 432 |
+
Encode audios into latents. Audios should already be preprocesed by preprocess_audio_for_encoder.
|
| 433 |
+
If chunked is True, split the audio into chunks of a given maximum size chunk_size, with given overlap.
|
| 434 |
+
Overlap and chunk_size params are both measured in number of latents (not audio samples)
|
| 435 |
+
# and therefore you likely could use the same values with decode_audio.
|
| 436 |
+
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
| 437 |
+
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
| 438 |
+
You can determine it empirically by diffing unchunked vs chunked output and looking at maximum diff.
|
| 439 |
+
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
| 440 |
+
Smaller chunk_size uses less memory, but more compute.
|
| 441 |
+
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
| 442 |
+
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
| 443 |
+
'''
|
| 444 |
+
if not chunked:
|
| 445 |
+
# default behavior. Encode the entire audio in parallel
|
| 446 |
+
return self.encode(audio, **kwargs)
|
| 447 |
+
else:
|
| 448 |
+
# CHUNKED ENCODING
|
| 449 |
+
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
|
| 450 |
+
# import ipdb
|
| 451 |
+
# ipdb.set_trace()
|
| 452 |
+
samples_per_latent = self.downsampling_ratio
|
| 453 |
+
total_size = audio.shape[2] # in samples
|
| 454 |
+
print(f'audio shape: {audio.shape}')
|
| 455 |
+
batch_size = audio.shape[0]
|
| 456 |
+
chunk_size *= samples_per_latent # converting metric in latents to samples
|
| 457 |
+
overlap *= samples_per_latent # converting metric in latents to samples
|
| 458 |
+
hop_size = chunk_size - overlap
|
| 459 |
+
chunks = []
|
| 460 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
| 461 |
+
chunk = audio[:,:,i:i+chunk_size]
|
| 462 |
+
chunks.append(chunk)
|
| 463 |
+
if i+chunk_size != total_size:
|
| 464 |
+
# Final chunk
|
| 465 |
+
chunk = audio[:,:,-chunk_size:]
|
| 466 |
+
chunks.append(chunk)
|
| 467 |
+
chunks = torch.stack(chunks)
|
| 468 |
+
num_chunks = chunks.shape[0]
|
| 469 |
+
# Note: y_size might be a different value from the latent length used in diffusion training
|
| 470 |
+
# because we can encode audio of varying lengths
|
| 471 |
+
# However, the audio should've been padded to a multiple of samples_per_latent by now.
|
| 472 |
+
y_size = total_size // samples_per_latent
|
| 473 |
+
# Create an empty latent, we will populate it with chunks as we encode them
|
| 474 |
+
y_final = torch.zeros((batch_size,self.latent_dim,y_size)).to(audio.device)
|
| 475 |
+
print(f'y_final shape: {y_final.shape}')
|
| 476 |
+
for i in range(num_chunks):
|
| 477 |
+
x_chunk = chunks[i,:]
|
| 478 |
+
# encode the chunk
|
| 479 |
+
y_chunk = self.encode(x_chunk)
|
| 480 |
+
print(f'y_chunk shape: {y_chunk.shape}')
|
| 481 |
+
# figure out where to put the audio along the time domain
|
| 482 |
+
if i == num_chunks-1:
|
| 483 |
+
# final chunk always goes at the end
|
| 484 |
+
t_end = y_size
|
| 485 |
+
t_start = t_end - y_chunk.shape[2]
|
| 486 |
+
else:
|
| 487 |
+
t_start = i * hop_size // samples_per_latent
|
| 488 |
+
t_end = t_start + chunk_size // samples_per_latent
|
| 489 |
+
# remove the edges of the overlaps
|
| 490 |
+
ol = overlap//samples_per_latent//2
|
| 491 |
+
chunk_start = 0
|
| 492 |
+
chunk_end = y_chunk.shape[2]
|
| 493 |
+
if i > 0:
|
| 494 |
+
# no overlap for the start of the first chunk
|
| 495 |
+
t_start += ol
|
| 496 |
+
chunk_start += ol
|
| 497 |
+
if i < num_chunks-1:
|
| 498 |
+
# no overlap for the end of the last chunk
|
| 499 |
+
t_end -= ol
|
| 500 |
+
chunk_end -= ol
|
| 501 |
+
# paste the chunked audio into our y_final output audio
|
| 502 |
+
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
| 503 |
+
return y_final
|
| 504 |
+
|
| 505 |
+
def decode_audio(self, latents, chunked=False, overlap=32, chunk_size=128, **kwargs):
|
| 506 |
+
'''
|
| 507 |
+
Decode latents to audio.
|
| 508 |
+
If chunked is True, split the latents into chunks of a given maximum size chunk_size, with given overlap, both of which are measured in number of latents.
|
| 509 |
+
A overlap of zero will cause discontinuity artefacts. Overlap should be => receptive field size.
|
| 510 |
+
Every autoencoder will have a different receptive field size, and thus ideal overlap.
|
| 511 |
+
You can determine it empirically by diffing unchunked vs chunked audio and looking at maximum diff.
|
| 512 |
+
The final chunk may have a longer overlap in order to keep chunk_size consistent for all chunks.
|
| 513 |
+
Smaller chunk_size uses less memory, but more compute.
|
| 514 |
+
The chunk_size vs memory tradeoff isn't linear, and possibly depends on the GPU and CUDA version
|
| 515 |
+
For example, on a A6000 chunk_size 128 is overall faster than 256 and 512 even though it has more chunks
|
| 516 |
+
'''
|
| 517 |
+
if not chunked:
|
| 518 |
+
# default behavior. Decode the entire latent in parallel
|
| 519 |
+
return self.decode(latents, **kwargs)
|
| 520 |
+
else:
|
| 521 |
+
# chunked decoding
|
| 522 |
+
hop_size = chunk_size - overlap
|
| 523 |
+
total_size = latents.shape[2]
|
| 524 |
+
batch_size = latents.shape[0]
|
| 525 |
+
chunks = []
|
| 526 |
+
for i in range(0, total_size - chunk_size + 1, hop_size):
|
| 527 |
+
chunk = latents[:,:,i:i+chunk_size]
|
| 528 |
+
chunks.append(chunk)
|
| 529 |
+
if i+chunk_size != total_size:
|
| 530 |
+
# Final chunk
|
| 531 |
+
chunk = latents[:,:,-chunk_size:]
|
| 532 |
+
chunks.append(chunk)
|
| 533 |
+
chunks = torch.stack(chunks)
|
| 534 |
+
num_chunks = chunks.shape[0]
|
| 535 |
+
# samples_per_latent is just the downsampling ratio
|
| 536 |
+
samples_per_latent = self.downsampling_ratio
|
| 537 |
+
# Create an empty waveform, we will populate it with chunks as decode them
|
| 538 |
+
y_size = total_size * samples_per_latent
|
| 539 |
+
y_final = torch.zeros((batch_size,self.out_channels,y_size)).to(latents.device)
|
| 540 |
+
for i in range(num_chunks):
|
| 541 |
+
x_chunk = chunks[i,:]
|
| 542 |
+
# decode the chunk
|
| 543 |
+
y_chunk = self.decode(x_chunk)
|
| 544 |
+
# figure out where to put the audio along the time domain
|
| 545 |
+
if i == num_chunks-1:
|
| 546 |
+
# final chunk always goes at the end
|
| 547 |
+
t_end = y_size
|
| 548 |
+
t_start = t_end - y_chunk.shape[2]
|
| 549 |
+
else:
|
| 550 |
+
t_start = i * hop_size * samples_per_latent
|
| 551 |
+
t_end = t_start + chunk_size * samples_per_latent
|
| 552 |
+
# remove the edges of the overlaps
|
| 553 |
+
ol = (overlap//2) * samples_per_latent
|
| 554 |
+
chunk_start = 0
|
| 555 |
+
chunk_end = y_chunk.shape[2]
|
| 556 |
+
if i > 0:
|
| 557 |
+
# no overlap for the start of the first chunk
|
| 558 |
+
t_start += ol
|
| 559 |
+
chunk_start += ol
|
| 560 |
+
if i < num_chunks-1:
|
| 561 |
+
# no overlap for the end of the last chunk
|
| 562 |
+
t_end -= ol
|
| 563 |
+
chunk_end -= ol
|
| 564 |
+
# paste the chunked audio into our y_final output audio
|
| 565 |
+
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
|
| 566 |
+
return y_final
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
class DiffusionAutoencoder(AudioAutoencoder):
|
| 570 |
+
def __init__(
|
| 571 |
+
self,
|
| 572 |
+
diffusion: ConditionedDiffusionModel,
|
| 573 |
+
diffusion_downsampling_ratio,
|
| 574 |
+
*args,
|
| 575 |
+
**kwargs
|
| 576 |
+
):
|
| 577 |
+
super().__init__(*args, **kwargs)
|
| 578 |
+
|
| 579 |
+
self.diffusion = diffusion
|
| 580 |
+
|
| 581 |
+
self.min_length = self.downsampling_ratio * diffusion_downsampling_ratio
|
| 582 |
+
|
| 583 |
+
if self.encoder is not None:
|
| 584 |
+
# Shrink the initial encoder parameters to avoid saturated latents
|
| 585 |
+
with torch.no_grad():
|
| 586 |
+
for param in self.encoder.parameters():
|
| 587 |
+
param *= 0.5
|
| 588 |
+
|
| 589 |
+
def decode(self, latents, steps=100):
|
| 590 |
+
|
| 591 |
+
upsampled_length = latents.shape[2] * self.downsampling_ratio
|
| 592 |
+
|
| 593 |
+
if self.bottleneck is not None:
|
| 594 |
+
latents = self.bottleneck.decode(latents)
|
| 595 |
+
|
| 596 |
+
if self.decoder is not None:
|
| 597 |
+
latents = self.decode(latents)
|
| 598 |
+
|
| 599 |
+
# Upsample latents to match diffusion length
|
| 600 |
+
if latents.shape[2] != upsampled_length:
|
| 601 |
+
latents = F.interpolate(latents, size=upsampled_length, mode='nearest')
|
| 602 |
+
|
| 603 |
+
noise = torch.randn(latents.shape[0], self.io_channels, upsampled_length, device=latents.device)
|
| 604 |
+
decoded = sample(self.diffusion, noise, steps, 0, input_concat_cond=latents)
|
| 605 |
+
|
| 606 |
+
if self.pretransform is not None:
|
| 607 |
+
if self.pretransform.enable_grad:
|
| 608 |
+
decoded = self.pretransform.decode(decoded)
|
| 609 |
+
else:
|
| 610 |
+
with torch.no_grad():
|
| 611 |
+
decoded = self.pretransform.decode(decoded)
|
| 612 |
+
|
| 613 |
+
return decoded
|
| 614 |
+
|
| 615 |
+
# AE factories
|
| 616 |
+
|
| 617 |
+
def create_encoder_from_config(encoder_config: Dict[str, Any]):
|
| 618 |
+
encoder_type = encoder_config.get("type", None)
|
| 619 |
+
assert encoder_type is not None, "Encoder type must be specified"
|
| 620 |
+
|
| 621 |
+
if encoder_type == "oobleck":
|
| 622 |
+
encoder = OobleckEncoder(
|
| 623 |
+
**encoder_config["config"]
|
| 624 |
+
)
|
| 625 |
+
|
| 626 |
+
elif encoder_type == "seanet":
|
| 627 |
+
from encodec.modules import SEANetEncoder
|
| 628 |
+
seanet_encoder_config = encoder_config["config"]
|
| 629 |
+
|
| 630 |
+
#SEANet encoder expects strides in reverse order
|
| 631 |
+
seanet_encoder_config["ratios"] = list(reversed(seanet_encoder_config.get("ratios", [2, 2, 2, 2, 2])))
|
| 632 |
+
encoder = SEANetEncoder(
|
| 633 |
+
**seanet_encoder_config
|
| 634 |
+
)
|
| 635 |
+
elif encoder_type == "dac":
|
| 636 |
+
dac_config = encoder_config["config"]
|
| 637 |
+
|
| 638 |
+
encoder = DACEncoderWrapper(**dac_config)
|
| 639 |
+
elif encoder_type == "local_attn":
|
| 640 |
+
from .local_attention import TransformerEncoder1D
|
| 641 |
+
|
| 642 |
+
local_attn_config = encoder_config["config"]
|
| 643 |
+
|
| 644 |
+
encoder = TransformerEncoder1D(
|
| 645 |
+
**local_attn_config
|
| 646 |
+
)
|
| 647 |
+
else:
|
| 648 |
+
raise ValueError(f"Unknown encoder type {encoder_type}")
|
| 649 |
+
|
| 650 |
+
requires_grad = encoder_config.get("requires_grad", True)
|
| 651 |
+
if not requires_grad:
|
| 652 |
+
for param in encoder.parameters():
|
| 653 |
+
param.requires_grad = False
|
| 654 |
+
|
| 655 |
+
return encoder
|
| 656 |
+
|
| 657 |
+
def create_decoder_from_config(decoder_config: Dict[str, Any]):
|
| 658 |
+
decoder_type = decoder_config.get("type", None)
|
| 659 |
+
assert decoder_type is not None, "Decoder type must be specified"
|
| 660 |
+
|
| 661 |
+
if decoder_type == "oobleck":
|
| 662 |
+
decoder = OobleckDecoder(
|
| 663 |
+
**decoder_config["config"]
|
| 664 |
+
)
|
| 665 |
+
elif decoder_type == "seanet":
|
| 666 |
+
from encodec.modules import SEANetDecoder
|
| 667 |
+
|
| 668 |
+
decoder = SEANetDecoder(
|
| 669 |
+
**decoder_config["config"]
|
| 670 |
+
)
|
| 671 |
+
elif decoder_type == "dac":
|
| 672 |
+
dac_config = decoder_config["config"]
|
| 673 |
+
|
| 674 |
+
decoder = DACDecoderWrapper(**dac_config)
|
| 675 |
+
elif decoder_type == "local_attn":
|
| 676 |
+
from .local_attention import TransformerDecoder1D
|
| 677 |
+
|
| 678 |
+
local_attn_config = decoder_config["config"]
|
| 679 |
+
|
| 680 |
+
decoder = TransformerDecoder1D(
|
| 681 |
+
**local_attn_config
|
| 682 |
+
)
|
| 683 |
+
else:
|
| 684 |
+
raise ValueError(f"Unknown decoder type {decoder_type}")
|
| 685 |
+
|
| 686 |
+
requires_grad = decoder_config.get("requires_grad", True)
|
| 687 |
+
if not requires_grad:
|
| 688 |
+
for param in decoder.parameters():
|
| 689 |
+
param.requires_grad = False
|
| 690 |
+
|
| 691 |
+
return decoder
|
| 692 |
+
|
| 693 |
+
def create_autoencoder_from_config(config: Dict[str, Any]):
|
| 694 |
+
|
| 695 |
+
ae_config = config["model"]
|
| 696 |
+
|
| 697 |
+
encoder = create_encoder_from_config(ae_config["encoder"])
|
| 698 |
+
decoder = create_decoder_from_config(ae_config["decoder"])
|
| 699 |
+
|
| 700 |
+
bottleneck = ae_config.get("bottleneck", None)
|
| 701 |
+
|
| 702 |
+
latent_dim = ae_config.get("latent_dim", None)
|
| 703 |
+
assert latent_dim is not None, "latent_dim must be specified in model config"
|
| 704 |
+
downsampling_ratio = ae_config.get("downsampling_ratio", None)
|
| 705 |
+
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
|
| 706 |
+
io_channels = ae_config.get("io_channels", None)
|
| 707 |
+
assert io_channels is not None, "io_channels must be specified in model config"
|
| 708 |
+
sample_rate = config.get("sample_rate", None)
|
| 709 |
+
assert sample_rate is not None, "sample_rate must be specified in model config"
|
| 710 |
+
|
| 711 |
+
in_channels = ae_config.get("in_channels", None)
|
| 712 |
+
out_channels = ae_config.get("out_channels", None)
|
| 713 |
+
|
| 714 |
+
pretransform = ae_config.get("pretransform", None)
|
| 715 |
+
|
| 716 |
+
if pretransform is not None:
|
| 717 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
| 718 |
+
|
| 719 |
+
if bottleneck is not None:
|
| 720 |
+
bottleneck = create_bottleneck_from_config(bottleneck)
|
| 721 |
+
|
| 722 |
+
soft_clip = ae_config["decoder"].get("soft_clip", False)
|
| 723 |
+
|
| 724 |
+
return AudioAutoencoder(
|
| 725 |
+
encoder,
|
| 726 |
+
decoder,
|
| 727 |
+
io_channels=io_channels,
|
| 728 |
+
latent_dim=latent_dim,
|
| 729 |
+
downsampling_ratio=downsampling_ratio,
|
| 730 |
+
sample_rate=sample_rate,
|
| 731 |
+
bottleneck=bottleneck,
|
| 732 |
+
pretransform=pretransform,
|
| 733 |
+
in_channels=in_channels,
|
| 734 |
+
out_channels=out_channels,
|
| 735 |
+
soft_clip=soft_clip
|
| 736 |
+
)
|
| 737 |
+
|
| 738 |
+
def create_diffAE_from_config(config: Dict[str, Any]):
|
| 739 |
+
|
| 740 |
+
diffae_config = config["model"]
|
| 741 |
+
|
| 742 |
+
if "encoder" in diffae_config:
|
| 743 |
+
encoder = create_encoder_from_config(diffae_config["encoder"])
|
| 744 |
+
else:
|
| 745 |
+
encoder = None
|
| 746 |
+
|
| 747 |
+
if "decoder" in diffae_config:
|
| 748 |
+
decoder = create_decoder_from_config(diffae_config["decoder"])
|
| 749 |
+
else:
|
| 750 |
+
decoder = None
|
| 751 |
+
|
| 752 |
+
diffusion_model_type = diffae_config["diffusion"]["type"]
|
| 753 |
+
|
| 754 |
+
if diffusion_model_type == "DAU1d":
|
| 755 |
+
diffusion = DAU1DCondWrapper(**diffae_config["diffusion"]["config"])
|
| 756 |
+
elif diffusion_model_type == "adp_1d":
|
| 757 |
+
diffusion = UNet1DCondWrapper(**diffae_config["diffusion"]["config"])
|
| 758 |
+
elif diffusion_model_type == "dit":
|
| 759 |
+
diffusion = DiTWrapper(**diffae_config["diffusion"]["config"])
|
| 760 |
+
|
| 761 |
+
latent_dim = diffae_config.get("latent_dim", None)
|
| 762 |
+
assert latent_dim is not None, "latent_dim must be specified in model config"
|
| 763 |
+
downsampling_ratio = diffae_config.get("downsampling_ratio", None)
|
| 764 |
+
assert downsampling_ratio is not None, "downsampling_ratio must be specified in model config"
|
| 765 |
+
io_channels = diffae_config.get("io_channels", None)
|
| 766 |
+
assert io_channels is not None, "io_channels must be specified in model config"
|
| 767 |
+
sample_rate = config.get("sample_rate", None)
|
| 768 |
+
assert sample_rate is not None, "sample_rate must be specified in model config"
|
| 769 |
+
|
| 770 |
+
bottleneck = diffae_config.get("bottleneck", None)
|
| 771 |
+
|
| 772 |
+
pretransform = diffae_config.get("pretransform", None)
|
| 773 |
+
|
| 774 |
+
if pretransform is not None:
|
| 775 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
| 776 |
+
|
| 777 |
+
if bottleneck is not None:
|
| 778 |
+
bottleneck = create_bottleneck_from_config(bottleneck)
|
| 779 |
+
|
| 780 |
+
diffusion_downsampling_ratio = None,
|
| 781 |
+
|
| 782 |
+
if diffusion_model_type == "DAU1d":
|
| 783 |
+
diffusion_downsampling_ratio = np.prod(diffae_config["diffusion"]["config"]["strides"])
|
| 784 |
+
elif diffusion_model_type == "adp_1d":
|
| 785 |
+
diffusion_downsampling_ratio = np.prod(diffae_config["diffusion"]["config"]["factors"])
|
| 786 |
+
elif diffusion_model_type == "dit":
|
| 787 |
+
diffusion_downsampling_ratio = 1
|
| 788 |
+
|
| 789 |
+
return DiffusionAutoencoder(
|
| 790 |
+
encoder=encoder,
|
| 791 |
+
decoder=decoder,
|
| 792 |
+
diffusion=diffusion,
|
| 793 |
+
io_channels=io_channels,
|
| 794 |
+
sample_rate=sample_rate,
|
| 795 |
+
latent_dim=latent_dim,
|
| 796 |
+
downsampling_ratio=downsampling_ratio,
|
| 797 |
+
diffusion_downsampling_ratio=diffusion_downsampling_ratio,
|
| 798 |
+
bottleneck=bottleneck,
|
| 799 |
+
pretransform=pretransform
|
| 800 |
+
)
|
ThinkSound/models/blocks.py
ADDED
|
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import reduce
|
| 2 |
+
import math
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
from torch.nn import functional as F
|
| 7 |
+
|
| 8 |
+
from torch.backends.cuda import sdp_kernel
|
| 9 |
+
from packaging import version
|
| 10 |
+
|
| 11 |
+
from dac.nn.layers import Snake1d
|
| 12 |
+
|
| 13 |
+
class ResidualBlock(nn.Module):
|
| 14 |
+
def __init__(self, main, skip=None):
|
| 15 |
+
super().__init__()
|
| 16 |
+
self.main = nn.Sequential(*main)
|
| 17 |
+
self.skip = skip if skip else nn.Identity()
|
| 18 |
+
|
| 19 |
+
def forward(self, input):
|
| 20 |
+
return self.main(input) + self.skip(input)
|
| 21 |
+
|
| 22 |
+
class ResConvBlock(ResidualBlock):
|
| 23 |
+
def __init__(self, c_in, c_mid, c_out, is_last=False, kernel_size=5, conv_bias=True, use_snake=False):
|
| 24 |
+
skip = None if c_in == c_out else nn.Conv1d(c_in, c_out, 1, bias=False)
|
| 25 |
+
super().__init__([
|
| 26 |
+
nn.Conv1d(c_in, c_mid, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
| 27 |
+
nn.GroupNorm(1, c_mid),
|
| 28 |
+
Snake1d(c_mid) if use_snake else nn.GELU(),
|
| 29 |
+
nn.Conv1d(c_mid, c_out, kernel_size, padding=kernel_size//2, bias=conv_bias),
|
| 30 |
+
nn.GroupNorm(1, c_out) if not is_last else nn.Identity(),
|
| 31 |
+
(Snake1d(c_out) if use_snake else nn.GELU()) if not is_last else nn.Identity(),
|
| 32 |
+
], skip)
|
| 33 |
+
|
| 34 |
+
class SelfAttention1d(nn.Module):
|
| 35 |
+
def __init__(self, c_in, n_head=1, dropout_rate=0.):
|
| 36 |
+
super().__init__()
|
| 37 |
+
assert c_in % n_head == 0
|
| 38 |
+
self.norm = nn.GroupNorm(1, c_in)
|
| 39 |
+
self.n_head = n_head
|
| 40 |
+
self.qkv_proj = nn.Conv1d(c_in, c_in * 3, 1)
|
| 41 |
+
self.out_proj = nn.Conv1d(c_in, c_in, 1)
|
| 42 |
+
self.dropout = nn.Dropout(dropout_rate, inplace=True)
|
| 43 |
+
|
| 44 |
+
self.use_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
| 45 |
+
|
| 46 |
+
if not self.use_flash:
|
| 47 |
+
return
|
| 48 |
+
|
| 49 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
| 50 |
+
|
| 51 |
+
if device_properties.major == 8 and device_properties.minor == 0:
|
| 52 |
+
# Use flash attention for A100 GPUs
|
| 53 |
+
self.sdp_kernel_config = (True, False, False)
|
| 54 |
+
else:
|
| 55 |
+
# Don't use flash attention for other GPUs
|
| 56 |
+
self.sdp_kernel_config = (False, True, True)
|
| 57 |
+
|
| 58 |
+
def forward(self, input):
|
| 59 |
+
n, c, s = input.shape
|
| 60 |
+
qkv = self.qkv_proj(self.norm(input))
|
| 61 |
+
qkv = qkv.view(
|
| 62 |
+
[n, self.n_head * 3, c // self.n_head, s]).transpose(2, 3)
|
| 63 |
+
q, k, v = qkv.chunk(3, dim=1)
|
| 64 |
+
scale = k.shape[3]**-0.25
|
| 65 |
+
|
| 66 |
+
if self.use_flash:
|
| 67 |
+
with sdp_kernel(*self.sdp_kernel_config):
|
| 68 |
+
y = F.scaled_dot_product_attention(q, k, v, is_causal=False).contiguous().view([n, c, s])
|
| 69 |
+
else:
|
| 70 |
+
att = ((q * scale) @ (k.transpose(2, 3) * scale)).softmax(3)
|
| 71 |
+
y = (att @ v).transpose(2, 3).contiguous().view([n, c, s])
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
return input + self.dropout(self.out_proj(y))
|
| 75 |
+
|
| 76 |
+
class SkipBlock(nn.Module):
|
| 77 |
+
def __init__(self, *main):
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.main = nn.Sequential(*main)
|
| 80 |
+
|
| 81 |
+
def forward(self, input):
|
| 82 |
+
return torch.cat([self.main(input), input], dim=1)
|
| 83 |
+
|
| 84 |
+
class FourierFeatures(nn.Module):
|
| 85 |
+
def __init__(self, in_features, out_features, std=1.):
|
| 86 |
+
super().__init__()
|
| 87 |
+
assert out_features % 2 == 0
|
| 88 |
+
self.weight = nn.Parameter(torch.randn(
|
| 89 |
+
[out_features // 2, in_features]) * std)
|
| 90 |
+
|
| 91 |
+
def forward(self, input):
|
| 92 |
+
f = 2 * math.pi * input @ self.weight.T
|
| 93 |
+
return torch.cat([f.cos(), f.sin()], dim=-1)
|
| 94 |
+
|
| 95 |
+
def expand_to_planes(input, shape):
|
| 96 |
+
return input[..., None].repeat([1, 1, shape[2]])
|
| 97 |
+
|
| 98 |
+
_kernels = {
|
| 99 |
+
'linear':
|
| 100 |
+
[1 / 8, 3 / 8, 3 / 8, 1 / 8],
|
| 101 |
+
'cubic':
|
| 102 |
+
[-0.01171875, -0.03515625, 0.11328125, 0.43359375,
|
| 103 |
+
0.43359375, 0.11328125, -0.03515625, -0.01171875],
|
| 104 |
+
'lanczos3':
|
| 105 |
+
[0.003689131001010537, 0.015056144446134567, -0.03399861603975296,
|
| 106 |
+
-0.066637322306633, 0.13550527393817902, 0.44638532400131226,
|
| 107 |
+
0.44638532400131226, 0.13550527393817902, -0.066637322306633,
|
| 108 |
+
-0.03399861603975296, 0.015056144446134567, 0.003689131001010537]
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
class Downsample1d(nn.Module):
|
| 112 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
| 113 |
+
super().__init__()
|
| 114 |
+
self.pad_mode = pad_mode
|
| 115 |
+
kernel_1d = torch.tensor(_kernels[kernel])
|
| 116 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
| 117 |
+
self.register_buffer('kernel', kernel_1d)
|
| 118 |
+
self.channels_last = channels_last
|
| 119 |
+
|
| 120 |
+
def forward(self, x):
|
| 121 |
+
if self.channels_last:
|
| 122 |
+
x = x.permute(0, 2, 1)
|
| 123 |
+
x = F.pad(x, (self.pad,) * 2, self.pad_mode)
|
| 124 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
| 125 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
| 126 |
+
weight[indices, indices] = self.kernel.to(weight)
|
| 127 |
+
x = F.conv1d(x, weight, stride=2)
|
| 128 |
+
if self.channels_last:
|
| 129 |
+
x = x.permute(0, 2, 1)
|
| 130 |
+
return x
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class Upsample1d(nn.Module):
|
| 134 |
+
def __init__(self, kernel='linear', pad_mode='reflect', channels_last=False):
|
| 135 |
+
super().__init__()
|
| 136 |
+
self.pad_mode = pad_mode
|
| 137 |
+
kernel_1d = torch.tensor(_kernels[kernel]) * 2
|
| 138 |
+
self.pad = kernel_1d.shape[0] // 2 - 1
|
| 139 |
+
self.register_buffer('kernel', kernel_1d)
|
| 140 |
+
self.channels_last = channels_last
|
| 141 |
+
|
| 142 |
+
def forward(self, x):
|
| 143 |
+
if self.channels_last:
|
| 144 |
+
x = x.permute(0, 2, 1)
|
| 145 |
+
x = F.pad(x, ((self.pad + 1) // 2,) * 2, self.pad_mode)
|
| 146 |
+
weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0]])
|
| 147 |
+
indices = torch.arange(x.shape[1], device=x.device)
|
| 148 |
+
weight[indices, indices] = self.kernel.to(weight)
|
| 149 |
+
x = F.conv_transpose1d(x, weight, stride=2, padding=self.pad * 2 + 1)
|
| 150 |
+
if self.channels_last:
|
| 151 |
+
x = x.permute(0, 2, 1)
|
| 152 |
+
return x
|
| 153 |
+
|
| 154 |
+
def Downsample1d_2(
|
| 155 |
+
in_channels: int, out_channels: int, factor: int, kernel_multiplier: int = 2
|
| 156 |
+
) -> nn.Module:
|
| 157 |
+
assert kernel_multiplier % 2 == 0, "Kernel multiplier must be even"
|
| 158 |
+
|
| 159 |
+
return nn.Conv1d(
|
| 160 |
+
in_channels=in_channels,
|
| 161 |
+
out_channels=out_channels,
|
| 162 |
+
kernel_size=factor * kernel_multiplier + 1,
|
| 163 |
+
stride=factor,
|
| 164 |
+
padding=factor * (kernel_multiplier // 2),
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def Upsample1d_2(
|
| 169 |
+
in_channels: int, out_channels: int, factor: int, use_nearest: bool = False
|
| 170 |
+
) -> nn.Module:
|
| 171 |
+
|
| 172 |
+
if factor == 1:
|
| 173 |
+
return nn.Conv1d(
|
| 174 |
+
in_channels=in_channels, out_channels=out_channels, kernel_size=3, padding=1
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
if use_nearest:
|
| 178 |
+
return nn.Sequential(
|
| 179 |
+
nn.Upsample(scale_factor=factor, mode="nearest"),
|
| 180 |
+
nn.Conv1d(
|
| 181 |
+
in_channels=in_channels,
|
| 182 |
+
out_channels=out_channels,
|
| 183 |
+
kernel_size=3,
|
| 184 |
+
padding=1,
|
| 185 |
+
),
|
| 186 |
+
)
|
| 187 |
+
else:
|
| 188 |
+
return nn.ConvTranspose1d(
|
| 189 |
+
in_channels=in_channels,
|
| 190 |
+
out_channels=out_channels,
|
| 191 |
+
kernel_size=factor * 2,
|
| 192 |
+
stride=factor,
|
| 193 |
+
padding=factor // 2 + factor % 2,
|
| 194 |
+
output_padding=factor % 2,
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
def zero_init(layer):
|
| 198 |
+
nn.init.zeros_(layer.weight)
|
| 199 |
+
if layer.bias is not None:
|
| 200 |
+
nn.init.zeros_(layer.bias)
|
| 201 |
+
return layer
|
| 202 |
+
|
| 203 |
+
def rms_norm(x, scale, eps):
|
| 204 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
| 205 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
| 206 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
| 207 |
+
return x * scale.to(x.dtype)
|
| 208 |
+
|
| 209 |
+
#rms_norm = torch.compile(rms_norm)
|
| 210 |
+
|
| 211 |
+
class AdaRMSNorm(nn.Module):
|
| 212 |
+
def __init__(self, features, cond_features, eps=1e-6):
|
| 213 |
+
super().__init__()
|
| 214 |
+
self.eps = eps
|
| 215 |
+
self.linear = zero_init(nn.Linear(cond_features, features, bias=False))
|
| 216 |
+
|
| 217 |
+
def extra_repr(self):
|
| 218 |
+
return f"eps={self.eps},"
|
| 219 |
+
|
| 220 |
+
def forward(self, x, cond):
|
| 221 |
+
return rms_norm(x, self.linear(cond)[:, None, :] + 1, self.eps)
|
| 222 |
+
|
| 223 |
+
def normalize(x, eps=1e-4):
|
| 224 |
+
dim = list(range(1, x.ndim))
|
| 225 |
+
n = torch.linalg.vector_norm(x, dim=dim, keepdim=True)
|
| 226 |
+
alpha = np.sqrt(n.numel() / x.numel())
|
| 227 |
+
return x / torch.add(eps, n, alpha=alpha)
|
| 228 |
+
|
| 229 |
+
class ForcedWNConv1d(nn.Module):
|
| 230 |
+
def __init__(self, in_channels, out_channels, kernel_size=1):
|
| 231 |
+
super().__init__()
|
| 232 |
+
self.weight = nn.Parameter(torch.randn([out_channels, in_channels, kernel_size]))
|
| 233 |
+
|
| 234 |
+
def forward(self, x):
|
| 235 |
+
if self.training:
|
| 236 |
+
with torch.no_grad():
|
| 237 |
+
self.weight.copy_(normalize(self.weight))
|
| 238 |
+
|
| 239 |
+
fan_in = self.weight[0].numel()
|
| 240 |
+
|
| 241 |
+
w = normalize(self.weight) / math.sqrt(fan_in)
|
| 242 |
+
|
| 243 |
+
return F.conv1d(x, w, padding='same')
|
| 244 |
+
|
| 245 |
+
# Kernels
|
| 246 |
+
|
| 247 |
+
use_compile = True
|
| 248 |
+
|
| 249 |
+
def compile(function, *args, **kwargs):
|
| 250 |
+
if not use_compile:
|
| 251 |
+
return function
|
| 252 |
+
try:
|
| 253 |
+
return torch.compile(function, *args, **kwargs)
|
| 254 |
+
except RuntimeError:
|
| 255 |
+
return function
|
| 256 |
+
|
| 257 |
+
|
| 258 |
+
@compile
|
| 259 |
+
def linear_geglu(x, weight, bias=None):
|
| 260 |
+
x = x @ weight.mT
|
| 261 |
+
if bias is not None:
|
| 262 |
+
x = x + bias
|
| 263 |
+
x, gate = x.chunk(2, dim=-1)
|
| 264 |
+
return x * F.gelu(gate)
|
| 265 |
+
|
| 266 |
+
|
| 267 |
+
@compile
|
| 268 |
+
def rms_norm(x, scale, eps):
|
| 269 |
+
dtype = reduce(torch.promote_types, (x.dtype, scale.dtype, torch.float32))
|
| 270 |
+
mean_sq = torch.mean(x.to(dtype)**2, dim=-1, keepdim=True)
|
| 271 |
+
scale = scale.to(dtype) * torch.rsqrt(mean_sq + eps)
|
| 272 |
+
return x * scale.to(x.dtype)
|
| 273 |
+
|
| 274 |
+
# Layers
|
| 275 |
+
|
| 276 |
+
class LinearGEGLU(nn.Linear):
|
| 277 |
+
def __init__(self, in_features, out_features, bias=True):
|
| 278 |
+
super().__init__(in_features, out_features * 2, bias=bias)
|
| 279 |
+
self.out_features = out_features
|
| 280 |
+
|
| 281 |
+
def forward(self, x):
|
| 282 |
+
return linear_geglu(x, self.weight, self.bias)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
class RMSNorm(nn.Module):
|
| 286 |
+
def __init__(self, shape, fix_scale = False, eps=1e-6):
|
| 287 |
+
super().__init__()
|
| 288 |
+
self.eps = eps
|
| 289 |
+
|
| 290 |
+
if fix_scale:
|
| 291 |
+
self.register_buffer("scale", torch.ones(shape))
|
| 292 |
+
else:
|
| 293 |
+
self.scale = nn.Parameter(torch.ones(shape))
|
| 294 |
+
|
| 295 |
+
def extra_repr(self):
|
| 296 |
+
return f"shape={tuple(self.scale.shape)}, eps={self.eps}"
|
| 297 |
+
|
| 298 |
+
def forward(self, x):
|
| 299 |
+
return rms_norm(x, self.scale, self.eps)
|
| 300 |
+
|
| 301 |
+
def snake_beta(x, alpha, beta):
|
| 302 |
+
return x + (1.0 / (beta + 0.000000001)) * pow(torch.sin(x * alpha), 2)
|
| 303 |
+
|
| 304 |
+
# try:
|
| 305 |
+
# snake_beta = torch.compile(snake_beta)
|
| 306 |
+
# except RuntimeError:
|
| 307 |
+
# pass
|
| 308 |
+
|
| 309 |
+
# Adapted from https://github.com/NVIDIA/BigVGAN/blob/main/activations.py under MIT license
|
| 310 |
+
# License available in LICENSES/LICENSE_NVIDIA.txt
|
| 311 |
+
class SnakeBeta(nn.Module):
|
| 312 |
+
|
| 313 |
+
def __init__(self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=True):
|
| 314 |
+
super(SnakeBeta, self).__init__()
|
| 315 |
+
self.in_features = in_features
|
| 316 |
+
|
| 317 |
+
# initialize alpha
|
| 318 |
+
self.alpha_logscale = alpha_logscale
|
| 319 |
+
if self.alpha_logscale: # log scale alphas initialized to zeros
|
| 320 |
+
self.alpha = nn.Parameter(torch.zeros(in_features) * alpha)
|
| 321 |
+
self.beta = nn.Parameter(torch.zeros(in_features) * alpha)
|
| 322 |
+
else: # linear scale alphas initialized to ones
|
| 323 |
+
self.alpha = nn.Parameter(torch.ones(in_features) * alpha)
|
| 324 |
+
self.beta = nn.Parameter(torch.ones(in_features) * alpha)
|
| 325 |
+
|
| 326 |
+
self.alpha.requires_grad = alpha_trainable
|
| 327 |
+
self.beta.requires_grad = alpha_trainable
|
| 328 |
+
|
| 329 |
+
self.no_div_by_zero = 0.000000001
|
| 330 |
+
|
| 331 |
+
def forward(self, x):
|
| 332 |
+
alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T]
|
| 333 |
+
beta = self.beta.unsqueeze(0).unsqueeze(-1)
|
| 334 |
+
if self.alpha_logscale:
|
| 335 |
+
alpha = torch.exp(alpha)
|
| 336 |
+
beta = torch.exp(beta)
|
| 337 |
+
x = snake_beta(x, alpha, beta)
|
| 338 |
+
|
| 339 |
+
return x
|
| 340 |
+
|
| 341 |
+
class ChannelLastConv1d(nn.Conv1d):
|
| 342 |
+
|
| 343 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 344 |
+
x = x.permute(0, 2, 1)
|
| 345 |
+
x = super().forward(x)
|
| 346 |
+
x = x.permute(0, 2, 1)
|
| 347 |
+
return x
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
# https://github.com/Stability-AI/sd3-ref
|
| 351 |
+
class MLP(nn.Module):
|
| 352 |
+
|
| 353 |
+
def __init__(
|
| 354 |
+
self,
|
| 355 |
+
dim: int,
|
| 356 |
+
hidden_dim: int,
|
| 357 |
+
multiple_of: int = 256,
|
| 358 |
+
):
|
| 359 |
+
"""
|
| 360 |
+
Initialize the FeedForward module.
|
| 361 |
+
|
| 362 |
+
Args:
|
| 363 |
+
dim (int): Input dimension.
|
| 364 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
| 365 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
| 366 |
+
|
| 367 |
+
Attributes:
|
| 368 |
+
w1 (ColumnParallelLinear): Linear transformation for the first layer.
|
| 369 |
+
w2 (RowParallelLinear): Linear transformation for the second layer.
|
| 370 |
+
w3 (ColumnParallelLinear): Linear transformation for the third layer.
|
| 371 |
+
|
| 372 |
+
"""
|
| 373 |
+
super().__init__()
|
| 374 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 375 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 376 |
+
|
| 377 |
+
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
| 378 |
+
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
| 379 |
+
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
| 380 |
+
|
| 381 |
+
def forward(self, x):
|
| 382 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
class ConvMLP(nn.Module):
|
| 386 |
+
|
| 387 |
+
def __init__(
|
| 388 |
+
self,
|
| 389 |
+
dim: int,
|
| 390 |
+
hidden_dim: int,
|
| 391 |
+
multiple_of: int = 256,
|
| 392 |
+
kernel_size: int = 3,
|
| 393 |
+
padding: int = 1,
|
| 394 |
+
):
|
| 395 |
+
"""
|
| 396 |
+
Initialize the FeedForward module.
|
| 397 |
+
|
| 398 |
+
Args:
|
| 399 |
+
dim (int): Input dimension.
|
| 400 |
+
hidden_dim (int): Hidden dimension of the feedforward layer.
|
| 401 |
+
multiple_of (int): Value to ensure hidden dimension is a multiple of this value.
|
| 402 |
+
|
| 403 |
+
Attributes:
|
| 404 |
+
w1 (ColumnParallelLinear): Linear transformation for the first layer.
|
| 405 |
+
w2 (RowParallelLinear): Linear transformation for the second layer.
|
| 406 |
+
w3 (ColumnParallelLinear): Linear transformation for the third layer.
|
| 407 |
+
|
| 408 |
+
"""
|
| 409 |
+
super().__init__()
|
| 410 |
+
hidden_dim = int(2 * hidden_dim / 3)
|
| 411 |
+
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
|
| 412 |
+
|
| 413 |
+
self.w1 = ChannelLastConv1d(dim,
|
| 414 |
+
hidden_dim,
|
| 415 |
+
bias=False,
|
| 416 |
+
kernel_size=kernel_size,
|
| 417 |
+
padding=padding)
|
| 418 |
+
self.w2 = ChannelLastConv1d(hidden_dim,
|
| 419 |
+
dim,
|
| 420 |
+
bias=False,
|
| 421 |
+
kernel_size=kernel_size,
|
| 422 |
+
padding=padding)
|
| 423 |
+
self.w3 = ChannelLastConv1d(dim,
|
| 424 |
+
hidden_dim,
|
| 425 |
+
bias=False,
|
| 426 |
+
kernel_size=kernel_size,
|
| 427 |
+
padding=padding)
|
| 428 |
+
|
| 429 |
+
def forward(self, x):
|
| 430 |
+
return self.w2(F.silu(self.w1(x)) * self.w3(x))
|
ThinkSound/models/bottleneck.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
from torch import nn
|
| 4 |
+
from torch.nn import functional as F
|
| 5 |
+
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from vector_quantize_pytorch import ResidualVQ, FSQ
|
| 8 |
+
from dac.nn.quantize import ResidualVectorQuantize as DACResidualVQ
|
| 9 |
+
|
| 10 |
+
class Bottleneck(nn.Module):
|
| 11 |
+
def __init__(self, is_discrete: bool = False):
|
| 12 |
+
super().__init__()
|
| 13 |
+
|
| 14 |
+
self.is_discrete = is_discrete
|
| 15 |
+
|
| 16 |
+
def encode(self, x, return_info=False, **kwargs):
|
| 17 |
+
raise NotImplementedError
|
| 18 |
+
|
| 19 |
+
def decode(self, x):
|
| 20 |
+
raise NotImplementedError
|
| 21 |
+
|
| 22 |
+
class DiscreteBottleneck(Bottleneck):
|
| 23 |
+
def __init__(self, num_quantizers, codebook_size, tokens_id):
|
| 24 |
+
super().__init__(is_discrete=True)
|
| 25 |
+
|
| 26 |
+
self.num_quantizers = num_quantizers
|
| 27 |
+
self.codebook_size = codebook_size
|
| 28 |
+
self.tokens_id = tokens_id
|
| 29 |
+
|
| 30 |
+
def decode_tokens(self, codes, **kwargs):
|
| 31 |
+
raise NotImplementedError
|
| 32 |
+
|
| 33 |
+
class TanhBottleneck(Bottleneck):
|
| 34 |
+
def __init__(self):
|
| 35 |
+
super().__init__(is_discrete=False)
|
| 36 |
+
self.tanh = nn.Tanh()
|
| 37 |
+
|
| 38 |
+
def encode(self, x, return_info=False):
|
| 39 |
+
info = {}
|
| 40 |
+
|
| 41 |
+
x = torch.tanh(x)
|
| 42 |
+
|
| 43 |
+
if return_info:
|
| 44 |
+
return x, info
|
| 45 |
+
else:
|
| 46 |
+
return x
|
| 47 |
+
|
| 48 |
+
def decode(self, x):
|
| 49 |
+
return x
|
| 50 |
+
|
| 51 |
+
def vae_sample(mean, scale):
|
| 52 |
+
stdev = nn.functional.softplus(scale) + 1e-4
|
| 53 |
+
var = stdev * stdev
|
| 54 |
+
logvar = torch.log(var)
|
| 55 |
+
latents = torch.randn_like(mean) * stdev + mean
|
| 56 |
+
|
| 57 |
+
kl = (mean * mean + var - logvar - 1).sum(1).mean()
|
| 58 |
+
|
| 59 |
+
return latents, kl
|
| 60 |
+
|
| 61 |
+
class VAEBottleneck(Bottleneck):
|
| 62 |
+
def __init__(self):
|
| 63 |
+
super().__init__(is_discrete=False)
|
| 64 |
+
|
| 65 |
+
def encode(self, x, return_info=False, **kwargs):
|
| 66 |
+
info = {}
|
| 67 |
+
|
| 68 |
+
mean, scale = x.chunk(2, dim=1)
|
| 69 |
+
|
| 70 |
+
x, kl = vae_sample(mean, scale)
|
| 71 |
+
|
| 72 |
+
info["kl"] = kl
|
| 73 |
+
|
| 74 |
+
if return_info:
|
| 75 |
+
return x, info
|
| 76 |
+
else:
|
| 77 |
+
return x
|
| 78 |
+
|
| 79 |
+
def decode(self, x):
|
| 80 |
+
return x
|
| 81 |
+
|
| 82 |
+
def compute_mean_kernel(x, y):
|
| 83 |
+
kernel_input = (x[:, None] - y[None]).pow(2).mean(2) / x.shape[-1]
|
| 84 |
+
return torch.exp(-kernel_input).mean()
|
| 85 |
+
|
| 86 |
+
def compute_mmd(latents):
|
| 87 |
+
latents_reshaped = latents.permute(0, 2, 1).reshape(-1, latents.shape[1])
|
| 88 |
+
noise = torch.randn_like(latents_reshaped)
|
| 89 |
+
|
| 90 |
+
latents_kernel = compute_mean_kernel(latents_reshaped, latents_reshaped)
|
| 91 |
+
noise_kernel = compute_mean_kernel(noise, noise)
|
| 92 |
+
latents_noise_kernel = compute_mean_kernel(latents_reshaped, noise)
|
| 93 |
+
|
| 94 |
+
mmd = latents_kernel + noise_kernel - 2 * latents_noise_kernel
|
| 95 |
+
return mmd.mean()
|
| 96 |
+
|
| 97 |
+
class WassersteinBottleneck(Bottleneck):
|
| 98 |
+
def __init__(self, noise_augment_dim: int = 0, bypass_mmd: bool = False):
|
| 99 |
+
super().__init__(is_discrete=False)
|
| 100 |
+
|
| 101 |
+
self.noise_augment_dim = noise_augment_dim
|
| 102 |
+
self.bypass_mmd = bypass_mmd
|
| 103 |
+
|
| 104 |
+
def encode(self, x, return_info=False):
|
| 105 |
+
info = {}
|
| 106 |
+
|
| 107 |
+
if self.training and return_info:
|
| 108 |
+
if self.bypass_mmd:
|
| 109 |
+
mmd = torch.tensor(0.0)
|
| 110 |
+
else:
|
| 111 |
+
mmd = compute_mmd(x)
|
| 112 |
+
|
| 113 |
+
info["mmd"] = mmd
|
| 114 |
+
|
| 115 |
+
if return_info:
|
| 116 |
+
return x, info
|
| 117 |
+
|
| 118 |
+
return x
|
| 119 |
+
|
| 120 |
+
def decode(self, x):
|
| 121 |
+
|
| 122 |
+
if self.noise_augment_dim > 0:
|
| 123 |
+
noise = torch.randn(x.shape[0], self.noise_augment_dim,
|
| 124 |
+
x.shape[-1]).type_as(x)
|
| 125 |
+
x = torch.cat([x, noise], dim=1)
|
| 126 |
+
|
| 127 |
+
return x
|
| 128 |
+
|
| 129 |
+
class L2Bottleneck(Bottleneck):
|
| 130 |
+
def __init__(self):
|
| 131 |
+
super().__init__(is_discrete=False)
|
| 132 |
+
|
| 133 |
+
def encode(self, x, return_info=False):
|
| 134 |
+
info = {}
|
| 135 |
+
|
| 136 |
+
x = F.normalize(x, dim=1)
|
| 137 |
+
|
| 138 |
+
if return_info:
|
| 139 |
+
return x, info
|
| 140 |
+
else:
|
| 141 |
+
return x
|
| 142 |
+
|
| 143 |
+
def decode(self, x):
|
| 144 |
+
return F.normalize(x, dim=1)
|
| 145 |
+
|
| 146 |
+
class RVQBottleneck(DiscreteBottleneck):
|
| 147 |
+
def __init__(self, **quantizer_kwargs):
|
| 148 |
+
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
| 149 |
+
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
| 150 |
+
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
| 151 |
+
|
| 152 |
+
def encode(self, x, return_info=False, **kwargs):
|
| 153 |
+
info = {}
|
| 154 |
+
|
| 155 |
+
x = rearrange(x, "b c n -> b n c")
|
| 156 |
+
x, indices, loss = self.quantizer(x)
|
| 157 |
+
x = rearrange(x, "b n c -> b c n")
|
| 158 |
+
|
| 159 |
+
info["quantizer_indices"] = indices
|
| 160 |
+
info["quantizer_loss"] = loss.mean()
|
| 161 |
+
|
| 162 |
+
if return_info:
|
| 163 |
+
return x, info
|
| 164 |
+
else:
|
| 165 |
+
return x
|
| 166 |
+
|
| 167 |
+
def decode(self, x):
|
| 168 |
+
return x
|
| 169 |
+
|
| 170 |
+
def decode_tokens(self, codes, **kwargs):
|
| 171 |
+
latents = self.quantizer.get_outputs_from_indices(codes)
|
| 172 |
+
|
| 173 |
+
return self.decode(latents, **kwargs)
|
| 174 |
+
|
| 175 |
+
class RVQVAEBottleneck(DiscreteBottleneck):
|
| 176 |
+
def __init__(self, **quantizer_kwargs):
|
| 177 |
+
super().__init__(num_quantizers = quantizer_kwargs["num_quantizers"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "quantizer_indices")
|
| 178 |
+
self.quantizer = ResidualVQ(**quantizer_kwargs)
|
| 179 |
+
self.num_quantizers = quantizer_kwargs["num_quantizers"]
|
| 180 |
+
|
| 181 |
+
def encode(self, x, return_info=False):
|
| 182 |
+
info = {}
|
| 183 |
+
|
| 184 |
+
x, kl = vae_sample(*x.chunk(2, dim=1))
|
| 185 |
+
|
| 186 |
+
info["kl"] = kl
|
| 187 |
+
|
| 188 |
+
x = rearrange(x, "b c n -> b n c")
|
| 189 |
+
x, indices, loss = self.quantizer(x)
|
| 190 |
+
x = rearrange(x, "b n c -> b c n")
|
| 191 |
+
|
| 192 |
+
info["quantizer_indices"] = indices
|
| 193 |
+
info["quantizer_loss"] = loss.mean()
|
| 194 |
+
|
| 195 |
+
if return_info:
|
| 196 |
+
return x, info
|
| 197 |
+
else:
|
| 198 |
+
return x
|
| 199 |
+
|
| 200 |
+
def decode(self, x):
|
| 201 |
+
return x
|
| 202 |
+
|
| 203 |
+
def decode_tokens(self, codes, **kwargs):
|
| 204 |
+
latents = self.quantizer.get_outputs_from_indices(codes)
|
| 205 |
+
|
| 206 |
+
return self.decode(latents, **kwargs)
|
| 207 |
+
|
| 208 |
+
class DACRVQBottleneck(DiscreteBottleneck):
|
| 209 |
+
def __init__(self, quantize_on_decode=False, noise_augment_dim=0, **quantizer_kwargs):
|
| 210 |
+
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
| 211 |
+
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
| 212 |
+
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
| 213 |
+
self.quantize_on_decode = quantize_on_decode
|
| 214 |
+
self.noise_augment_dim = noise_augment_dim
|
| 215 |
+
|
| 216 |
+
def encode(self, x, return_info=False, **kwargs):
|
| 217 |
+
info = {}
|
| 218 |
+
|
| 219 |
+
info["pre_quantizer"] = x
|
| 220 |
+
|
| 221 |
+
if self.quantize_on_decode:
|
| 222 |
+
return x, info if return_info else x
|
| 223 |
+
|
| 224 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, **kwargs)
|
| 225 |
+
|
| 226 |
+
output = {
|
| 227 |
+
"z": z,
|
| 228 |
+
"codes": codes,
|
| 229 |
+
"latents": latents,
|
| 230 |
+
"vq/commitment_loss": commitment_loss,
|
| 231 |
+
"vq/codebook_loss": codebook_loss,
|
| 232 |
+
}
|
| 233 |
+
|
| 234 |
+
output["vq/commitment_loss"] /= self.num_quantizers
|
| 235 |
+
output["vq/codebook_loss"] /= self.num_quantizers
|
| 236 |
+
|
| 237 |
+
info.update(output)
|
| 238 |
+
|
| 239 |
+
if return_info:
|
| 240 |
+
return output["z"], info
|
| 241 |
+
|
| 242 |
+
return output["z"]
|
| 243 |
+
|
| 244 |
+
def decode(self, x):
|
| 245 |
+
|
| 246 |
+
if self.quantize_on_decode:
|
| 247 |
+
x = self.quantizer(x)[0]
|
| 248 |
+
|
| 249 |
+
if self.noise_augment_dim > 0:
|
| 250 |
+
noise = torch.randn(x.shape[0], self.noise_augment_dim,
|
| 251 |
+
x.shape[-1]).type_as(x)
|
| 252 |
+
x = torch.cat([x, noise], dim=1)
|
| 253 |
+
|
| 254 |
+
return x
|
| 255 |
+
|
| 256 |
+
def decode_tokens(self, codes, **kwargs):
|
| 257 |
+
latents, _, _ = self.quantizer.from_codes(codes)
|
| 258 |
+
|
| 259 |
+
return self.decode(latents, **kwargs)
|
| 260 |
+
|
| 261 |
+
class DACRVQVAEBottleneck(DiscreteBottleneck):
|
| 262 |
+
def __init__(self, quantize_on_decode=False, **quantizer_kwargs):
|
| 263 |
+
super().__init__(num_quantizers = quantizer_kwargs["n_codebooks"], codebook_size = quantizer_kwargs["codebook_size"], tokens_id = "codes")
|
| 264 |
+
self.quantizer = DACResidualVQ(**quantizer_kwargs)
|
| 265 |
+
self.num_quantizers = quantizer_kwargs["n_codebooks"]
|
| 266 |
+
self.quantize_on_decode = quantize_on_decode
|
| 267 |
+
|
| 268 |
+
def encode(self, x, return_info=False, n_quantizers: int = None):
|
| 269 |
+
info = {}
|
| 270 |
+
|
| 271 |
+
mean, scale = x.chunk(2, dim=1)
|
| 272 |
+
|
| 273 |
+
x, kl = vae_sample(mean, scale)
|
| 274 |
+
|
| 275 |
+
info["pre_quantizer"] = x
|
| 276 |
+
info["kl"] = kl
|
| 277 |
+
|
| 278 |
+
if self.quantize_on_decode:
|
| 279 |
+
return x, info if return_info else x
|
| 280 |
+
|
| 281 |
+
z, codes, latents, commitment_loss, codebook_loss = self.quantizer(x, n_quantizers=n_quantizers)
|
| 282 |
+
|
| 283 |
+
output = {
|
| 284 |
+
"z": z,
|
| 285 |
+
"codes": codes,
|
| 286 |
+
"latents": latents,
|
| 287 |
+
"vq/commitment_loss": commitment_loss,
|
| 288 |
+
"vq/codebook_loss": codebook_loss,
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
output["vq/commitment_loss"] /= self.num_quantizers
|
| 292 |
+
output["vq/codebook_loss"] /= self.num_quantizers
|
| 293 |
+
|
| 294 |
+
info.update(output)
|
| 295 |
+
|
| 296 |
+
if return_info:
|
| 297 |
+
return output["z"], info
|
| 298 |
+
|
| 299 |
+
return output["z"]
|
| 300 |
+
|
| 301 |
+
def decode(self, x):
|
| 302 |
+
|
| 303 |
+
if self.quantize_on_decode:
|
| 304 |
+
x = self.quantizer(x)[0]
|
| 305 |
+
|
| 306 |
+
return x
|
| 307 |
+
|
| 308 |
+
def decode_tokens(self, codes, **kwargs):
|
| 309 |
+
latents, _, _ = self.quantizer.from_codes(codes)
|
| 310 |
+
|
| 311 |
+
return self.decode(latents, **kwargs)
|
| 312 |
+
|
| 313 |
+
class FSQBottleneck(DiscreteBottleneck):
|
| 314 |
+
def __init__(self, noise_augment_dim=0, **kwargs):
|
| 315 |
+
super().__init__(num_quantizers = kwargs.get("num_codebooks", 1), codebook_size = np.prod(kwargs["levels"]), tokens_id = "quantizer_indices")
|
| 316 |
+
|
| 317 |
+
self.noise_augment_dim = noise_augment_dim
|
| 318 |
+
|
| 319 |
+
self.quantizer = FSQ(**kwargs, allowed_dtypes=[torch.float16, torch.float32, torch.float64])
|
| 320 |
+
|
| 321 |
+
def encode(self, x, return_info=False):
|
| 322 |
+
info = {}
|
| 323 |
+
|
| 324 |
+
orig_dtype = x.dtype
|
| 325 |
+
x = x.float()
|
| 326 |
+
|
| 327 |
+
x = rearrange(x, "b c n -> b n c")
|
| 328 |
+
x, indices = self.quantizer(x)
|
| 329 |
+
x = rearrange(x, "b n c -> b c n")
|
| 330 |
+
|
| 331 |
+
x = x.to(orig_dtype)
|
| 332 |
+
|
| 333 |
+
# Reorder indices to match the expected format
|
| 334 |
+
indices = rearrange(indices, "b n q -> b q n")
|
| 335 |
+
|
| 336 |
+
info["quantizer_indices"] = indices
|
| 337 |
+
|
| 338 |
+
if return_info:
|
| 339 |
+
return x, info
|
| 340 |
+
else:
|
| 341 |
+
return x
|
| 342 |
+
|
| 343 |
+
def decode(self, x):
|
| 344 |
+
|
| 345 |
+
if self.noise_augment_dim > 0:
|
| 346 |
+
noise = torch.randn(x.shape[0], self.noise_augment_dim,
|
| 347 |
+
x.shape[-1]).type_as(x)
|
| 348 |
+
x = torch.cat([x, noise], dim=1)
|
| 349 |
+
|
| 350 |
+
return x
|
| 351 |
+
|
| 352 |
+
def decode_tokens(self, tokens, **kwargs):
|
| 353 |
+
latents = self.quantizer.indices_to_codes(tokens)
|
| 354 |
+
|
| 355 |
+
return self.decode(latents, **kwargs)
|
ThinkSound/models/codebook_patterns.py
ADDED
|
@@ -0,0 +1,545 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/codebooks_patterns.py under MIT License
|
| 2 |
+
# License available in LICENSES/LICENSE_META.txt
|
| 3 |
+
|
| 4 |
+
from collections import namedtuple
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
+
from functools import lru_cache
|
| 7 |
+
import logging
|
| 8 |
+
import typing as tp
|
| 9 |
+
|
| 10 |
+
from abc import ABC, abstractmethod
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
LayoutCoord = namedtuple('LayoutCoord', ['t', 'q']) # (timestep, codebook index)
|
| 14 |
+
PatternLayout = tp.List[tp.List[LayoutCoord]] # Sequence of coordinates
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class Pattern:
|
| 20 |
+
"""Base implementation of a pattern over a sequence with multiple codebooks.
|
| 21 |
+
|
| 22 |
+
The codebook pattern consists in a layout, defining for each sequence step
|
| 23 |
+
the list of coordinates of each codebook timestep in the resulting interleaved sequence.
|
| 24 |
+
The first item of the pattern is always an empty list in order to properly insert a special token
|
| 25 |
+
to start with. For convenience, we also keep track of ``n_q`` the number of codebooks used for the pattern
|
| 26 |
+
and ``timesteps`` the number of timesteps corresponding to the original sequence.
|
| 27 |
+
|
| 28 |
+
The pattern provides convenient methods to build and revert interleaved sequences from it:
|
| 29 |
+
``build_pattern_sequence`` maps a given a dense input tensor of multi-codebook sequence from [B, K, T]
|
| 30 |
+
to the interleaved sequence of shape [B, K, S] applying the pattern, with B being the batch size,
|
| 31 |
+
K being the number of codebooks, T the number of original timesteps and S the number of sequence steps
|
| 32 |
+
for the output sequence. The unfilled positions are replaced with a special token and the built sequence
|
| 33 |
+
is returned along with a mask indicating valid tokens.
|
| 34 |
+
``revert_pattern_sequence`` maps back an interleaved sequence of shape [B, K, S] to the original alignment
|
| 35 |
+
of codebooks across timesteps to an output tensor of shape [B, K, T], using again a special token and a mask
|
| 36 |
+
to fill and specify invalid positions if needed.
|
| 37 |
+
See the dedicated methods for more details.
|
| 38 |
+
"""
|
| 39 |
+
# Pattern layout, for each sequence step, we have a list of coordinates
|
| 40 |
+
# corresponding to the original codebook timestep and position.
|
| 41 |
+
# The first list is always an empty list in order to properly insert
|
| 42 |
+
# a special token to start with.
|
| 43 |
+
layout: PatternLayout
|
| 44 |
+
timesteps: int
|
| 45 |
+
n_q: int
|
| 46 |
+
|
| 47 |
+
def __post_init__(self):
|
| 48 |
+
assert len(self.layout) > 0
|
| 49 |
+
self._validate_layout()
|
| 50 |
+
self._build_reverted_sequence_scatter_indexes = lru_cache(100)(self._build_reverted_sequence_scatter_indexes)
|
| 51 |
+
self._build_pattern_sequence_scatter_indexes = lru_cache(100)(self._build_pattern_sequence_scatter_indexes)
|
| 52 |
+
logger.info("New pattern, time steps: %d, sequence steps: %d", self.timesteps, len(self.layout))
|
| 53 |
+
|
| 54 |
+
def _validate_layout(self):
|
| 55 |
+
"""Runs checks on the layout to ensure a valid pattern is defined.
|
| 56 |
+
A pattern is considered invalid if:
|
| 57 |
+
- Multiple timesteps for a same codebook are defined in the same sequence step
|
| 58 |
+
- The timesteps for a given codebook are not in ascending order as we advance in the sequence
|
| 59 |
+
(this would mean that we have future timesteps before past timesteps).
|
| 60 |
+
"""
|
| 61 |
+
q_timesteps = {q: 0 for q in range(self.n_q)}
|
| 62 |
+
for s, seq_coords in enumerate(self.layout):
|
| 63 |
+
if len(seq_coords) > 0:
|
| 64 |
+
qs = set()
|
| 65 |
+
for coord in seq_coords:
|
| 66 |
+
qs.add(coord.q)
|
| 67 |
+
last_q_timestep = q_timesteps[coord.q]
|
| 68 |
+
assert coord.t >= last_q_timestep, \
|
| 69 |
+
f"Past timesteps are found in the sequence for codebook = {coord.q} at step {s}"
|
| 70 |
+
q_timesteps[coord.q] = coord.t
|
| 71 |
+
# each sequence step contains at max 1 coordinate per codebook
|
| 72 |
+
assert len(qs) == len(seq_coords), \
|
| 73 |
+
f"Multiple entries for a same codebook are found at step {s}"
|
| 74 |
+
|
| 75 |
+
@property
|
| 76 |
+
def num_sequence_steps(self):
|
| 77 |
+
return len(self.layout) - 1
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def max_delay(self):
|
| 81 |
+
max_t_in_seq_coords = 0
|
| 82 |
+
for seq_coords in self.layout[1:]:
|
| 83 |
+
for coords in seq_coords:
|
| 84 |
+
max_t_in_seq_coords = max(max_t_in_seq_coords, coords.t + 1)
|
| 85 |
+
return max_t_in_seq_coords - self.timesteps
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def valid_layout(self):
|
| 89 |
+
valid_step = len(self.layout) - self.max_delay
|
| 90 |
+
return self.layout[:valid_step]
|
| 91 |
+
|
| 92 |
+
def starts_with_special_token(self):
|
| 93 |
+
return self.layout[0] == []
|
| 94 |
+
|
| 95 |
+
def get_sequence_coords_with_timestep(self, t: int, q: tp.Optional[int] = None):
|
| 96 |
+
"""Get codebook coordinates in the layout that corresponds to the specified timestep t
|
| 97 |
+
and optionally to the codebook q. Coordinates are returned as a tuple with the sequence step
|
| 98 |
+
and the actual codebook coordinates.
|
| 99 |
+
"""
|
| 100 |
+
assert t <= self.timesteps, "provided timesteps is greater than the pattern's number of timesteps"
|
| 101 |
+
if q is not None:
|
| 102 |
+
assert q <= self.n_q, "provided number of codebooks is greater than the pattern's number of codebooks"
|
| 103 |
+
coords = []
|
| 104 |
+
for s, seq_codes in enumerate(self.layout):
|
| 105 |
+
for code in seq_codes:
|
| 106 |
+
if code.t == t and (q is None or code.q == q):
|
| 107 |
+
coords.append((s, code))
|
| 108 |
+
return coords
|
| 109 |
+
|
| 110 |
+
def get_steps_with_timestep(self, t: int, q: tp.Optional[int] = None) -> tp.List[int]:
|
| 111 |
+
return [step for step, coords in self.get_sequence_coords_with_timestep(t, q)]
|
| 112 |
+
|
| 113 |
+
def get_first_step_with_timesteps(self, t: int, q: tp.Optional[int] = None) -> tp.Optional[int]:
|
| 114 |
+
steps_with_timesteps = self.get_steps_with_timestep(t, q)
|
| 115 |
+
return steps_with_timesteps[0] if len(steps_with_timesteps) > 0 else None
|
| 116 |
+
|
| 117 |
+
def _build_pattern_sequence_scatter_indexes(self, timesteps: int, n_q: int, keep_only_valid_steps: bool,
|
| 118 |
+
device: tp.Union[torch.device, str] = 'cpu'):
|
| 119 |
+
"""Build scatter indexes corresponding to the pattern, up to the provided sequence_steps.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
timesteps (int): Maximum number of timesteps steps to consider.
|
| 123 |
+
keep_only_valid_steps (bool): Restrict the pattern layout to match only valid steps.
|
| 124 |
+
device (torch.device or str): Device for created tensors.
|
| 125 |
+
Returns:
|
| 126 |
+
indexes (torch.Tensor): Indexes corresponding to the sequence, of shape [K, S].
|
| 127 |
+
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes, of shape [K, S].
|
| 128 |
+
"""
|
| 129 |
+
assert n_q == self.n_q, f"invalid number of codebooks for the sequence and the pattern: {n_q} != {self.n_q}"
|
| 130 |
+
assert timesteps <= self.timesteps, "invalid number of timesteps used to build the sequence from the pattern"
|
| 131 |
+
# use the proper layout based on whether we limit ourselves to valid steps only or not,
|
| 132 |
+
# note that using the valid_layout will result in a truncated sequence up to the valid steps
|
| 133 |
+
ref_layout = self.valid_layout if keep_only_valid_steps else self.layout
|
| 134 |
+
# single item indexing being super slow with pytorch vs. numpy, so we use numpy here
|
| 135 |
+
indexes = torch.zeros(n_q, len(ref_layout), dtype=torch.long).numpy()
|
| 136 |
+
mask = torch.zeros(n_q, len(ref_layout), dtype=torch.bool).numpy()
|
| 137 |
+
# fill indexes with last sequence step value that will correspond to our special token
|
| 138 |
+
# the last value is n_q * timesteps as we have flattened z and append special token as the last token
|
| 139 |
+
# which will correspond to the index: n_q * timesteps
|
| 140 |
+
indexes[:] = n_q * timesteps
|
| 141 |
+
# iterate over the pattern and fill scattered indexes and mask
|
| 142 |
+
for s, sequence_coords in enumerate(ref_layout):
|
| 143 |
+
for coords in sequence_coords:
|
| 144 |
+
if coords.t < timesteps:
|
| 145 |
+
indexes[coords.q, s] = coords.t + coords.q * timesteps
|
| 146 |
+
mask[coords.q, s] = 1
|
| 147 |
+
indexes = torch.from_numpy(indexes).to(device)
|
| 148 |
+
mask = torch.from_numpy(mask).to(device)
|
| 149 |
+
return indexes, mask
|
| 150 |
+
|
| 151 |
+
def build_pattern_sequence(self, z: torch.Tensor, special_token: int, keep_only_valid_steps: bool = False):
|
| 152 |
+
"""Build sequence corresponding to the pattern from the input tensor z.
|
| 153 |
+
The sequence is built using up to sequence_steps if specified, and non-pattern
|
| 154 |
+
coordinates are filled with the special token.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
z (torch.Tensor): Input tensor of multi-codebooks sequence, of shape [B, K, T].
|
| 158 |
+
special_token (int): Special token used to fill non-pattern coordinates in the new sequence.
|
| 159 |
+
keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
|
| 160 |
+
Steps that are beyond valid steps will be replaced by the special_token in that case.
|
| 161 |
+
Returns:
|
| 162 |
+
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, S] with S
|
| 163 |
+
corresponding either to the sequence_steps if provided, otherwise to the length of the pattern.
|
| 164 |
+
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, S].
|
| 165 |
+
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, S].
|
| 166 |
+
"""
|
| 167 |
+
B, K, T = z.shape
|
| 168 |
+
indexes, mask = self._build_pattern_sequence_scatter_indexes(
|
| 169 |
+
T, K, keep_only_valid_steps=keep_only_valid_steps, device=str(z.device)
|
| 170 |
+
)
|
| 171 |
+
z = z.view(B, -1)
|
| 172 |
+
# we append the special token as the last index of our flattened z tensor
|
| 173 |
+
z = torch.cat([z, torch.zeros_like(z[:, :1]) + special_token], dim=1)
|
| 174 |
+
values = z[:, indexes.view(-1)]
|
| 175 |
+
values = values.view(B, K, indexes.shape[-1])
|
| 176 |
+
return values, indexes, mask
|
| 177 |
+
|
| 178 |
+
def _build_reverted_sequence_scatter_indexes(self, sequence_steps: int, n_q: int,
|
| 179 |
+
keep_only_valid_steps: bool = False,
|
| 180 |
+
is_model_output: bool = False,
|
| 181 |
+
device: tp.Union[torch.device, str] = 'cpu'):
|
| 182 |
+
"""Builds scatter indexes required to retrieve the original multi-codebook sequence
|
| 183 |
+
from interleaving pattern.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
sequence_steps (int): Sequence steps.
|
| 187 |
+
n_q (int): Number of codebooks.
|
| 188 |
+
keep_only_valid_steps (bool): Build a sequence from the pattern up to valid (= fully defined) steps.
|
| 189 |
+
Steps that are beyond valid steps will be replaced by the special_token in that case.
|
| 190 |
+
is_model_output (bool): Whether to keep the sequence item corresponding to initial special token or not.
|
| 191 |
+
device (torch.device or str): Device for created tensors.
|
| 192 |
+
Returns:
|
| 193 |
+
indexes (torch.Tensor): Indexes for reconstructing the output, of shape [K, T].
|
| 194 |
+
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
| 195 |
+
"""
|
| 196 |
+
ref_layout = self.valid_layout if keep_only_valid_steps else self.layout
|
| 197 |
+
# TODO(jade): Do we want to further truncate to only valid timesteps here as well?
|
| 198 |
+
timesteps = self.timesteps
|
| 199 |
+
assert n_q == self.n_q, f"invalid number of codebooks for the sequence and the pattern: {n_q} != {self.n_q}"
|
| 200 |
+
assert sequence_steps <= len(ref_layout), \
|
| 201 |
+
f"sequence to revert is longer than the defined pattern: {sequence_steps} > {len(ref_layout)}"
|
| 202 |
+
|
| 203 |
+
# ensure we take the appropriate indexes to keep the model output from the first special token as well
|
| 204 |
+
if is_model_output and self.starts_with_special_token():
|
| 205 |
+
ref_layout = ref_layout[1:]
|
| 206 |
+
|
| 207 |
+
# single item indexing being super slow with pytorch vs. numpy, so we use numpy here
|
| 208 |
+
indexes = torch.zeros(n_q, timesteps, dtype=torch.long).numpy()
|
| 209 |
+
mask = torch.zeros(n_q, timesteps, dtype=torch.bool).numpy()
|
| 210 |
+
# fill indexes with last sequence step value that will correspond to our special token
|
| 211 |
+
indexes[:] = n_q * sequence_steps
|
| 212 |
+
for s, sequence_codes in enumerate(ref_layout):
|
| 213 |
+
if s < sequence_steps:
|
| 214 |
+
for code in sequence_codes:
|
| 215 |
+
if code.t < timesteps:
|
| 216 |
+
indexes[code.q, code.t] = s + code.q * sequence_steps
|
| 217 |
+
mask[code.q, code.t] = 1
|
| 218 |
+
indexes = torch.from_numpy(indexes).to(device)
|
| 219 |
+
mask = torch.from_numpy(mask).to(device)
|
| 220 |
+
return indexes, mask
|
| 221 |
+
|
| 222 |
+
def revert_pattern_sequence(self, s: torch.Tensor, special_token: int, keep_only_valid_steps: bool = False):
|
| 223 |
+
"""Revert a sequence built from the pattern back to the original multi-codebook sequence without interleaving.
|
| 224 |
+
The sequence is reverted using up to timesteps if specified, and non-pattern coordinates
|
| 225 |
+
are filled with the special token.
|
| 226 |
+
|
| 227 |
+
Args:
|
| 228 |
+
s (torch.Tensor): Interleaved sequence tensor obtained from the pattern, of shape [B, K, S].
|
| 229 |
+
special_token (int or float): Special token used to fill non-pattern coordinates in the new sequence.
|
| 230 |
+
Returns:
|
| 231 |
+
values (torch.Tensor): Interleaved sequence matching the pattern, of shape [B, K, T] with T
|
| 232 |
+
corresponding either to the timesteps if provided, or the total timesteps in pattern otherwise.
|
| 233 |
+
indexes (torch.Tensor): Indexes corresponding to the interleaved sequence, of shape [K, T].
|
| 234 |
+
mask (torch.Tensor): Mask corresponding to indexes that matches valid indexes of shape [K, T].
|
| 235 |
+
"""
|
| 236 |
+
B, K, S = s.shape
|
| 237 |
+
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
| 238 |
+
S, K, keep_only_valid_steps, is_model_output=False, device=str(s.device)
|
| 239 |
+
)
|
| 240 |
+
s = s.view(B, -1)
|
| 241 |
+
# we append the special token as the last index of our flattened z tensor
|
| 242 |
+
s = torch.cat([s, torch.zeros_like(s[:, :1]) + special_token], dim=1)
|
| 243 |
+
values = s[:, indexes.view(-1)]
|
| 244 |
+
values = values.view(B, K, indexes.shape[-1])
|
| 245 |
+
return values, indexes, mask
|
| 246 |
+
|
| 247 |
+
def revert_pattern_logits(self, logits: torch.Tensor, special_token: float, keep_only_valid_steps: bool = False):
|
| 248 |
+
"""Revert model logits obtained on a sequence built from the pattern
|
| 249 |
+
back to a tensor matching the original sequence.
|
| 250 |
+
|
| 251 |
+
This method is similar to ``revert_pattern_sequence`` with the following specificities:
|
| 252 |
+
1. It is designed to work with the extra cardinality dimension
|
| 253 |
+
2. We return the logits for the first sequence item that matches the special_token and
|
| 254 |
+
which matching target in the original sequence is the first item of the sequence,
|
| 255 |
+
while we skip the last logits as there is no matching target
|
| 256 |
+
"""
|
| 257 |
+
B, card, K, S = logits.shape
|
| 258 |
+
indexes, mask = self._build_reverted_sequence_scatter_indexes(
|
| 259 |
+
S, K, keep_only_valid_steps, is_model_output=True, device=logits.device
|
| 260 |
+
)
|
| 261 |
+
logits = logits.reshape(B, card, -1)
|
| 262 |
+
# we append the special token as the last index of our flattened z tensor
|
| 263 |
+
logits = torch.cat([logits, torch.zeros_like(logits[:, :, :1]) + special_token], dim=-1) # [B, card, K x S]
|
| 264 |
+
values = logits[:, :, indexes.view(-1)]
|
| 265 |
+
values = values.view(B, card, K, indexes.shape[-1])
|
| 266 |
+
return values, indexes, mask
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class CodebooksPatternProvider(ABC):
|
| 270 |
+
"""Abstraction around providing pattern for interleaving codebooks.
|
| 271 |
+
|
| 272 |
+
The CodebooksPatternProvider abstraction allows to implement various strategies to
|
| 273 |
+
define interleaving pattern of sequences composed of multiple codebooks. For a given
|
| 274 |
+
number of codebooks `n_q`, the pattern provider can generate a specified pattern
|
| 275 |
+
corresponding to a sequence of `T` timesteps with `n_q` parallel codebooks. This pattern
|
| 276 |
+
can be used to construct a new sequence from the original codes respecting the specified
|
| 277 |
+
pattern. The pattern is defined as a list of list of code coordinates, code coordinate
|
| 278 |
+
being a tuple with the original timestep and codebook to build the new sequence.
|
| 279 |
+
Note that all patterns must start with an empty list that is then used to insert a first
|
| 280 |
+
sequence step of special tokens in the newly generated sequence.
|
| 281 |
+
|
| 282 |
+
Args:
|
| 283 |
+
n_q (int): number of codebooks.
|
| 284 |
+
cached (bool): if True, patterns for a given length are cached. In general
|
| 285 |
+
that should be true for efficiency reason to avoid synchronization points.
|
| 286 |
+
"""
|
| 287 |
+
def __init__(self, n_q: int, cached: bool = True):
|
| 288 |
+
assert n_q > 0
|
| 289 |
+
self.n_q = n_q
|
| 290 |
+
self.get_pattern = lru_cache(100)(self.get_pattern) # type: ignore
|
| 291 |
+
|
| 292 |
+
@abstractmethod
|
| 293 |
+
def get_pattern(self, timesteps: int) -> Pattern:
|
| 294 |
+
"""Builds pattern with specific interleaving between codebooks.
|
| 295 |
+
|
| 296 |
+
Args:
|
| 297 |
+
timesteps (int): Total number of timesteps.
|
| 298 |
+
"""
|
| 299 |
+
raise NotImplementedError()
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class DelayedPatternProvider(CodebooksPatternProvider):
|
| 303 |
+
"""Provider for delayed pattern across delayed codebooks.
|
| 304 |
+
Codebooks are delayed in the sequence and sequence steps will contain codebooks
|
| 305 |
+
from different timesteps.
|
| 306 |
+
|
| 307 |
+
Example:
|
| 308 |
+
Taking timesteps=4 and n_q=3, delays=None, the multi-codebook sequence:
|
| 309 |
+
[[1, 2, 3, 4],
|
| 310 |
+
[1, 2, 3, 4],
|
| 311 |
+
[1, 2, 3, 4]]
|
| 312 |
+
The resulting sequence obtained from the returned pattern is:
|
| 313 |
+
[[S, 1, 2, 3, 4],
|
| 314 |
+
[S, S, 1, 2, 3],
|
| 315 |
+
[S, S, S, 1, 2]]
|
| 316 |
+
(with S being a special token)
|
| 317 |
+
|
| 318 |
+
Args:
|
| 319 |
+
n_q (int): Number of codebooks.
|
| 320 |
+
delays (list of int, optional): Delay for each of the codebooks.
|
| 321 |
+
If delays not defined, each codebook is delayed by 1 compared to the previous one.
|
| 322 |
+
flatten_first (int): Flatten the first N timesteps.
|
| 323 |
+
empty_initial (int): Prepend with N empty list of coordinates.
|
| 324 |
+
"""
|
| 325 |
+
def __init__(self, n_q: int, delays: tp.Optional[tp.List[int]] = None,
|
| 326 |
+
flatten_first: int = 0, empty_initial: int = 0):
|
| 327 |
+
super().__init__(n_q)
|
| 328 |
+
if delays is None:
|
| 329 |
+
delays = list(range(n_q))
|
| 330 |
+
self.delays = delays
|
| 331 |
+
self.flatten_first = flatten_first
|
| 332 |
+
self.empty_initial = empty_initial
|
| 333 |
+
assert len(self.delays) == self.n_q
|
| 334 |
+
assert sorted(self.delays) == self.delays
|
| 335 |
+
|
| 336 |
+
def get_pattern(self, timesteps: int) -> Pattern:
|
| 337 |
+
omit_special_token = self.empty_initial < 0
|
| 338 |
+
out: PatternLayout = [] if omit_special_token else [[]]
|
| 339 |
+
max_delay = max(self.delays)
|
| 340 |
+
if self.empty_initial:
|
| 341 |
+
out += [[] for _ in range(self.empty_initial)]
|
| 342 |
+
if self.flatten_first:
|
| 343 |
+
for t in range(min(timesteps, self.flatten_first)):
|
| 344 |
+
for q in range(self.n_q):
|
| 345 |
+
out.append([LayoutCoord(t, q)])
|
| 346 |
+
for t in range(self.flatten_first, timesteps + max_delay):
|
| 347 |
+
v = []
|
| 348 |
+
for q, delay in enumerate(self.delays):
|
| 349 |
+
t_for_q = t - delay
|
| 350 |
+
if t_for_q >= self.flatten_first:
|
| 351 |
+
v.append(LayoutCoord(t_for_q, q))
|
| 352 |
+
out.append(v)
|
| 353 |
+
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
class ParallelPatternProvider(DelayedPatternProvider):
|
| 357 |
+
"""Provider for parallel pattern across codebooks.
|
| 358 |
+
This pattern provider is a special case of the delayed pattern with actually no delay,
|
| 359 |
+
hence delays=repeat(0, n_q).
|
| 360 |
+
|
| 361 |
+
Args:
|
| 362 |
+
n_q (int): Number of codebooks.
|
| 363 |
+
empty_initial (int): Prepend with N empty list of coordinates.
|
| 364 |
+
"""
|
| 365 |
+
def __init__(self, n_q: int, empty_initial: int = 0):
|
| 366 |
+
super().__init__(n_q, [0] * n_q, empty_initial=empty_initial)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class UnrolledPatternProvider(CodebooksPatternProvider):
|
| 370 |
+
"""Provider for unrolling codebooks pattern.
|
| 371 |
+
This pattern provider enables to represent the codebook flattened completely or only to some extend
|
| 372 |
+
while also specifying a given delay between the flattened codebooks representation, allowing to
|
| 373 |
+
unroll the codebooks in the sequence.
|
| 374 |
+
|
| 375 |
+
Example:
|
| 376 |
+
1. Flattening of the codebooks.
|
| 377 |
+
By default, the pattern provider will fully flatten the codebooks such as flattening=range(n_q),
|
| 378 |
+
taking n_q = 3 and timesteps = 4:
|
| 379 |
+
[[1, 2, 3, 4],
|
| 380 |
+
[1, 2, 3, 4],
|
| 381 |
+
[1, 2, 3, 4]]
|
| 382 |
+
will result into:
|
| 383 |
+
[[S, S, 1, S, S, 2, S, S, 3, S, S, 4],
|
| 384 |
+
[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
| 385 |
+
[1, S, S, 2, S, S, 3, S, S, 4, S, S]]
|
| 386 |
+
2. Partial flattening of the codebooks. The ``flattening`` parameter allows to specify the inner step
|
| 387 |
+
for each of the codebook, allowing to define which codebook to flatten (or keep in parallel), for example
|
| 388 |
+
taking n_q = 3, timesteps = 4 and flattening = [0, 1, 1]:
|
| 389 |
+
[[1, 2, 3, 4],
|
| 390 |
+
[1, 2, 3, 4],
|
| 391 |
+
[1, 2, 3, 4]]
|
| 392 |
+
will result into:
|
| 393 |
+
[[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
| 394 |
+
[S, 1, S, S, 2, S, S, 3, S, S, 4, S],
|
| 395 |
+
[1, S, S, 2, S, S, 3, S, S, 4, S, S]]
|
| 396 |
+
3. Flattening with delay. The ``delay`` parameter allows to further unroll the sequence of codebooks
|
| 397 |
+
allowing to specify the delay per codebook. Note that the delay between codebooks flattened to the
|
| 398 |
+
same inner timestep should be coherent. For example, taking n_q = 3, timesteps = 4, flattening = [0, 1, 1]
|
| 399 |
+
and delays = [0, 3, 3]:
|
| 400 |
+
[[1, 2, 3, 4],
|
| 401 |
+
[1, 2, 3, 4],
|
| 402 |
+
[1, 2, 3, 4]]
|
| 403 |
+
will result into:
|
| 404 |
+
[[S, S, S, 1, S, 2, S, 3, S, 4],
|
| 405 |
+
[S, S, S, 1, S, 2, S, 3, S, 4],
|
| 406 |
+
[1, 2, 3, S, 4, S, 5, S, 6, S]]
|
| 407 |
+
|
| 408 |
+
Args:
|
| 409 |
+
n_q (int): Number of codebooks.
|
| 410 |
+
flattening (list of int, optional): Flattening schema over the codebooks. If not defined,
|
| 411 |
+
the codebooks will be flattened to 1 codebook per step, meaning that the sequence will
|
| 412 |
+
have n_q extra steps for each timestep.
|
| 413 |
+
delays (list of int, optional): Delay for each of the codebooks. If not defined,
|
| 414 |
+
no delay is added and therefore will default to [0] * ``n_q``.
|
| 415 |
+
Note that two codebooks that will be flattened to the same inner step
|
| 416 |
+
should have the same delay, otherwise the pattern is considered as invalid.
|
| 417 |
+
"""
|
| 418 |
+
FlattenedCodebook = namedtuple('FlattenedCodebook', ['codebooks', 'delay'])
|
| 419 |
+
|
| 420 |
+
def __init__(self, n_q: int, flattening: tp.Optional[tp.List[int]] = None,
|
| 421 |
+
delays: tp.Optional[tp.List[int]] = None):
|
| 422 |
+
super().__init__(n_q)
|
| 423 |
+
if flattening is None:
|
| 424 |
+
flattening = list(range(n_q))
|
| 425 |
+
if delays is None:
|
| 426 |
+
delays = [0] * n_q
|
| 427 |
+
assert len(flattening) == n_q
|
| 428 |
+
assert len(delays) == n_q
|
| 429 |
+
assert sorted(flattening) == flattening
|
| 430 |
+
assert sorted(delays) == delays
|
| 431 |
+
self._flattened_codebooks = self._build_flattened_codebooks(delays, flattening)
|
| 432 |
+
self.max_delay = max(delays)
|
| 433 |
+
|
| 434 |
+
def _build_flattened_codebooks(self, delays: tp.List[int], flattening: tp.List[int]):
|
| 435 |
+
"""Build a flattened codebooks representation as a dictionary of inner step
|
| 436 |
+
and the actual codebook indices corresponding to the flattened codebook. For convenience, we
|
| 437 |
+
also store the delay associated to the flattened codebook to avoid maintaining an extra mapping.
|
| 438 |
+
"""
|
| 439 |
+
flattened_codebooks: dict = {}
|
| 440 |
+
for q, (inner_step, delay) in enumerate(zip(flattening, delays)):
|
| 441 |
+
if inner_step not in flattened_codebooks:
|
| 442 |
+
flat_codebook = UnrolledPatternProvider.FlattenedCodebook(codebooks=[q], delay=delay)
|
| 443 |
+
else:
|
| 444 |
+
flat_codebook = flattened_codebooks[inner_step]
|
| 445 |
+
assert flat_codebook.delay == delay, (
|
| 446 |
+
"Delay and flattening between codebooks is inconsistent: ",
|
| 447 |
+
"two codebooks flattened to the same position should have the same delay."
|
| 448 |
+
)
|
| 449 |
+
flat_codebook.codebooks.append(q)
|
| 450 |
+
flattened_codebooks[inner_step] = flat_codebook
|
| 451 |
+
return flattened_codebooks
|
| 452 |
+
|
| 453 |
+
@property
|
| 454 |
+
def _num_inner_steps(self):
|
| 455 |
+
"""Number of inner steps to unroll between timesteps in order to flatten the codebooks.
|
| 456 |
+
"""
|
| 457 |
+
return max([inner_step for inner_step in self._flattened_codebooks.keys()]) + 1
|
| 458 |
+
|
| 459 |
+
def num_virtual_steps(self, timesteps: int) -> int:
|
| 460 |
+
return timesteps * self._num_inner_steps + 1
|
| 461 |
+
|
| 462 |
+
def get_pattern(self, timesteps: int) -> Pattern:
|
| 463 |
+
"""Builds pattern for delay across codebooks.
|
| 464 |
+
|
| 465 |
+
Args:
|
| 466 |
+
timesteps (int): Total number of timesteps.
|
| 467 |
+
"""
|
| 468 |
+
# the PatternLayout is built as a tuple of sequence position and list of coordinates
|
| 469 |
+
# so that it can be reordered properly given the required delay between codebooks of given timesteps
|
| 470 |
+
indexed_out: list = [(-1, [])]
|
| 471 |
+
max_timesteps = timesteps + self.max_delay
|
| 472 |
+
for t in range(max_timesteps):
|
| 473 |
+
# for each timestep, we unroll the flattened codebooks,
|
| 474 |
+
# emitting the sequence step with the corresponding delay
|
| 475 |
+
for step in range(self._num_inner_steps):
|
| 476 |
+
if step in self._flattened_codebooks:
|
| 477 |
+
# we have codebooks at this virtual step to emit
|
| 478 |
+
step_codebooks = self._flattened_codebooks[step]
|
| 479 |
+
t_for_q = t + step_codebooks.delay
|
| 480 |
+
coords = [LayoutCoord(t, q) for q in step_codebooks.codebooks]
|
| 481 |
+
if t_for_q < max_timesteps and t < max_timesteps:
|
| 482 |
+
indexed_out.append((t_for_q, coords))
|
| 483 |
+
else:
|
| 484 |
+
# there is no codebook in this virtual step so we emit an empty list
|
| 485 |
+
indexed_out.append((t, []))
|
| 486 |
+
out = [coords for _, coords in sorted(indexed_out)]
|
| 487 |
+
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
| 488 |
+
|
| 489 |
+
|
| 490 |
+
class CoarseFirstPattern(CodebooksPatternProvider):
|
| 491 |
+
"""First generates all the codebooks #1 (e.g. coarser), then the remaining ones,
|
| 492 |
+
potentially with delays.
|
| 493 |
+
|
| 494 |
+
..Warning:: You must always generate the full training duration at test time, for instance,
|
| 495 |
+
30 seconds, as otherwise, the fine codebooks will start being generated in an unexpected
|
| 496 |
+
location. This is due to the non causality of the remaining codebooks with respect to
|
| 497 |
+
the first ones.
|
| 498 |
+
|
| 499 |
+
Args:
|
| 500 |
+
n_q (int): Number of codebooks.
|
| 501 |
+
delays (list of int, optional): Delay for each of the codebooks.
|
| 502 |
+
If delays not defined, each codebook is delayed by 1 compared to the previous one.
|
| 503 |
+
"""
|
| 504 |
+
def __init__(self, n_q: int, delays: tp.Optional[tp.List[int]] = None):
|
| 505 |
+
super().__init__(n_q)
|
| 506 |
+
if delays is None:
|
| 507 |
+
delays = [0] * (n_q - 1)
|
| 508 |
+
self.delays = delays
|
| 509 |
+
assert len(self.delays) == self.n_q - 1
|
| 510 |
+
assert sorted(self.delays) == self.delays
|
| 511 |
+
|
| 512 |
+
def get_pattern(self, timesteps: int) -> Pattern:
|
| 513 |
+
out: PatternLayout = [[]]
|
| 514 |
+
for t in range(timesteps):
|
| 515 |
+
out.append([LayoutCoord(t, 0)])
|
| 516 |
+
max_delay = max(self.delays)
|
| 517 |
+
for t in range(timesteps + max_delay):
|
| 518 |
+
v = []
|
| 519 |
+
for q, delay in enumerate(self.delays):
|
| 520 |
+
t_for_q = t - delay
|
| 521 |
+
if t_for_q >= 0:
|
| 522 |
+
v.append(LayoutCoord(t_for_q, q + 1))
|
| 523 |
+
out.append(v)
|
| 524 |
+
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
class MusicLMPattern(CodebooksPatternProvider):
|
| 528 |
+
"""Almost MusicLM style pattern. This is equivalent to full flattening
|
| 529 |
+
but in a different order.
|
| 530 |
+
|
| 531 |
+
Args:
|
| 532 |
+
n_q (int): Number of codebooks.
|
| 533 |
+
group_by (int): Number of codebooks to group together.
|
| 534 |
+
"""
|
| 535 |
+
def __init__(self, n_q: int, group_by: int = 2):
|
| 536 |
+
super().__init__(n_q)
|
| 537 |
+
self.group_by = group_by
|
| 538 |
+
|
| 539 |
+
def get_pattern(self, timesteps: int) -> Pattern:
|
| 540 |
+
out: PatternLayout = [[]]
|
| 541 |
+
for offset in range(0, self.n_q, self.group_by):
|
| 542 |
+
for t in range(timesteps):
|
| 543 |
+
for q in range(offset, offset + self.group_by):
|
| 544 |
+
out.append([LayoutCoord(t, q)])
|
| 545 |
+
return Pattern(out, n_q=self.n_q, timesteps=timesteps)
|
ThinkSound/models/conditioners.py
ADDED
|
@@ -0,0 +1,1005 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#Heavily influenced by https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/modules/conditioners.py
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import logging, warnings
|
| 5 |
+
import string
|
| 6 |
+
import typing as tp
|
| 7 |
+
import gc
|
| 8 |
+
from typing import Literal, Optional
|
| 9 |
+
import os
|
| 10 |
+
from ..inference.utils import set_audio_channels
|
| 11 |
+
from .factory import create_pretransform_from_config
|
| 12 |
+
from .pretransforms import Pretransform
|
| 13 |
+
from ..training.utils import copy_state_dict
|
| 14 |
+
from .utils import load_ckpt_state_dict
|
| 15 |
+
import numpy as np
|
| 16 |
+
from einops import rearrange
|
| 17 |
+
from transformers import AutoProcessor, AutoModel
|
| 18 |
+
from torch import nn
|
| 19 |
+
|
| 20 |
+
class Conditioner(nn.Module):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
dim: int,
|
| 24 |
+
output_dim: int,
|
| 25 |
+
project_out: bool = False
|
| 26 |
+
):
|
| 27 |
+
|
| 28 |
+
super().__init__()
|
| 29 |
+
|
| 30 |
+
self.dim = dim
|
| 31 |
+
self.output_dim = output_dim
|
| 32 |
+
self.proj_out = nn.Linear(dim, output_dim) if (dim != output_dim or project_out) else nn.Identity()
|
| 33 |
+
|
| 34 |
+
def forward(self, x: tp.Any) -> tp.Any:
|
| 35 |
+
raise NotImplementedError()
|
| 36 |
+
|
| 37 |
+
class VideoHieraConditioner(Conditioner):
|
| 38 |
+
def __init__(self,
|
| 39 |
+
output_dim: int,
|
| 40 |
+
hiera_ckpt_path,
|
| 41 |
+
project_out: bool = False,
|
| 42 |
+
finetune: bool = False):
|
| 43 |
+
super().__init__(768, output_dim, project_out=project_out)
|
| 44 |
+
|
| 45 |
+
self.finetune = finetune
|
| 46 |
+
|
| 47 |
+
# Suppress logging from transformers
|
| 48 |
+
previous_level = logging.root.manager.disable
|
| 49 |
+
logging.disable(logging.ERROR)
|
| 50 |
+
with warnings.catch_warnings():
|
| 51 |
+
warnings.simplefilter("ignore")
|
| 52 |
+
try:
|
| 53 |
+
from hiera import Hiera
|
| 54 |
+
import hiera
|
| 55 |
+
# model = hiera.hiera_base_16x224(pretrained=True, checkpoint="useful_ckpts/hiera_base_224.mae_in1k_ft_in1k")
|
| 56 |
+
model = Hiera(
|
| 57 |
+
num_classes=400, # K400 has 400 classes
|
| 58 |
+
input_size=(64, 224, 224),
|
| 59 |
+
q_stride=[(1, 4, 4),(1,7,7),(1,2,2)],
|
| 60 |
+
mask_unit_size=(1, 8, 8),
|
| 61 |
+
patch_kernel=(3, 7, 7),
|
| 62 |
+
patch_stride=(2, 4, 4),
|
| 63 |
+
patch_padding=(1, 3, 3),
|
| 64 |
+
sep_pos_embed=True,
|
| 65 |
+
)
|
| 66 |
+
state_dict = torch.load(hiera_ckpt_path)['model_state']
|
| 67 |
+
state_dict.pop('pos_embed_temporal', None) # 如果不需要这个参数
|
| 68 |
+
model.load_state_dict(state_dict,strict=False)
|
| 69 |
+
if self.finetune:
|
| 70 |
+
self.model = model
|
| 71 |
+
else:
|
| 72 |
+
self.__dict__["model"] = model
|
| 73 |
+
|
| 74 |
+
state_dict = model.state_dict()
|
| 75 |
+
self.model.load_state_dict(state_dict, strict=False)
|
| 76 |
+
|
| 77 |
+
if self.finetune:
|
| 78 |
+
self.model.requires_grad_(True)
|
| 79 |
+
self.model.train()
|
| 80 |
+
else:
|
| 81 |
+
self.model.requires_grad_(False)
|
| 82 |
+
self.model.train()
|
| 83 |
+
|
| 84 |
+
finally:
|
| 85 |
+
logging.disable(previous_level)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
gc.collect()
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
+
|
| 91 |
+
def forward(self, x: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
|
| 92 |
+
self.model.to(device)
|
| 93 |
+
import ipdb
|
| 94 |
+
ipdb.set_trace()
|
| 95 |
+
output, interm = model(x,return_intermediates=True)
|
| 96 |
+
|
| 97 |
+
video_features = interm[-1]
|
| 98 |
+
return [self.proj_out(video_features), torch.ones(video_features.shape[0], 1).to(device)]
|
| 99 |
+
|
| 100 |
+
class Video_Linear(Conditioner):
|
| 101 |
+
""" Transform the video feat encoder"""
|
| 102 |
+
|
| 103 |
+
def __init__(self, dim, output_dim):
|
| 104 |
+
super().__init__(dim, output_dim)
|
| 105 |
+
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
|
| 106 |
+
|
| 107 |
+
def forward(self, x, device: tp.Any = "cuda"):
|
| 108 |
+
# import ipdb
|
| 109 |
+
# ipdb.set_trace()
|
| 110 |
+
if not isinstance(x[0], torch.Tensor):
|
| 111 |
+
video_feats = []
|
| 112 |
+
for path in x:
|
| 113 |
+
if '.npy' in path:
|
| 114 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 115 |
+
elif '.pth' in path:
|
| 116 |
+
video_feats.append(torch.load(path)['metaclip_features'].to(device))
|
| 117 |
+
else:
|
| 118 |
+
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
|
| 119 |
+
x = torch.stack(video_feats, dim=0).to(device)
|
| 120 |
+
else:
|
| 121 |
+
# Revise the shape here:
|
| 122 |
+
x = torch.stack(x, dim=0).to(device)
|
| 123 |
+
|
| 124 |
+
x = self.embedder(x) # B x 117 x C
|
| 125 |
+
return [x, torch.ones(x.shape[0], 1).to(device)]
|
| 126 |
+
|
| 127 |
+
class Video_Global(Conditioner):
|
| 128 |
+
""" Transform the video feat encoder"""
|
| 129 |
+
|
| 130 |
+
def __init__(self, dim, output_dim, global_dim=1536):
|
| 131 |
+
super().__init__(dim, output_dim)
|
| 132 |
+
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
|
| 133 |
+
self.global_proj = nn.Sequential(nn.Linear(output_dim, global_dim))
|
| 134 |
+
|
| 135 |
+
def forward(self, x, device: tp.Any = "cuda"):
|
| 136 |
+
# import ipdb
|
| 137 |
+
# ipdb.set_trace()
|
| 138 |
+
if not isinstance(x[0], torch.Tensor):
|
| 139 |
+
video_feats = []
|
| 140 |
+
for path in x:
|
| 141 |
+
if '.npy' in path:
|
| 142 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 143 |
+
elif '.pth' in path:
|
| 144 |
+
data = torch.load(path)
|
| 145 |
+
video_feats.append(data['metaclip_features'].to(device))
|
| 146 |
+
else:
|
| 147 |
+
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
|
| 148 |
+
x = torch.stack(video_feats, dim=0).to(device)
|
| 149 |
+
else:
|
| 150 |
+
# Revise the shape here:
|
| 151 |
+
x = torch.stack(x, dim=0).to(device)
|
| 152 |
+
|
| 153 |
+
x = self.embedder(x) # B x 117 x C
|
| 154 |
+
global_x = self.global_proj(x.mean(dim=1))
|
| 155 |
+
return [x, torch.ones(x.shape[0], 1).to(device), global_x, torch.ones(global_x.shape[0], 1).to(device)]
|
| 156 |
+
|
| 157 |
+
class Video_Sync(Conditioner):
|
| 158 |
+
""" Transform the video feat encoder"""
|
| 159 |
+
|
| 160 |
+
def __init__(self, dim, output_dim):
|
| 161 |
+
super().__init__(dim, output_dim)
|
| 162 |
+
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
|
| 163 |
+
|
| 164 |
+
def forward(self, x, device: tp.Any = "cuda"):
|
| 165 |
+
# import ipdb
|
| 166 |
+
# ipdb.set_trace()
|
| 167 |
+
if not isinstance(x[0], torch.Tensor):
|
| 168 |
+
video_feats = []
|
| 169 |
+
for path in x:
|
| 170 |
+
if '.npy' in path:
|
| 171 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 172 |
+
elif '.pth' in path:
|
| 173 |
+
video_feats.append(torch.load(path)['sync_features'].to(device))
|
| 174 |
+
else:
|
| 175 |
+
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
|
| 176 |
+
x = torch.stack(video_feats, dim=0).to(device)
|
| 177 |
+
else:
|
| 178 |
+
# Revise the shape here:
|
| 179 |
+
x = torch.stack(x, dim=0).to(device)
|
| 180 |
+
|
| 181 |
+
x = self.embedder(x) # B x 117 x C
|
| 182 |
+
return [x, torch.ones(x.shape[0], 1).to(device)]
|
| 183 |
+
|
| 184 |
+
class Text_Linear(Conditioner):
|
| 185 |
+
""" Transform the video feat encoder"""
|
| 186 |
+
|
| 187 |
+
def __init__(self, dim, output_dim):
|
| 188 |
+
super().__init__(dim, output_dim)
|
| 189 |
+
self.embedder = nn.Sequential(nn.Linear(dim, output_dim))
|
| 190 |
+
|
| 191 |
+
def forward(self, x, device: tp.Any = "cuda"):
|
| 192 |
+
# import ipdb
|
| 193 |
+
# ipdb.set_trace()
|
| 194 |
+
if not isinstance(x[0], torch.Tensor):
|
| 195 |
+
video_feats = []
|
| 196 |
+
for path in x:
|
| 197 |
+
if '.npy' in path:
|
| 198 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 199 |
+
elif '.pth' in path:
|
| 200 |
+
video_feats.append(torch.load(path)['metaclip_text_features'].to(device))
|
| 201 |
+
else:
|
| 202 |
+
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
|
| 203 |
+
x = torch.stack(video_feats, dim=0).to(device)
|
| 204 |
+
else:
|
| 205 |
+
# Revise the shape here:
|
| 206 |
+
x = torch.stack(x, dim=0).to(device)
|
| 207 |
+
|
| 208 |
+
x = self.embedder(x) # B x 117 x C
|
| 209 |
+
return [x, torch.ones(x.shape[0], 1).to(device)]
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class mm_unchang(Conditioner):
|
| 213 |
+
""" Transform the video feat encoder"""
|
| 214 |
+
|
| 215 |
+
def __init__(self, dim, output_dim):
|
| 216 |
+
super().__init__(dim, output_dim)
|
| 217 |
+
|
| 218 |
+
def forward(self, x, device: tp.Any = "cuda"):
|
| 219 |
+
# import ipdb
|
| 220 |
+
# ipdb.set_trace()
|
| 221 |
+
if not isinstance(x[0], torch.Tensor):
|
| 222 |
+
video_feats = []
|
| 223 |
+
for path in x:
|
| 224 |
+
if '.npy' in path:
|
| 225 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 226 |
+
elif '.pth' in path:
|
| 227 |
+
video_feats.append(torch.load(path)['metaclip_features'].to(device))
|
| 228 |
+
else:
|
| 229 |
+
video_feats.append(torch.from_numpy(np.load(path)['feat']).to(device))
|
| 230 |
+
x = torch.stack(video_feats, dim=0).to(device)
|
| 231 |
+
else:
|
| 232 |
+
# Revise the shape here:
|
| 233 |
+
x = torch.stack(x, dim=0).to(device)
|
| 234 |
+
return [x]
|
| 235 |
+
|
| 236 |
+
class CLIPConditioner(Conditioner):
|
| 237 |
+
|
| 238 |
+
CLIP_MODELS = ["metaclip-base", "metaclip-b16", "metaclip-large", "metaclip-huge"]
|
| 239 |
+
|
| 240 |
+
CLIP_MODEL_DIMS = {
|
| 241 |
+
"metaclip-base": 512,
|
| 242 |
+
"metaclip-b16": 512,
|
| 243 |
+
"metaclip-large": 768,
|
| 244 |
+
"metaclip-huge": 1024,
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
def __init__(
|
| 248 |
+
self,
|
| 249 |
+
dim: int,
|
| 250 |
+
output_dim: int,
|
| 251 |
+
clip_model_name: str = "metaclip-huge",
|
| 252 |
+
enable_grad: bool = False,
|
| 253 |
+
project_out: bool = False
|
| 254 |
+
):
|
| 255 |
+
assert clip_model_name in self.CLIP_MODELS, f"Unknown CLIP model name: {clip_model_name}"
|
| 256 |
+
super().__init__(self.CLIP_MODEL_DIMS[clip_model_name], output_dim, project_out=project_out)
|
| 257 |
+
|
| 258 |
+
self.enable_grad = enable_grad
|
| 259 |
+
model = AutoModel.from_pretrained(f"useful_ckpts/{clip_model_name}").train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
|
| 263 |
+
if self.enable_grad:
|
| 264 |
+
self.model = model
|
| 265 |
+
else:
|
| 266 |
+
self.__dict__["model"] = model
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
def forward(self, images: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 270 |
+
|
| 271 |
+
self.model.to(device)
|
| 272 |
+
self.proj_out.to(device)
|
| 273 |
+
# import ipdb
|
| 274 |
+
# ipdb.set_trace()
|
| 275 |
+
|
| 276 |
+
self.model.eval()
|
| 277 |
+
if not isinstance(images[0], torch.Tensor):
|
| 278 |
+
video_feats = []
|
| 279 |
+
for path in images:
|
| 280 |
+
if '.npy' in path:
|
| 281 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 282 |
+
else:
|
| 283 |
+
video_feats.append(torch.from_numpy(np.load(path)).to(device))
|
| 284 |
+
images = torch.stack(video_feats, dim=0).to(device)
|
| 285 |
+
else:
|
| 286 |
+
images = torch.stack(images, dim=0).to(device)
|
| 287 |
+
bsz, t, c, h, w = images.shape
|
| 288 |
+
# 使用 rearrange 进行维度合并
|
| 289 |
+
images = rearrange(images, 'b t c h w -> (b t) c h w')
|
| 290 |
+
with torch.set_grad_enabled(self.enable_grad):
|
| 291 |
+
image_features = self.model.get_image_features(images)
|
| 292 |
+
image_features = rearrange(image_features, '(b t) d -> b t d', b=bsz, t=t)
|
| 293 |
+
image_features = self.proj_out(image_features)
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
return [image_features, torch.ones(image_features.shape[0], 1).to(device)]
|
| 297 |
+
|
| 298 |
+
class IntConditioner(Conditioner):
|
| 299 |
+
def __init__(self,
|
| 300 |
+
output_dim: int,
|
| 301 |
+
min_val: int=0,
|
| 302 |
+
max_val: int=512
|
| 303 |
+
):
|
| 304 |
+
super().__init__(output_dim, output_dim)
|
| 305 |
+
|
| 306 |
+
self.min_val = min_val
|
| 307 |
+
self.max_val = max_val
|
| 308 |
+
self.int_embedder = nn.Embedding(max_val - min_val + 1, output_dim).requires_grad_(True)
|
| 309 |
+
|
| 310 |
+
def forward(self, ints: tp.List[int], device=None) -> tp.Any:
|
| 311 |
+
|
| 312 |
+
#self.int_embedder.to(device)
|
| 313 |
+
|
| 314 |
+
ints = torch.tensor(ints).to(device)
|
| 315 |
+
ints = ints.clamp(self.min_val, self.max_val)
|
| 316 |
+
|
| 317 |
+
int_embeds = self.int_embedder(ints).unsqueeze(1)
|
| 318 |
+
|
| 319 |
+
return [int_embeds, torch.ones(int_embeds.shape[0], 1).to(device)]
|
| 320 |
+
|
| 321 |
+
class NumberConditioner(Conditioner):
|
| 322 |
+
'''
|
| 323 |
+
Conditioner that takes a list of floats, normalizes them for a given range, and returns a list of embeddings
|
| 324 |
+
'''
|
| 325 |
+
def __init__(self,
|
| 326 |
+
output_dim: int,
|
| 327 |
+
min_val: float=0,
|
| 328 |
+
max_val: float=1
|
| 329 |
+
):
|
| 330 |
+
super().__init__(output_dim, output_dim)
|
| 331 |
+
|
| 332 |
+
self.min_val = min_val
|
| 333 |
+
self.max_val = max_val
|
| 334 |
+
|
| 335 |
+
self.embedder = NumberEmbedder(features=output_dim)
|
| 336 |
+
|
| 337 |
+
def forward(self, floats: tp.List[float], device=None) -> tp.Any:
|
| 338 |
+
|
| 339 |
+
# Cast the inputs to floats
|
| 340 |
+
floats = [float(x) for x in floats]
|
| 341 |
+
|
| 342 |
+
floats = torch.tensor(floats).to(device)
|
| 343 |
+
|
| 344 |
+
floats = floats.clamp(self.min_val, self.max_val)
|
| 345 |
+
|
| 346 |
+
normalized_floats = (floats - self.min_val) / (self.max_val - self.min_val)
|
| 347 |
+
|
| 348 |
+
# Cast floats to same type as embedder
|
| 349 |
+
embedder_dtype = next(self.embedder.parameters()).dtype
|
| 350 |
+
normalized_floats = normalized_floats.to(embedder_dtype)
|
| 351 |
+
|
| 352 |
+
float_embeds = self.embedder(normalized_floats).unsqueeze(1)
|
| 353 |
+
|
| 354 |
+
return [float_embeds, torch.ones(float_embeds.shape[0], 1).to(device)]
|
| 355 |
+
|
| 356 |
+
class CLAPTextConditioner(Conditioner):
|
| 357 |
+
def __init__(self,
|
| 358 |
+
output_dim: int,
|
| 359 |
+
clap_ckpt_path,
|
| 360 |
+
use_text_features = False,
|
| 361 |
+
feature_layer_ix: int = -1,
|
| 362 |
+
audio_model_type="HTSAT-base",
|
| 363 |
+
enable_fusion=True,
|
| 364 |
+
project_out: bool = False,
|
| 365 |
+
finetune: bool = False):
|
| 366 |
+
super().__init__(768 if use_text_features else 512, output_dim, project_out=project_out)
|
| 367 |
+
|
| 368 |
+
self.use_text_features = use_text_features
|
| 369 |
+
self.feature_layer_ix = feature_layer_ix
|
| 370 |
+
self.finetune = finetune
|
| 371 |
+
|
| 372 |
+
# Suppress logging from transformers
|
| 373 |
+
previous_level = logging.root.manager.disable
|
| 374 |
+
logging.disable(logging.ERROR)
|
| 375 |
+
with warnings.catch_warnings():
|
| 376 |
+
warnings.simplefilter("ignore")
|
| 377 |
+
try:
|
| 378 |
+
import laion_clap
|
| 379 |
+
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
|
| 380 |
+
|
| 381 |
+
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
|
| 382 |
+
|
| 383 |
+
if self.finetune:
|
| 384 |
+
self.model = model
|
| 385 |
+
else:
|
| 386 |
+
self.__dict__["model"] = model
|
| 387 |
+
|
| 388 |
+
state_dict = clap_load_state_dict(clap_ckpt_path)
|
| 389 |
+
self.model.model.load_state_dict(state_dict, strict=False)
|
| 390 |
+
|
| 391 |
+
if self.finetune:
|
| 392 |
+
self.model.model.text_branch.requires_grad_(True)
|
| 393 |
+
self.model.model.text_branch.train()
|
| 394 |
+
else:
|
| 395 |
+
self.model.model.text_branch.requires_grad_(False)
|
| 396 |
+
self.model.model.text_branch.eval()
|
| 397 |
+
|
| 398 |
+
finally:
|
| 399 |
+
logging.disable(previous_level)
|
| 400 |
+
|
| 401 |
+
del self.model.model.audio_branch
|
| 402 |
+
|
| 403 |
+
gc.collect()
|
| 404 |
+
torch.cuda.empty_cache()
|
| 405 |
+
|
| 406 |
+
def get_clap_features(self, prompts, layer_ix=-2, device: tp.Any = "cuda"):
|
| 407 |
+
prompt_tokens = self.model.tokenizer(prompts)
|
| 408 |
+
attention_mask = prompt_tokens["attention_mask"].to(device=device, non_blocking=True)
|
| 409 |
+
prompt_features = self.model.model.text_branch(
|
| 410 |
+
input_ids=prompt_tokens["input_ids"].to(device=device, non_blocking=True),
|
| 411 |
+
attention_mask=attention_mask,
|
| 412 |
+
output_hidden_states=True
|
| 413 |
+
)["hidden_states"][layer_ix]
|
| 414 |
+
|
| 415 |
+
return prompt_features, attention_mask
|
| 416 |
+
|
| 417 |
+
def forward(self, texts: tp.List[str], device: tp.Any = "cuda") -> tp.Any:
|
| 418 |
+
self.model.to(device)
|
| 419 |
+
|
| 420 |
+
if self.use_text_features:
|
| 421 |
+
if len(texts) == 1:
|
| 422 |
+
text_features, text_attention_mask = self.get_clap_features([texts[0], ""], layer_ix=self.feature_layer_ix, device=device)
|
| 423 |
+
text_features = text_features[:1, ...]
|
| 424 |
+
text_attention_mask = text_attention_mask[:1, ...]
|
| 425 |
+
else:
|
| 426 |
+
text_features, text_attention_mask = self.get_clap_features(texts, layer_ix=self.feature_layer_ix, device=device)
|
| 427 |
+
return [self.proj_out(text_features), text_attention_mask]
|
| 428 |
+
|
| 429 |
+
# Fix for CLAP bug when only one text is passed
|
| 430 |
+
if len(texts) == 1:
|
| 431 |
+
text_embedding = self.model.get_text_embedding([texts[0], ""], use_tensor=True)[:1, ...]
|
| 432 |
+
else:
|
| 433 |
+
text_embedding = self.model.get_text_embedding(texts, use_tensor=True)
|
| 434 |
+
|
| 435 |
+
text_embedding = text_embedding.unsqueeze(1).to(device)
|
| 436 |
+
|
| 437 |
+
return [self.proj_out(text_embedding), torch.ones(text_embedding.shape[0], 1).to(device)]
|
| 438 |
+
|
| 439 |
+
class CLAPAudioConditioner(Conditioner):
|
| 440 |
+
def __init__(self,
|
| 441 |
+
output_dim: int,
|
| 442 |
+
clap_ckpt_path,
|
| 443 |
+
audio_model_type="HTSAT-base",
|
| 444 |
+
enable_fusion=True,
|
| 445 |
+
project_out: bool = False):
|
| 446 |
+
super().__init__(512, output_dim, project_out=project_out)
|
| 447 |
+
|
| 448 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 449 |
+
|
| 450 |
+
# Suppress logging from transformers
|
| 451 |
+
previous_level = logging.root.manager.disable
|
| 452 |
+
logging.disable(logging.ERROR)
|
| 453 |
+
with warnings.catch_warnings():
|
| 454 |
+
warnings.simplefilter("ignore")
|
| 455 |
+
try:
|
| 456 |
+
import laion_clap
|
| 457 |
+
from laion_clap.clap_module.factory import load_state_dict as clap_load_state_dict
|
| 458 |
+
|
| 459 |
+
model = laion_clap.CLAP_Module(enable_fusion=enable_fusion, amodel=audio_model_type, device='cpu')
|
| 460 |
+
|
| 461 |
+
if self.finetune:
|
| 462 |
+
self.model = model
|
| 463 |
+
else:
|
| 464 |
+
self.__dict__["model"] = model
|
| 465 |
+
|
| 466 |
+
state_dict = clap_load_state_dict(clap_ckpt_path)
|
| 467 |
+
self.model.model.load_state_dict(state_dict, strict=False)
|
| 468 |
+
|
| 469 |
+
if self.finetune:
|
| 470 |
+
self.model.model.audio_branch.requires_grad_(True)
|
| 471 |
+
self.model.model.audio_branch.train()
|
| 472 |
+
else:
|
| 473 |
+
self.model.model.audio_branch.requires_grad_(False)
|
| 474 |
+
self.model.model.audio_branch.eval()
|
| 475 |
+
|
| 476 |
+
finally:
|
| 477 |
+
logging.disable(previous_level)
|
| 478 |
+
|
| 479 |
+
del self.model.model.text_branch
|
| 480 |
+
|
| 481 |
+
gc.collect()
|
| 482 |
+
torch.cuda.empty_cache()
|
| 483 |
+
|
| 484 |
+
def forward(self, audios: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]] , device: tp.Any = "cuda") -> tp.Any:
|
| 485 |
+
|
| 486 |
+
self.model.to(device)
|
| 487 |
+
|
| 488 |
+
if isinstance(audios, list) or isinstance(audios, tuple):
|
| 489 |
+
audios = torch.cat(audios, dim=0)
|
| 490 |
+
|
| 491 |
+
# Convert to mono
|
| 492 |
+
mono_audios = audios.mean(dim=1)
|
| 493 |
+
|
| 494 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 495 |
+
audio_embedding = self.model.get_audio_embedding_from_data(mono_audios.float(), use_tensor=True)
|
| 496 |
+
|
| 497 |
+
audio_embedding = audio_embedding.unsqueeze(1).to(device)
|
| 498 |
+
|
| 499 |
+
return [self.proj_out(audio_embedding), torch.ones(audio_embedding.shape[0], 1).to(device)]
|
| 500 |
+
|
| 501 |
+
class T5Conditioner(Conditioner):
|
| 502 |
+
|
| 503 |
+
T5_MODELS = ["t5-small", "t5-base", "t5-large", "t5-3b", "t5-11b",
|
| 504 |
+
"google/flan-t5-small", "google/flan-t5-base", "google/flan-t5-large",
|
| 505 |
+
"google/flan-t5-xl", "google/flan-t5-xxl", "t5-v1_1-xl", "google/t5-v1_1-xxl"]
|
| 506 |
+
|
| 507 |
+
T5_MODEL_DIMS = {
|
| 508 |
+
"t5-small": 512,
|
| 509 |
+
"t5-base": 768,
|
| 510 |
+
"t5-large": 1024,
|
| 511 |
+
"t5-3b": 1024,
|
| 512 |
+
"t5-11b": 1024,
|
| 513 |
+
"t5-v1_1-xl": 2048,
|
| 514 |
+
"google/t5-v1_1-xxl": 4096,
|
| 515 |
+
"google/flan-t5-small": 512,
|
| 516 |
+
"google/flan-t5-base": 768,
|
| 517 |
+
"google/flan-t5-large": 1024,
|
| 518 |
+
"google/flan-t5-3b": 1024,
|
| 519 |
+
"google/flan-t5-11b": 1024,
|
| 520 |
+
"google/flan-t5-xl": 2048,
|
| 521 |
+
"google/flan-t5-xxl": 4096,
|
| 522 |
+
}
|
| 523 |
+
|
| 524 |
+
def __init__(
|
| 525 |
+
self,
|
| 526 |
+
output_dim: int,
|
| 527 |
+
t5_model_name: str = "t5-base",
|
| 528 |
+
max_length: str = 77,
|
| 529 |
+
enable_grad: bool = False,
|
| 530 |
+
project_out: bool = False
|
| 531 |
+
):
|
| 532 |
+
assert t5_model_name in self.T5_MODELS, f"Unknown T5 model name: {t5_model_name}"
|
| 533 |
+
super().__init__(self.T5_MODEL_DIMS[t5_model_name], output_dim, project_out=project_out)
|
| 534 |
+
|
| 535 |
+
from transformers import T5EncoderModel, AutoTokenizer
|
| 536 |
+
|
| 537 |
+
self.max_length = max_length
|
| 538 |
+
self.enable_grad = enable_grad
|
| 539 |
+
|
| 540 |
+
# Suppress logging from transformers
|
| 541 |
+
previous_level = logging.root.manager.disable
|
| 542 |
+
logging.disable(logging.ERROR)
|
| 543 |
+
with warnings.catch_warnings():
|
| 544 |
+
warnings.simplefilter("ignore")
|
| 545 |
+
try:
|
| 546 |
+
# self.tokenizer = T5Tokenizer.from_pretrained(t5_model_name, model_max_length = max_length)
|
| 547 |
+
# model = T5EncoderModel.from_pretrained(t5_model_name, max_length=max_length).train(enable_grad).requires_grad_(enable_grad)
|
| 548 |
+
self.tokenizer = AutoTokenizer.from_pretrained(os.path.join('useful_ckpts', t5_model_name))
|
| 549 |
+
model = T5EncoderModel.from_pretrained(os.path.join('useful_ckpts', t5_model_name)).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
|
| 550 |
+
finally:
|
| 551 |
+
logging.disable(previous_level)
|
| 552 |
+
|
| 553 |
+
if self.enable_grad:
|
| 554 |
+
self.model = model
|
| 555 |
+
else:
|
| 556 |
+
self.__dict__["model"] = model
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 560 |
+
|
| 561 |
+
self.model.to(device)
|
| 562 |
+
self.proj_out.to(device)
|
| 563 |
+
encoded = self.tokenizer(
|
| 564 |
+
texts,
|
| 565 |
+
truncation=True,
|
| 566 |
+
max_length=self.max_length,
|
| 567 |
+
padding="max_length",
|
| 568 |
+
return_tensors="pt",
|
| 569 |
+
)
|
| 570 |
+
|
| 571 |
+
input_ids = encoded["input_ids"].to(device)
|
| 572 |
+
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
| 573 |
+
|
| 574 |
+
self.model.eval()
|
| 575 |
+
|
| 576 |
+
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
|
| 577 |
+
embeddings = self.model(
|
| 578 |
+
input_ids=input_ids, attention_mask=attention_mask
|
| 579 |
+
)["last_hidden_state"]
|
| 580 |
+
|
| 581 |
+
embeddings = self.proj_out(embeddings.float())
|
| 582 |
+
|
| 583 |
+
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
| 584 |
+
|
| 585 |
+
return embeddings, attention_mask
|
| 586 |
+
|
| 587 |
+
def patch_clip(clip_model):
|
| 588 |
+
# a hack to make it output last hidden states
|
| 589 |
+
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
|
| 590 |
+
def new_encode_text(self, text, normalize: bool = False):
|
| 591 |
+
cast_dtype = self.transformer.get_cast_dtype()
|
| 592 |
+
|
| 593 |
+
x = self.token_embedding(text).to(cast_dtype) # [batch_size, n_ctx, d_model]
|
| 594 |
+
|
| 595 |
+
x = x + self.positional_embedding.to(cast_dtype)
|
| 596 |
+
x = self.transformer(x, attn_mask=self.attn_mask)
|
| 597 |
+
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
|
| 598 |
+
return F.normalize(x, dim=-1) if normalize else x
|
| 599 |
+
|
| 600 |
+
clip_model.encode_text = new_encode_text.__get__(clip_model)
|
| 601 |
+
return clip_model
|
| 602 |
+
|
| 603 |
+
class CLIPTextConditioner(Conditioner):
|
| 604 |
+
def __init__(
|
| 605 |
+
self,
|
| 606 |
+
output_dim: int,
|
| 607 |
+
max_length: str = 77,
|
| 608 |
+
enable_grad: bool = False,
|
| 609 |
+
project_out: bool = False
|
| 610 |
+
):
|
| 611 |
+
super().__init__(1024, output_dim, project_out=project_out)
|
| 612 |
+
|
| 613 |
+
from transformers import T5EncoderModel, AutoTokenizer
|
| 614 |
+
import open_clip
|
| 615 |
+
from open_clip import create_model_from_pretrained
|
| 616 |
+
|
| 617 |
+
self.max_length = max_length
|
| 618 |
+
self.enable_grad = enable_grad
|
| 619 |
+
|
| 620 |
+
# Suppress logging from transformers
|
| 621 |
+
previous_level = logging.root.manager.disable
|
| 622 |
+
logging.disable(logging.ERROR)
|
| 623 |
+
with warnings.catch_warnings():
|
| 624 |
+
warnings.simplefilter("ignore")
|
| 625 |
+
try:
|
| 626 |
+
model = create_model_from_pretrained('hf-hub:apple/DFN5B-CLIP-ViT-H-14-384',cache_dir='useful_ckpts/DFN5B-CLIP-ViT-H-14-384',
|
| 627 |
+
return_transform=False).train(enable_grad).requires_grad_(enable_grad).to(torch.float16)
|
| 628 |
+
model = patch_clip(model)
|
| 629 |
+
self.tokenizer = open_clip.get_tokenizer('ViT-H-14-378-quickgelu') # same as 'ViT-H-14'
|
| 630 |
+
finally:
|
| 631 |
+
logging.disable(previous_level)
|
| 632 |
+
|
| 633 |
+
if self.enable_grad:
|
| 634 |
+
self.model = model
|
| 635 |
+
else:
|
| 636 |
+
self.__dict__["model"] = model
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 640 |
+
|
| 641 |
+
self.model.to(device)
|
| 642 |
+
self.proj_out.to(device)
|
| 643 |
+
|
| 644 |
+
encoded = self.tokenizer(
|
| 645 |
+
texts
|
| 646 |
+
).to(device)
|
| 647 |
+
|
| 648 |
+
# input_ids = encoded["input_ids"].to(device)
|
| 649 |
+
# attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
| 650 |
+
|
| 651 |
+
self.model.eval()
|
| 652 |
+
|
| 653 |
+
with torch.cuda.amp.autocast(dtype=torch.float16) and torch.set_grad_enabled(self.enable_grad):
|
| 654 |
+
embeddings = self.model.encode_text(
|
| 655 |
+
encoded
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
embeddings = self.proj_out(embeddings.float())
|
| 659 |
+
|
| 660 |
+
# embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
| 661 |
+
|
| 662 |
+
return embeddings, torch.ones(embeddings.shape[0], 1).to(device)
|
| 663 |
+
|
| 664 |
+
def patch_clip(clip_model):
|
| 665 |
+
# a hack to make it output last hidden states
|
| 666 |
+
# https://github.com/mlfoundations/open_clip/blob/fc5a37b72d705f760ebbc7915b84729816ed471f/src/open_clip/model.py#L269
|
| 667 |
+
def new_get_text_features(self, input_ids=None, attention_mask=None, position_ids=None,
|
| 668 |
+
output_attentions: Optional[bool] = None,
|
| 669 |
+
output_hidden_states: Optional[bool] = None,
|
| 670 |
+
return_dict: Optional[bool] = None):
|
| 671 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 672 |
+
output_hidden_states = (
|
| 673 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 674 |
+
)
|
| 675 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 676 |
+
|
| 677 |
+
text_outputs = self.text_model(
|
| 678 |
+
input_ids=input_ids,
|
| 679 |
+
attention_mask=attention_mask,
|
| 680 |
+
position_ids=position_ids,
|
| 681 |
+
output_attentions=output_attentions,
|
| 682 |
+
output_hidden_states=output_hidden_states,
|
| 683 |
+
return_dict=return_dict,
|
| 684 |
+
)
|
| 685 |
+
last_hidden_state = text_outputs[0]
|
| 686 |
+
# pooled_output = text_outputs[1]
|
| 687 |
+
# text_features = self.text_projection(pooled_output)
|
| 688 |
+
|
| 689 |
+
return last_hidden_state
|
| 690 |
+
|
| 691 |
+
clip_model.get_text_features = new_get_text_features.__get__(clip_model)
|
| 692 |
+
return clip_model
|
| 693 |
+
|
| 694 |
+
class MetaCLIPTextConditioner(Conditioner):
|
| 695 |
+
def __init__(
|
| 696 |
+
self,
|
| 697 |
+
output_dim: int,
|
| 698 |
+
max_length: str = 77,
|
| 699 |
+
enable_grad: bool = False,
|
| 700 |
+
project_out: bool = False
|
| 701 |
+
):
|
| 702 |
+
super().__init__(1024, output_dim, project_out=project_out)
|
| 703 |
+
|
| 704 |
+
from transformers import AutoModel
|
| 705 |
+
from transformers import AutoProcessor
|
| 706 |
+
|
| 707 |
+
self.max_length = max_length
|
| 708 |
+
self.enable_grad = enable_grad
|
| 709 |
+
|
| 710 |
+
# Suppress logging from transformers
|
| 711 |
+
previous_level = logging.root.manager.disable
|
| 712 |
+
logging.disable(logging.ERROR)
|
| 713 |
+
with warnings.catch_warnings():
|
| 714 |
+
warnings.simplefilter("ignore")
|
| 715 |
+
try:
|
| 716 |
+
self.model = AutoModel.from_pretrained("useful_ckpts/metaclip-huge")
|
| 717 |
+
self.model = patch_clip(self.model)
|
| 718 |
+
self.clip_processor = AutoProcessor.from_pretrained("useful_ckpts/metaclip-huge")
|
| 719 |
+
finally:
|
| 720 |
+
logging.disable(previous_level)
|
| 721 |
+
|
| 722 |
+
|
| 723 |
+
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 724 |
+
|
| 725 |
+
self.model.to(device)
|
| 726 |
+
self.proj_out.to(device)
|
| 727 |
+
encoded = self.clip_processor(text=texts, return_tensors="pt", padding=True).to(device)
|
| 728 |
+
|
| 729 |
+
# input_ids = encoded["input_ids"].to(device)
|
| 730 |
+
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
| 731 |
+
|
| 732 |
+
self.model.eval()
|
| 733 |
+
|
| 734 |
+
with torch.set_grad_enabled(self.enable_grad):
|
| 735 |
+
embeddings = self.model.get_text_features(
|
| 736 |
+
**encoded
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
embeddings = self.proj_out(embeddings.float())
|
| 740 |
+
|
| 741 |
+
# embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
| 742 |
+
|
| 743 |
+
return embeddings, torch.ones(embeddings.shape[0],1).to(device)
|
| 744 |
+
|
| 745 |
+
class PhonemeConditioner(Conditioner):
|
| 746 |
+
"""
|
| 747 |
+
A conditioner that turns text into phonemes and embeds them using a lookup table
|
| 748 |
+
Only works for English text
|
| 749 |
+
|
| 750 |
+
Args:
|
| 751 |
+
output_dim: the dimension of the output embeddings
|
| 752 |
+
max_length: the maximum number of phonemes to embed
|
| 753 |
+
project_out: whether to add another linear projection to the output embeddings
|
| 754 |
+
"""
|
| 755 |
+
|
| 756 |
+
def __init__(
|
| 757 |
+
self,
|
| 758 |
+
output_dim: int,
|
| 759 |
+
max_length: int = 1024,
|
| 760 |
+
project_out: bool = False,
|
| 761 |
+
):
|
| 762 |
+
super().__init__(output_dim, output_dim, project_out=project_out)
|
| 763 |
+
|
| 764 |
+
from g2p_en import G2p
|
| 765 |
+
|
| 766 |
+
self.max_length = max_length
|
| 767 |
+
|
| 768 |
+
self.g2p = G2p()
|
| 769 |
+
|
| 770 |
+
# Reserving 0 for padding, 1 for ignored
|
| 771 |
+
self.phoneme_embedder = nn.Embedding(len(self.g2p.phonemes) + 2, output_dim)
|
| 772 |
+
|
| 773 |
+
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 774 |
+
|
| 775 |
+
self.phoneme_embedder.to(device)
|
| 776 |
+
self.proj_out.to(device)
|
| 777 |
+
|
| 778 |
+
batch_phonemes = [self.g2p(text) for text in texts] # shape [batch_size, length]
|
| 779 |
+
|
| 780 |
+
phoneme_ignore = [" ", *string.punctuation]
|
| 781 |
+
|
| 782 |
+
# Remove ignored phonemes and cut to max length
|
| 783 |
+
batch_phonemes = [[p if p not in phoneme_ignore else "_" for p in phonemes] for phonemes in batch_phonemes]
|
| 784 |
+
|
| 785 |
+
# Convert to ids
|
| 786 |
+
phoneme_ids = [[self.g2p.p2idx[p] + 2 if p in self.g2p.p2idx else 1 for p in phonemes] for phonemes in batch_phonemes]
|
| 787 |
+
|
| 788 |
+
#Pad to match longest and make a mask tensor for the padding
|
| 789 |
+
longest = max([len(ids) for ids in phoneme_ids])
|
| 790 |
+
phoneme_ids = [ids + [0] * (longest - len(ids)) for ids in phoneme_ids]
|
| 791 |
+
|
| 792 |
+
phoneme_ids = torch.tensor(phoneme_ids).to(device)
|
| 793 |
+
|
| 794 |
+
# Convert to embeddings
|
| 795 |
+
phoneme_embeds = self.phoneme_embedder(phoneme_ids)
|
| 796 |
+
|
| 797 |
+
phoneme_embeds = self.proj_out(phoneme_embeds)
|
| 798 |
+
|
| 799 |
+
return phoneme_embeds, torch.ones(phoneme_embeds.shape[0], phoneme_embeds.shape[1]).to(device)
|
| 800 |
+
|
| 801 |
+
class TokenizerLUTConditioner(Conditioner):
|
| 802 |
+
"""
|
| 803 |
+
A conditioner that embeds text using a lookup table on a pretrained tokenizer's vocabulary
|
| 804 |
+
|
| 805 |
+
Args:
|
| 806 |
+
tokenizer_name: the name of the tokenizer from the Hugging Face transformers library
|
| 807 |
+
output_dim: the dimension of the output embeddings
|
| 808 |
+
max_length: the maximum length of the text to embed
|
| 809 |
+
project_out: whether to add another linear projection to the output embeddings
|
| 810 |
+
"""
|
| 811 |
+
|
| 812 |
+
def __init__(
|
| 813 |
+
self,
|
| 814 |
+
tokenizer_name: str, # Name of a tokenizer from the Hugging Face transformers library
|
| 815 |
+
output_dim: int,
|
| 816 |
+
max_length: int = 1024,
|
| 817 |
+
project_out: bool = False,
|
| 818 |
+
):
|
| 819 |
+
super().__init__(output_dim, output_dim, project_out=project_out)
|
| 820 |
+
|
| 821 |
+
from transformers import AutoTokenizer
|
| 822 |
+
|
| 823 |
+
# Suppress logging from transformers
|
| 824 |
+
previous_level = logging.root.manager.disable
|
| 825 |
+
logging.disable(logging.ERROR)
|
| 826 |
+
with warnings.catch_warnings():
|
| 827 |
+
warnings.simplefilter("ignore")
|
| 828 |
+
try:
|
| 829 |
+
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
| 830 |
+
finally:
|
| 831 |
+
logging.disable(previous_level)
|
| 832 |
+
|
| 833 |
+
self.max_length = max_length
|
| 834 |
+
|
| 835 |
+
self.token_embedder = nn.Embedding(len(self.tokenizer), output_dim)
|
| 836 |
+
|
| 837 |
+
def forward(self, texts: tp.List[str], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 838 |
+
self.proj_out.to(device)
|
| 839 |
+
|
| 840 |
+
encoded = self.tokenizer(
|
| 841 |
+
texts,
|
| 842 |
+
truncation=True,
|
| 843 |
+
max_length=self.max_length,
|
| 844 |
+
padding="max_length",
|
| 845 |
+
return_tensors="pt",
|
| 846 |
+
)
|
| 847 |
+
|
| 848 |
+
input_ids = encoded["input_ids"].to(device)
|
| 849 |
+
attention_mask = encoded["attention_mask"].to(device).to(torch.bool)
|
| 850 |
+
|
| 851 |
+
embeddings = self.token_embedder(input_ids)
|
| 852 |
+
|
| 853 |
+
embeddings = self.proj_out(embeddings)
|
| 854 |
+
|
| 855 |
+
embeddings = embeddings * attention_mask.unsqueeze(-1).float()
|
| 856 |
+
|
| 857 |
+
return embeddings, attention_mask
|
| 858 |
+
|
| 859 |
+
class PretransformConditioner(Conditioner):
|
| 860 |
+
"""
|
| 861 |
+
A conditioner that uses a pretransform's encoder for conditioning
|
| 862 |
+
|
| 863 |
+
Args:
|
| 864 |
+
pretransform: an instantiated pretransform to use for conditioning
|
| 865 |
+
output_dim: the dimension of the output embeddings
|
| 866 |
+
"""
|
| 867 |
+
def __init__(self, pretransform: Pretransform, output_dim: int):
|
| 868 |
+
super().__init__(pretransform.encoded_channels, output_dim)
|
| 869 |
+
|
| 870 |
+
self.pretransform = pretransform
|
| 871 |
+
|
| 872 |
+
def forward(self, audio: tp.Union[torch.Tensor, tp.List[torch.Tensor], tp.Tuple[torch.Tensor]], device: tp.Union[torch.device, str]) -> tp.Tuple[torch.Tensor, torch.Tensor]:
|
| 873 |
+
|
| 874 |
+
self.pretransform.to(device)
|
| 875 |
+
self.proj_out.to(device)
|
| 876 |
+
|
| 877 |
+
if isinstance(audio, list) or isinstance(audio, tuple):
|
| 878 |
+
audio = torch.cat(audio, dim=0)
|
| 879 |
+
|
| 880 |
+
# Convert audio to pretransform input channels
|
| 881 |
+
audio = set_audio_channels(audio, self.pretransform.io_channels)
|
| 882 |
+
|
| 883 |
+
latents = self.pretransform.encode(audio)
|
| 884 |
+
|
| 885 |
+
latents = self.proj_out(latents)
|
| 886 |
+
|
| 887 |
+
return [latents, torch.ones(latents.shape[0], latents.shape[2]).to(latents.device)]
|
| 888 |
+
|
| 889 |
+
class MultiConditioner(nn.Module):
|
| 890 |
+
"""
|
| 891 |
+
A module that applies multiple conditioners to an input dictionary based on the keys
|
| 892 |
+
|
| 893 |
+
Args:
|
| 894 |
+
conditioners: a dictionary of conditioners with keys corresponding to the keys of the conditioning input dictionary (e.g. "prompt")
|
| 895 |
+
default_keys: a dictionary of default keys to use if the key is not in the input dictionary (e.g. {"prompt_t5": "prompt"})
|
| 896 |
+
"""
|
| 897 |
+
def __init__(self, conditioners: tp.Dict[str, Conditioner], default_keys: tp.Dict[str, str] = {}):
|
| 898 |
+
super().__init__()
|
| 899 |
+
|
| 900 |
+
self.conditioners = nn.ModuleDict(conditioners)
|
| 901 |
+
self.default_keys = default_keys
|
| 902 |
+
|
| 903 |
+
def forward(self, batch_metadata: tp.List[tp.Dict[str, tp.Any]], device: tp.Union[torch.device, str]) -> tp.Dict[str, tp.Any]:
|
| 904 |
+
output = {}
|
| 905 |
+
|
| 906 |
+
for key, conditioner in self.conditioners.items():
|
| 907 |
+
condition_key = key
|
| 908 |
+
|
| 909 |
+
conditioner_inputs = []
|
| 910 |
+
|
| 911 |
+
for x in batch_metadata:
|
| 912 |
+
|
| 913 |
+
if condition_key not in x:
|
| 914 |
+
if condition_key in self.default_keys:
|
| 915 |
+
condition_key = self.default_keys[condition_key]
|
| 916 |
+
else:
|
| 917 |
+
raise ValueError(f"Conditioner key {condition_key} not found in batch metadata")
|
| 918 |
+
|
| 919 |
+
#Unwrap the condition info if it's a single-element list or tuple, this is to support collation functions that wrap everything in a list
|
| 920 |
+
if isinstance(x[condition_key], list) or isinstance(x[condition_key], tuple) and len(x[condition_key]) == 1:
|
| 921 |
+
conditioner_input = x[condition_key][0]
|
| 922 |
+
|
| 923 |
+
else:
|
| 924 |
+
conditioner_input = x[condition_key]
|
| 925 |
+
|
| 926 |
+
conditioner_inputs.append(conditioner_input)
|
| 927 |
+
|
| 928 |
+
cond_output = conditioner(conditioner_inputs, device)
|
| 929 |
+
if len(cond_output) == 1:
|
| 930 |
+
output[key] = cond_output[0]
|
| 931 |
+
elif len(cond_output) == 2:
|
| 932 |
+
output[key] = cond_output
|
| 933 |
+
elif len(cond_output) == 4:
|
| 934 |
+
output[key] = cond_output[:2]
|
| 935 |
+
output[f'{key}_g'] = cond_output[2:]
|
| 936 |
+
|
| 937 |
+
return output
|
| 938 |
+
|
| 939 |
+
def create_multi_conditioner_from_conditioning_config(config: tp.Dict[str, tp.Any]) -> MultiConditioner:
|
| 940 |
+
"""
|
| 941 |
+
Create a MultiConditioner from a conditioning config dictionary
|
| 942 |
+
|
| 943 |
+
Args:
|
| 944 |
+
config: the conditioning config dictionary
|
| 945 |
+
device: the device to put the conditioners on
|
| 946 |
+
"""
|
| 947 |
+
conditioners = {}
|
| 948 |
+
cond_dim = config["cond_dim"]
|
| 949 |
+
|
| 950 |
+
default_keys = config.get("default_keys", {})
|
| 951 |
+
|
| 952 |
+
for conditioner_info in config["configs"]:
|
| 953 |
+
id = conditioner_info["id"]
|
| 954 |
+
|
| 955 |
+
conditioner_type = conditioner_info["type"]
|
| 956 |
+
|
| 957 |
+
conditioner_config = {"output_dim": cond_dim}
|
| 958 |
+
|
| 959 |
+
conditioner_config.update(conditioner_info["config"])
|
| 960 |
+
if conditioner_type == "t5":
|
| 961 |
+
conditioners[id] = T5Conditioner(**conditioner_config)
|
| 962 |
+
elif conditioner_type == "clap_text":
|
| 963 |
+
conditioners[id] = CLAPTextConditioner(**conditioner_config)
|
| 964 |
+
elif conditioner_type == "clip_text":
|
| 965 |
+
conditioners[id] = CLIPTextConditioner(**conditioner_config)
|
| 966 |
+
elif conditioner_type == "metaclip_text":
|
| 967 |
+
conditioners[id] = MetaCLIPTextConditioner(**conditioner_config)
|
| 968 |
+
elif conditioner_type == "clap_audio":
|
| 969 |
+
conditioners[id] = CLAPAudioConditioner(**conditioner_config)
|
| 970 |
+
elif conditioner_type == "video_linear":
|
| 971 |
+
conditioners[id] = Video_Linear(**conditioner_config)
|
| 972 |
+
elif conditioner_type == "video_global":
|
| 973 |
+
conditioners[id] = Video_Global(**conditioner_config)
|
| 974 |
+
elif conditioner_type == "video_sync":
|
| 975 |
+
conditioners[id] = Video_Sync(**conditioner_config)
|
| 976 |
+
elif conditioner_type == "text_linear":
|
| 977 |
+
conditioners[id] = Text_Linear(**conditioner_config)
|
| 978 |
+
elif conditioner_type == "video_clip":
|
| 979 |
+
conditioners[id] = CLIPConditioner(**conditioner_config)
|
| 980 |
+
elif conditioner_type == "video_hiera":
|
| 981 |
+
conditioners[id] = VideoHieraConditioner(**conditioner_config)
|
| 982 |
+
elif conditioner_type == "int":
|
| 983 |
+
conditioners[id] = IntConditioner(**conditioner_config)
|
| 984 |
+
elif conditioner_type == "number":
|
| 985 |
+
conditioners[id] = NumberConditioner(**conditioner_config)
|
| 986 |
+
elif conditioner_type == "phoneme":
|
| 987 |
+
conditioners[id] = PhonemeConditioner(**conditioner_config)
|
| 988 |
+
elif conditioner_type == "lut":
|
| 989 |
+
conditioners[id] = TokenizerLUTConditioner(**conditioner_config)
|
| 990 |
+
elif conditioner_type == "pretransform":
|
| 991 |
+
sample_rate = conditioner_config.pop("sample_rate", None)
|
| 992 |
+
assert sample_rate is not None, "Sample rate must be specified for pretransform conditioners"
|
| 993 |
+
|
| 994 |
+
pretransform = create_pretransform_from_config(conditioner_config.pop("pretransform_config"), sample_rate=sample_rate)
|
| 995 |
+
|
| 996 |
+
if conditioner_config.get("pretransform_ckpt_path", None) is not None:
|
| 997 |
+
pretransform.load_state_dict(load_ckpt_state_dict(conditioner_config.pop("pretransform_ckpt_path")))
|
| 998 |
+
|
| 999 |
+
conditioners[id] = PretransformConditioner(pretransform, **conditioner_config)
|
| 1000 |
+
elif conditioner_type == "mm_unchang":
|
| 1001 |
+
conditioners[id] = mm_unchang(**conditioner_config)
|
| 1002 |
+
else:
|
| 1003 |
+
raise ValueError(f"Unknown conditioner type: {conditioner_type}")
|
| 1004 |
+
|
| 1005 |
+
return MultiConditioner(conditioners, default_keys=default_keys)
|
ThinkSound/models/diffusion.py
ADDED
|
@@ -0,0 +1,920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch import nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from functools import partial
|
| 5 |
+
import numpy as np
|
| 6 |
+
import typing as tp
|
| 7 |
+
|
| 8 |
+
from .blocks import ResConvBlock, FourierFeatures, Upsample1d, Upsample1d_2, Downsample1d, Downsample1d_2, SelfAttention1d, SkipBlock, expand_to_planes
|
| 9 |
+
from .conditioners import MultiConditioner, create_multi_conditioner_from_conditioning_config
|
| 10 |
+
# from .dit import DiffusionTransformer
|
| 11 |
+
from .mmdit import MMAudio
|
| 12 |
+
from .factory import create_pretransform_from_config
|
| 13 |
+
from .pretransforms import Pretransform
|
| 14 |
+
from ..inference.generation import generate_diffusion_cond
|
| 15 |
+
|
| 16 |
+
from time import time
|
| 17 |
+
|
| 18 |
+
class Profiler:
|
| 19 |
+
|
| 20 |
+
def __init__(self):
|
| 21 |
+
self.ticks = [[time(), None]]
|
| 22 |
+
|
| 23 |
+
def tick(self, msg):
|
| 24 |
+
self.ticks.append([time(), msg])
|
| 25 |
+
|
| 26 |
+
def __repr__(self):
|
| 27 |
+
rep = 80 * "=" + "\n"
|
| 28 |
+
for i in range(1, len(self.ticks)):
|
| 29 |
+
msg = self.ticks[i][1]
|
| 30 |
+
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
|
| 31 |
+
rep += msg + f": {ellapsed*1000:.2f}ms\n"
|
| 32 |
+
rep += 80 * "=" + "\n\n\n"
|
| 33 |
+
return rep
|
| 34 |
+
|
| 35 |
+
class DiffusionModel(nn.Module):
|
| 36 |
+
def __init__(self, *args, **kwargs):
|
| 37 |
+
super().__init__(*args, **kwargs)
|
| 38 |
+
|
| 39 |
+
def forward(self, x, t, **kwargs):
|
| 40 |
+
raise NotImplementedError()
|
| 41 |
+
|
| 42 |
+
class DiffusionModelWrapper(nn.Module):
|
| 43 |
+
def __init__(
|
| 44 |
+
self,
|
| 45 |
+
model: DiffusionModel,
|
| 46 |
+
io_channels,
|
| 47 |
+
sample_size,
|
| 48 |
+
sample_rate,
|
| 49 |
+
min_input_length,
|
| 50 |
+
pretransform: tp.Optional[Pretransform] = None,
|
| 51 |
+
):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.io_channels = io_channels
|
| 54 |
+
self.sample_size = sample_size
|
| 55 |
+
self.sample_rate = sample_rate
|
| 56 |
+
self.min_input_length = min_input_length
|
| 57 |
+
|
| 58 |
+
self.model = model
|
| 59 |
+
|
| 60 |
+
if pretransform is not None:
|
| 61 |
+
self.pretransform = pretransform
|
| 62 |
+
else:
|
| 63 |
+
self.pretransform = None
|
| 64 |
+
|
| 65 |
+
def forward(self, x, t, **kwargs):
|
| 66 |
+
return self.model(x, t, **kwargs)
|
| 67 |
+
|
| 68 |
+
class ConditionedDiffusionModel(nn.Module):
|
| 69 |
+
def __init__(self,
|
| 70 |
+
*args,
|
| 71 |
+
supports_cross_attention: bool = False,
|
| 72 |
+
supports_input_concat: bool = False,
|
| 73 |
+
supports_global_cond: bool = False,
|
| 74 |
+
supports_prepend_cond: bool = False,
|
| 75 |
+
**kwargs):
|
| 76 |
+
super().__init__(*args, **kwargs)
|
| 77 |
+
self.supports_cross_attention = supports_cross_attention
|
| 78 |
+
self.supports_input_concat = supports_input_concat
|
| 79 |
+
self.supports_global_cond = supports_global_cond
|
| 80 |
+
self.supports_prepend_cond = supports_prepend_cond
|
| 81 |
+
|
| 82 |
+
def forward(self,
|
| 83 |
+
x: torch.Tensor,
|
| 84 |
+
t: torch.Tensor,
|
| 85 |
+
cross_attn_cond: torch.Tensor = None,
|
| 86 |
+
cross_attn_mask: torch.Tensor = None,
|
| 87 |
+
input_concat_cond: torch.Tensor = None,
|
| 88 |
+
global_embed: torch.Tensor = None,
|
| 89 |
+
prepend_cond: torch.Tensor = None,
|
| 90 |
+
prepend_cond_mask: torch.Tensor = None,
|
| 91 |
+
cfg_scale: float = 1.0,
|
| 92 |
+
cfg_dropout_prob: float = 0.0,
|
| 93 |
+
batch_cfg: bool = False,
|
| 94 |
+
rescale_cfg: bool = False,
|
| 95 |
+
**kwargs):
|
| 96 |
+
raise NotImplementedError()
|
| 97 |
+
|
| 98 |
+
class ConditionedDiffusionModelWrapper(nn.Module):
|
| 99 |
+
"""
|
| 100 |
+
A diffusion model that takes in conditioning
|
| 101 |
+
"""
|
| 102 |
+
def __init__(
|
| 103 |
+
self,
|
| 104 |
+
model: ConditionedDiffusionModel,
|
| 105 |
+
conditioner: MultiConditioner,
|
| 106 |
+
io_channels,
|
| 107 |
+
sample_rate,
|
| 108 |
+
min_input_length: int,
|
| 109 |
+
diffusion_objective: tp.Literal["v", "rectified_flow"] = "v",
|
| 110 |
+
pretransform: tp.Optional[Pretransform] = None,
|
| 111 |
+
cross_attn_cond_ids: tp.List[str] = [],
|
| 112 |
+
global_cond_ids: tp.List[str] = [],
|
| 113 |
+
input_concat_ids: tp.List[str] = [],
|
| 114 |
+
prepend_cond_ids: tp.List[str] = [],
|
| 115 |
+
add_cond_ids: tp.List[str] = [],
|
| 116 |
+
):
|
| 117 |
+
super().__init__()
|
| 118 |
+
|
| 119 |
+
self.model = model
|
| 120 |
+
self.conditioner = conditioner
|
| 121 |
+
self.io_channels = io_channels
|
| 122 |
+
self.sample_rate = sample_rate
|
| 123 |
+
self.diffusion_objective = diffusion_objective
|
| 124 |
+
self.pretransform = pretransform
|
| 125 |
+
self.cross_attn_cond_ids = cross_attn_cond_ids
|
| 126 |
+
self.global_cond_ids = global_cond_ids
|
| 127 |
+
self.input_concat_ids = input_concat_ids
|
| 128 |
+
self.prepend_cond_ids = prepend_cond_ids
|
| 129 |
+
self.add_cond_ids = add_cond_ids
|
| 130 |
+
self.min_input_length = min_input_length
|
| 131 |
+
|
| 132 |
+
def get_conditioning_inputs(self, conditioning_tensors: tp.Dict[str, tp.Any], negative=False):
|
| 133 |
+
cross_attention_input = None
|
| 134 |
+
cross_attention_masks = None
|
| 135 |
+
global_cond = None
|
| 136 |
+
input_concat_cond = None
|
| 137 |
+
prepend_cond = None
|
| 138 |
+
prepend_cond_mask = None
|
| 139 |
+
add_input = None
|
| 140 |
+
|
| 141 |
+
if len(self.cross_attn_cond_ids) > 0:
|
| 142 |
+
# Concatenate all cross-attention inputs over the sequence dimension
|
| 143 |
+
# Assumes that the cross-attention inputs are of shape (batch, seq, channels)
|
| 144 |
+
cross_attention_input = []
|
| 145 |
+
cross_attention_masks = []
|
| 146 |
+
|
| 147 |
+
for key in self.cross_attn_cond_ids:
|
| 148 |
+
cross_attn_in, cross_attn_mask = conditioning_tensors[key]
|
| 149 |
+
|
| 150 |
+
# Add sequence dimension if it's not there
|
| 151 |
+
if len(cross_attn_in.shape) == 2:
|
| 152 |
+
cross_attn_in = cross_attn_in.unsqueeze(1)
|
| 153 |
+
# cross_attn_mask = cross_attn_mask.unsqueeze(1)
|
| 154 |
+
|
| 155 |
+
cross_attention_input.append(cross_attn_in)
|
| 156 |
+
cross_attention_masks.append(cross_attn_mask)
|
| 157 |
+
# import ipdb
|
| 158 |
+
# ipdb.set_trace()
|
| 159 |
+
cross_attention_input = torch.cat(cross_attention_input, dim=1)
|
| 160 |
+
cross_attention_masks = torch.cat(cross_attention_masks, dim=1)
|
| 161 |
+
|
| 162 |
+
if len(self.add_cond_ids) > 0:
|
| 163 |
+
# Concatenate all cross-attention inputs over the sequence dimension
|
| 164 |
+
# Assumes that the cross-attention inputs are of shape (batch, seq, channels)
|
| 165 |
+
add_input = []
|
| 166 |
+
|
| 167 |
+
for key in self.add_cond_ids:
|
| 168 |
+
add_in, _ = conditioning_tensors[key]
|
| 169 |
+
|
| 170 |
+
# Add sequence dimension if it's not there
|
| 171 |
+
if len(add_in.shape) == 2:
|
| 172 |
+
add_in = add_in.unsqueeze(1)
|
| 173 |
+
|
| 174 |
+
add_input.append(add_in)
|
| 175 |
+
|
| 176 |
+
add_input = torch.cat(add_input, dim=1)
|
| 177 |
+
|
| 178 |
+
if len(self.global_cond_ids) > 0:
|
| 179 |
+
# Concatenate all global conditioning inputs over the channel dimension
|
| 180 |
+
# Assumes that the global conditioning inputs are of shape (batch, channels)
|
| 181 |
+
global_conds = []
|
| 182 |
+
# import ipdb
|
| 183 |
+
# ipdb.set_trace()
|
| 184 |
+
for key in self.global_cond_ids:
|
| 185 |
+
global_cond_input = conditioning_tensors[key][0]
|
| 186 |
+
|
| 187 |
+
global_conds.append(global_cond_input)
|
| 188 |
+
|
| 189 |
+
# Concatenate over the channel dimension
|
| 190 |
+
if global_conds[0].shape[-1] == 768:
|
| 191 |
+
global_cond = torch.cat(global_conds, dim=-1)
|
| 192 |
+
else:
|
| 193 |
+
global_cond = sum(global_conds)
|
| 194 |
+
|
| 195 |
+
# global_cond = torch.cat(global_conds, dim=-1)
|
| 196 |
+
|
| 197 |
+
if len(global_cond.shape) == 3:
|
| 198 |
+
global_cond = global_cond.squeeze(1)
|
| 199 |
+
|
| 200 |
+
if len(self.input_concat_ids) > 0:
|
| 201 |
+
# Concatenate all input concat conditioning inputs over the channel dimension
|
| 202 |
+
# Assumes that the input concat conditioning inputs are of shape (batch, channels, seq)
|
| 203 |
+
input_concat_cond = torch.cat([conditioning_tensors[key][0] for key in self.input_concat_ids], dim=1)
|
| 204 |
+
|
| 205 |
+
if len(self.prepend_cond_ids) > 0:
|
| 206 |
+
# Concatenate all prepend conditioning inputs over the sequence dimension
|
| 207 |
+
# Assumes that the prepend conditioning inputs are of shape (batch, seq, channels)
|
| 208 |
+
prepend_conds = []
|
| 209 |
+
prepend_cond_masks = []
|
| 210 |
+
|
| 211 |
+
for key in self.prepend_cond_ids:
|
| 212 |
+
prepend_cond_input, prepend_cond_mask = conditioning_tensors[key]
|
| 213 |
+
prepend_conds.append(prepend_cond_input)
|
| 214 |
+
prepend_cond_masks.append(prepend_cond_mask)
|
| 215 |
+
|
| 216 |
+
prepend_cond = torch.cat(prepend_conds, dim=1)
|
| 217 |
+
prepend_cond_mask = torch.cat(prepend_cond_masks, dim=1)
|
| 218 |
+
|
| 219 |
+
if negative:
|
| 220 |
+
return {
|
| 221 |
+
"negative_cross_attn_cond": cross_attention_input,
|
| 222 |
+
"negative_cross_attn_mask": cross_attention_masks,
|
| 223 |
+
"negative_global_cond": global_cond,
|
| 224 |
+
"negative_input_concat_cond": input_concat_cond
|
| 225 |
+
}
|
| 226 |
+
else:
|
| 227 |
+
return {
|
| 228 |
+
"cross_attn_cond": cross_attention_input,
|
| 229 |
+
"cross_attn_mask": cross_attention_masks,
|
| 230 |
+
"global_cond": global_cond,
|
| 231 |
+
"input_concat_cond": input_concat_cond,
|
| 232 |
+
"prepend_cond": prepend_cond,
|
| 233 |
+
"prepend_cond_mask": prepend_cond_mask,
|
| 234 |
+
"add_cond": add_input
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: tp.Dict[str, tp.Any], **kwargs):
|
| 238 |
+
return self.model(x, t, **self.get_conditioning_inputs(cond), **kwargs)
|
| 239 |
+
|
| 240 |
+
def generate(self, *args, **kwargs):
|
| 241 |
+
return generate_diffusion_cond(self, *args, **kwargs)
|
| 242 |
+
|
| 243 |
+
class UNetCFG1DWrapper(ConditionedDiffusionModel):
|
| 244 |
+
def __init__(
|
| 245 |
+
self,
|
| 246 |
+
*args,
|
| 247 |
+
**kwargs
|
| 248 |
+
):
|
| 249 |
+
super().__init__(supports_cross_attention=True, supports_global_cond=True, supports_input_concat=True)
|
| 250 |
+
|
| 251 |
+
self.model = UNetCFG1d(*args, **kwargs)
|
| 252 |
+
|
| 253 |
+
with torch.no_grad():
|
| 254 |
+
for param in self.model.parameters():
|
| 255 |
+
param *= 0.5
|
| 256 |
+
|
| 257 |
+
def forward(self,
|
| 258 |
+
x,
|
| 259 |
+
t,
|
| 260 |
+
cross_attn_cond=None,
|
| 261 |
+
cross_attn_mask=None,
|
| 262 |
+
input_concat_cond=None,
|
| 263 |
+
global_cond=None,
|
| 264 |
+
cfg_scale=1.0,
|
| 265 |
+
cfg_dropout_prob: float = 0.0,
|
| 266 |
+
batch_cfg: bool = False,
|
| 267 |
+
rescale_cfg: bool = False,
|
| 268 |
+
negative_cross_attn_cond=None,
|
| 269 |
+
negative_cross_attn_mask=None,
|
| 270 |
+
negative_global_cond=None,
|
| 271 |
+
negative_input_concat_cond=None,
|
| 272 |
+
prepend_cond=None,
|
| 273 |
+
prepend_cond_mask=None,
|
| 274 |
+
**kwargs):
|
| 275 |
+
p = Profiler()
|
| 276 |
+
|
| 277 |
+
p.tick("start")
|
| 278 |
+
|
| 279 |
+
channels_list = None
|
| 280 |
+
if input_concat_cond is not None:
|
| 281 |
+
channels_list = [input_concat_cond]
|
| 282 |
+
|
| 283 |
+
outputs = self.model(
|
| 284 |
+
x,
|
| 285 |
+
t,
|
| 286 |
+
embedding=cross_attn_cond,
|
| 287 |
+
embedding_mask=cross_attn_mask,
|
| 288 |
+
features=global_cond,
|
| 289 |
+
channels_list=channels_list,
|
| 290 |
+
embedding_scale=cfg_scale,
|
| 291 |
+
embedding_mask_proba=cfg_dropout_prob,
|
| 292 |
+
batch_cfg=batch_cfg,
|
| 293 |
+
rescale_cfg=rescale_cfg,
|
| 294 |
+
negative_embedding=negative_cross_attn_cond,
|
| 295 |
+
negative_embedding_mask=negative_cross_attn_mask,
|
| 296 |
+
**kwargs)
|
| 297 |
+
|
| 298 |
+
p.tick("UNetCFG1D forward")
|
| 299 |
+
|
| 300 |
+
#print(f"Profiler: {p}")
|
| 301 |
+
return outputs
|
| 302 |
+
|
| 303 |
+
class UNet1DCondWrapper(ConditionedDiffusionModel):
|
| 304 |
+
def __init__(
|
| 305 |
+
self,
|
| 306 |
+
*args,
|
| 307 |
+
**kwargs
|
| 308 |
+
):
|
| 309 |
+
super().__init__(supports_cross_attention=False, supports_global_cond=True, supports_input_concat=True)
|
| 310 |
+
|
| 311 |
+
self.model = UNet1d(*args, **kwargs)
|
| 312 |
+
|
| 313 |
+
with torch.no_grad():
|
| 314 |
+
for param in self.model.parameters():
|
| 315 |
+
param *= 0.5
|
| 316 |
+
|
| 317 |
+
def forward(self,
|
| 318 |
+
x,
|
| 319 |
+
t,
|
| 320 |
+
input_concat_cond=None,
|
| 321 |
+
global_cond=None,
|
| 322 |
+
cross_attn_cond=None,
|
| 323 |
+
cross_attn_mask=None,
|
| 324 |
+
prepend_cond=None,
|
| 325 |
+
prepend_cond_mask=None,
|
| 326 |
+
cfg_scale=1.0,
|
| 327 |
+
cfg_dropout_prob: float = 0.0,
|
| 328 |
+
batch_cfg: bool = False,
|
| 329 |
+
rescale_cfg: bool = False,
|
| 330 |
+
negative_cross_attn_cond=None,
|
| 331 |
+
negative_cross_attn_mask=None,
|
| 332 |
+
negative_global_cond=None,
|
| 333 |
+
negative_input_concat_cond=None,
|
| 334 |
+
**kwargs):
|
| 335 |
+
|
| 336 |
+
channels_list = None
|
| 337 |
+
if input_concat_cond is not None:
|
| 338 |
+
|
| 339 |
+
# Interpolate input_concat_cond to the same length as x
|
| 340 |
+
if input_concat_cond.shape[2] != x.shape[2]:
|
| 341 |
+
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest')
|
| 342 |
+
|
| 343 |
+
channels_list = [input_concat_cond]
|
| 344 |
+
|
| 345 |
+
outputs = self.model(
|
| 346 |
+
x,
|
| 347 |
+
t,
|
| 348 |
+
features=global_cond,
|
| 349 |
+
channels_list=channels_list,
|
| 350 |
+
**kwargs)
|
| 351 |
+
|
| 352 |
+
return outputs
|
| 353 |
+
|
| 354 |
+
class UNet1DUncondWrapper(DiffusionModel):
|
| 355 |
+
def __init__(
|
| 356 |
+
self,
|
| 357 |
+
in_channels,
|
| 358 |
+
*args,
|
| 359 |
+
**kwargs
|
| 360 |
+
):
|
| 361 |
+
super().__init__()
|
| 362 |
+
|
| 363 |
+
self.model = UNet1d(in_channels=in_channels, *args, **kwargs)
|
| 364 |
+
|
| 365 |
+
self.io_channels = in_channels
|
| 366 |
+
|
| 367 |
+
with torch.no_grad():
|
| 368 |
+
for param in self.model.parameters():
|
| 369 |
+
param *= 0.5
|
| 370 |
+
|
| 371 |
+
def forward(self, x, t, **kwargs):
|
| 372 |
+
return self.model(x, t, **kwargs)
|
| 373 |
+
|
| 374 |
+
class DAU1DCondWrapper(ConditionedDiffusionModel):
|
| 375 |
+
def __init__(
|
| 376 |
+
self,
|
| 377 |
+
*args,
|
| 378 |
+
**kwargs
|
| 379 |
+
):
|
| 380 |
+
super().__init__(supports_cross_attention=False, supports_global_cond=False, supports_input_concat=True)
|
| 381 |
+
|
| 382 |
+
self.model = DiffusionAttnUnet1D(*args, **kwargs)
|
| 383 |
+
|
| 384 |
+
with torch.no_grad():
|
| 385 |
+
for param in self.model.parameters():
|
| 386 |
+
param *= 0.5
|
| 387 |
+
|
| 388 |
+
def forward(self,
|
| 389 |
+
x,
|
| 390 |
+
t,
|
| 391 |
+
input_concat_cond=None,
|
| 392 |
+
cross_attn_cond=None,
|
| 393 |
+
cross_attn_mask=None,
|
| 394 |
+
global_cond=None,
|
| 395 |
+
cfg_scale=1.0,
|
| 396 |
+
cfg_dropout_prob: float = 0.0,
|
| 397 |
+
batch_cfg: bool = False,
|
| 398 |
+
rescale_cfg: bool = False,
|
| 399 |
+
negative_cross_attn_cond=None,
|
| 400 |
+
negative_cross_attn_mask=None,
|
| 401 |
+
negative_global_cond=None,
|
| 402 |
+
negative_input_concat_cond=None,
|
| 403 |
+
prepend_cond=None,
|
| 404 |
+
**kwargs):
|
| 405 |
+
|
| 406 |
+
return self.model(x, t, cond = input_concat_cond)
|
| 407 |
+
|
| 408 |
+
class DiffusionAttnUnet1D(nn.Module):
|
| 409 |
+
def __init__(
|
| 410 |
+
self,
|
| 411 |
+
io_channels = 2,
|
| 412 |
+
depth=14,
|
| 413 |
+
n_attn_layers = 6,
|
| 414 |
+
channels = [128, 128, 256, 256] + [512] * 10,
|
| 415 |
+
cond_dim = 0,
|
| 416 |
+
cond_noise_aug = False,
|
| 417 |
+
kernel_size = 5,
|
| 418 |
+
learned_resample = False,
|
| 419 |
+
strides = [2] * 13,
|
| 420 |
+
conv_bias = True,
|
| 421 |
+
use_snake = False
|
| 422 |
+
):
|
| 423 |
+
super().__init__()
|
| 424 |
+
|
| 425 |
+
self.cond_noise_aug = cond_noise_aug
|
| 426 |
+
|
| 427 |
+
self.io_channels = io_channels
|
| 428 |
+
|
| 429 |
+
if self.cond_noise_aug:
|
| 430 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
| 431 |
+
|
| 432 |
+
self.timestep_embed = FourierFeatures(1, 16)
|
| 433 |
+
|
| 434 |
+
attn_layer = depth - n_attn_layers
|
| 435 |
+
|
| 436 |
+
strides = [1] + strides
|
| 437 |
+
|
| 438 |
+
block = nn.Identity()
|
| 439 |
+
|
| 440 |
+
conv_block = partial(ResConvBlock, kernel_size=kernel_size, conv_bias = conv_bias, use_snake=use_snake)
|
| 441 |
+
|
| 442 |
+
for i in range(depth, 0, -1):
|
| 443 |
+
c = channels[i - 1]
|
| 444 |
+
stride = strides[i-1]
|
| 445 |
+
if stride > 2 and not learned_resample:
|
| 446 |
+
raise ValueError("Must have stride 2 without learned resampling")
|
| 447 |
+
|
| 448 |
+
if i > 1:
|
| 449 |
+
c_prev = channels[i - 2]
|
| 450 |
+
add_attn = i >= attn_layer and n_attn_layers > 0
|
| 451 |
+
block = SkipBlock(
|
| 452 |
+
Downsample1d_2(c_prev, c_prev, stride) if (learned_resample or stride == 1) else Downsample1d("cubic"),
|
| 453 |
+
conv_block(c_prev, c, c),
|
| 454 |
+
SelfAttention1d(
|
| 455 |
+
c, c // 32) if add_attn else nn.Identity(),
|
| 456 |
+
conv_block(c, c, c),
|
| 457 |
+
SelfAttention1d(
|
| 458 |
+
c, c // 32) if add_attn else nn.Identity(),
|
| 459 |
+
conv_block(c, c, c),
|
| 460 |
+
SelfAttention1d(
|
| 461 |
+
c, c // 32) if add_attn else nn.Identity(),
|
| 462 |
+
block,
|
| 463 |
+
conv_block(c * 2 if i != depth else c, c, c),
|
| 464 |
+
SelfAttention1d(
|
| 465 |
+
c, c // 32) if add_attn else nn.Identity(),
|
| 466 |
+
conv_block(c, c, c),
|
| 467 |
+
SelfAttention1d(
|
| 468 |
+
c, c // 32) if add_attn else nn.Identity(),
|
| 469 |
+
conv_block(c, c, c_prev),
|
| 470 |
+
SelfAttention1d(c_prev, c_prev //
|
| 471 |
+
32) if add_attn else nn.Identity(),
|
| 472 |
+
Upsample1d_2(c_prev, c_prev, stride) if learned_resample else Upsample1d(kernel="cubic")
|
| 473 |
+
)
|
| 474 |
+
else:
|
| 475 |
+
cond_embed_dim = 16 if not self.cond_noise_aug else 32
|
| 476 |
+
block = nn.Sequential(
|
| 477 |
+
conv_block((io_channels + cond_dim) + cond_embed_dim, c, c),
|
| 478 |
+
conv_block(c, c, c),
|
| 479 |
+
conv_block(c, c, c),
|
| 480 |
+
block,
|
| 481 |
+
conv_block(c * 2, c, c),
|
| 482 |
+
conv_block(c, c, c),
|
| 483 |
+
conv_block(c, c, io_channels, is_last=True),
|
| 484 |
+
)
|
| 485 |
+
self.net = block
|
| 486 |
+
|
| 487 |
+
with torch.no_grad():
|
| 488 |
+
for param in self.net.parameters():
|
| 489 |
+
param *= 0.5
|
| 490 |
+
|
| 491 |
+
def forward(self, x, t, cond=None, cond_aug_scale=None):
|
| 492 |
+
|
| 493 |
+
timestep_embed = expand_to_planes(self.timestep_embed(t[:, None]), x.shape)
|
| 494 |
+
|
| 495 |
+
inputs = [x, timestep_embed]
|
| 496 |
+
|
| 497 |
+
if cond is not None:
|
| 498 |
+
if cond.shape[2] != x.shape[2]:
|
| 499 |
+
cond = F.interpolate(cond, (x.shape[2], ), mode='linear', align_corners=False)
|
| 500 |
+
|
| 501 |
+
if self.cond_noise_aug:
|
| 502 |
+
# Get a random number between 0 and 1, uniformly sampled
|
| 503 |
+
if cond_aug_scale is None:
|
| 504 |
+
aug_level = self.rng.draw(cond.shape[0])[:, 0].to(cond)
|
| 505 |
+
else:
|
| 506 |
+
aug_level = torch.tensor([cond_aug_scale]).repeat([cond.shape[0]]).to(cond)
|
| 507 |
+
|
| 508 |
+
# Add noise to the conditioning signal
|
| 509 |
+
cond = cond + torch.randn_like(cond) * aug_level[:, None, None]
|
| 510 |
+
|
| 511 |
+
# Get embedding for noise cond level, reusing timestamp_embed
|
| 512 |
+
aug_level_embed = expand_to_planes(self.timestep_embed(aug_level[:, None]), x.shape)
|
| 513 |
+
|
| 514 |
+
inputs.append(aug_level_embed)
|
| 515 |
+
|
| 516 |
+
inputs.append(cond)
|
| 517 |
+
|
| 518 |
+
outputs = self.net(torch.cat(inputs, dim=1))
|
| 519 |
+
|
| 520 |
+
return outputs
|
| 521 |
+
|
| 522 |
+
class DiTWrapper(ConditionedDiffusionModel):
|
| 523 |
+
def __init__(
|
| 524 |
+
self,
|
| 525 |
+
*args,
|
| 526 |
+
**kwargs
|
| 527 |
+
):
|
| 528 |
+
super().__init__(supports_cross_attention=True, supports_global_cond=False, supports_input_concat=False)
|
| 529 |
+
|
| 530 |
+
self.model = DiffusionTransformer(*args, **kwargs)
|
| 531 |
+
|
| 532 |
+
with torch.no_grad():
|
| 533 |
+
for param in self.model.parameters():
|
| 534 |
+
param *= 0.5
|
| 535 |
+
|
| 536 |
+
def forward(self,
|
| 537 |
+
x,
|
| 538 |
+
t,
|
| 539 |
+
cross_attn_cond=None,
|
| 540 |
+
cross_attn_mask=None,
|
| 541 |
+
negative_cross_attn_cond=None,
|
| 542 |
+
negative_cross_attn_mask=None,
|
| 543 |
+
input_concat_cond=None,
|
| 544 |
+
negative_input_concat_cond=None,
|
| 545 |
+
global_cond=None,
|
| 546 |
+
negative_global_cond=None,
|
| 547 |
+
prepend_cond=None,
|
| 548 |
+
prepend_cond_mask=None,
|
| 549 |
+
cfg_scale=1.0,
|
| 550 |
+
cfg_dropout_prob: float = 0.0,
|
| 551 |
+
batch_cfg: bool = True,
|
| 552 |
+
rescale_cfg: bool = False,
|
| 553 |
+
scale_phi: float = 0.0,
|
| 554 |
+
**kwargs):
|
| 555 |
+
|
| 556 |
+
assert batch_cfg, "batch_cfg must be True for DiTWrapper"
|
| 557 |
+
#assert negative_input_concat_cond is None, "negative_input_concat_cond is not supported for DiTWrapper"
|
| 558 |
+
|
| 559 |
+
return self.model(
|
| 560 |
+
x,
|
| 561 |
+
t,
|
| 562 |
+
cross_attn_cond=cross_attn_cond,
|
| 563 |
+
cross_attn_cond_mask=cross_attn_mask,
|
| 564 |
+
negative_cross_attn_cond=negative_cross_attn_cond,
|
| 565 |
+
negative_cross_attn_mask=negative_cross_attn_mask,
|
| 566 |
+
input_concat_cond=input_concat_cond,
|
| 567 |
+
prepend_cond=prepend_cond,
|
| 568 |
+
prepend_cond_mask=prepend_cond_mask,
|
| 569 |
+
cfg_scale=cfg_scale,
|
| 570 |
+
cfg_dropout_prob=cfg_dropout_prob,
|
| 571 |
+
scale_phi=scale_phi,
|
| 572 |
+
global_embed=global_cond,
|
| 573 |
+
**kwargs)
|
| 574 |
+
|
| 575 |
+
class MMDiTWrapper(ConditionedDiffusionModel):
|
| 576 |
+
def __init__(
|
| 577 |
+
self,
|
| 578 |
+
*args,
|
| 579 |
+
**kwargs
|
| 580 |
+
):
|
| 581 |
+
super().__init__(supports_cross_attention=True, supports_global_cond=False, supports_input_concat=False)
|
| 582 |
+
|
| 583 |
+
self.model = MMAudio(*args, **kwargs)
|
| 584 |
+
|
| 585 |
+
# with torch.no_grad():
|
| 586 |
+
# for param in self.model.parameters():
|
| 587 |
+
# param *= 0.5
|
| 588 |
+
|
| 589 |
+
def forward(self,
|
| 590 |
+
x,
|
| 591 |
+
t,
|
| 592 |
+
clip_f,
|
| 593 |
+
sync_f,
|
| 594 |
+
text_f,
|
| 595 |
+
inpaint_masked_input=None,
|
| 596 |
+
t5_features=None,
|
| 597 |
+
metaclip_global_text_features=None,
|
| 598 |
+
cfg_scale=1.0,
|
| 599 |
+
cfg_dropout_prob: float = 0.0,
|
| 600 |
+
batch_cfg: bool = True,
|
| 601 |
+
rescale_cfg: bool = False,
|
| 602 |
+
scale_phi: float = 0.0,
|
| 603 |
+
**kwargs):
|
| 604 |
+
|
| 605 |
+
# breakpoint()
|
| 606 |
+
assert batch_cfg, "batch_cfg must be True for DiTWrapper"
|
| 607 |
+
#assert negative_input_concat_cond is None, "negative_input_concat_cond is not supported for DiTWrapper"
|
| 608 |
+
|
| 609 |
+
return self.model(
|
| 610 |
+
latent=x,
|
| 611 |
+
t=t,
|
| 612 |
+
clip_f=clip_f,
|
| 613 |
+
sync_f=sync_f,
|
| 614 |
+
text_f=text_f,
|
| 615 |
+
inpaint_masked_input=inpaint_masked_input,
|
| 616 |
+
t5_features=t5_features,
|
| 617 |
+
metaclip_global_text_features=metaclip_global_text_features,
|
| 618 |
+
cfg_scale=cfg_scale,
|
| 619 |
+
cfg_dropout_prob=cfg_dropout_prob,
|
| 620 |
+
scale_phi=scale_phi,
|
| 621 |
+
**kwargs)
|
| 622 |
+
|
| 623 |
+
class MMConditionedDiffusionModelWrapper(ConditionedDiffusionModel):
|
| 624 |
+
"""
|
| 625 |
+
A diffusion model that takes in conditioning
|
| 626 |
+
"""
|
| 627 |
+
def __init__(
|
| 628 |
+
self,
|
| 629 |
+
model: MMAudio,
|
| 630 |
+
conditioner: MultiConditioner,
|
| 631 |
+
io_channels,
|
| 632 |
+
sample_rate,
|
| 633 |
+
min_input_length: int,
|
| 634 |
+
diffusion_objective: tp.Literal["v", "rectified_flow"] = "v",
|
| 635 |
+
pretransform: tp.Optional[Pretransform] = None,
|
| 636 |
+
cross_attn_cond_ids: tp.List[str] = [],
|
| 637 |
+
global_cond_ids: tp.List[str] = [],
|
| 638 |
+
input_concat_ids: tp.List[str] = [],
|
| 639 |
+
prepend_cond_ids: tp.List[str] = [],
|
| 640 |
+
add_cond_ids: tp.List[str] = [],
|
| 641 |
+
mm_cond_ids: tp.List[str] = [],
|
| 642 |
+
):
|
| 643 |
+
super().__init__()
|
| 644 |
+
|
| 645 |
+
self.model = model
|
| 646 |
+
self.conditioner = conditioner
|
| 647 |
+
self.io_channels = io_channels
|
| 648 |
+
self.sample_rate = sample_rate
|
| 649 |
+
self.diffusion_objective = diffusion_objective
|
| 650 |
+
self.pretransform = pretransform
|
| 651 |
+
self.cross_attn_cond_ids = cross_attn_cond_ids
|
| 652 |
+
self.global_cond_ids = global_cond_ids
|
| 653 |
+
self.input_concat_ids = input_concat_ids
|
| 654 |
+
self.prepend_cond_ids = prepend_cond_ids
|
| 655 |
+
self.add_cond_ids = add_cond_ids
|
| 656 |
+
self.min_input_length = min_input_length
|
| 657 |
+
self.mm_cond_ids = mm_cond_ids
|
| 658 |
+
|
| 659 |
+
assert len(self.cross_attn_cond_ids) == 0, "cross_attn_cond_ids is not supported for MMDiTWrapper"
|
| 660 |
+
assert len(self.global_cond_ids) == 0, "global_cond_ids is not supported for MMDiTWrapper"
|
| 661 |
+
assert len(self.input_concat_ids) == 0, "input_concat_ids is not supported for MMDiTWrapper"
|
| 662 |
+
assert len(self.prepend_cond_ids) == 0, "prepend_cond_ids is not supported for MMDiTWrapper"
|
| 663 |
+
assert len(self.add_cond_ids) == 0, "add_cond_ids is not supported for MMDiTWrapper"
|
| 664 |
+
assert len(self.mm_cond_ids) > 0, "mm_cond_ids must be specified for MMDiTWrapper"
|
| 665 |
+
assert "metaclip_features" in self.mm_cond_ids, "clip_f must be specified in mm_cond_ids for MMDiTWrapper"
|
| 666 |
+
assert "sync_features" in self.mm_cond_ids, "sync_features must be specified in mm_cond_ids for MMDiTWrapper"
|
| 667 |
+
assert "metaclip_text_features" in self.mm_cond_ids, "metaclip_text_features must be specified in mm_cond_ids for MMDiTWrapper"
|
| 668 |
+
# assert len(self.mm_cond_ids) == 3, "mm_cond_ids must be clip_f sync_f text_f for MMDiTWrapper"
|
| 669 |
+
|
| 670 |
+
def get_conditioning_inputs(self, conditioning_tensors: tp.Dict[str, tp.Any], negative=False):
|
| 671 |
+
assert negative == False, "negative conditioning is not supported for MMDiTWrapper"
|
| 672 |
+
cross_attention_input = None
|
| 673 |
+
cross_attention_masks = None
|
| 674 |
+
global_cond = None
|
| 675 |
+
input_concat_cond = None
|
| 676 |
+
prepend_cond = None
|
| 677 |
+
prepend_cond_mask = None
|
| 678 |
+
add_input = None
|
| 679 |
+
inpaint_masked_input = None
|
| 680 |
+
t5_features = None
|
| 681 |
+
metaclip_global_text_features = None
|
| 682 |
+
clip_f = conditioning_tensors["metaclip_features"]
|
| 683 |
+
sync_f = conditioning_tensors["sync_features"]
|
| 684 |
+
text_f = conditioning_tensors["metaclip_text_features"]
|
| 685 |
+
if 'inpaint_masked_input' in conditioning_tensors.keys():
|
| 686 |
+
inpaint_masked_input = conditioning_tensors["inpaint_masked_input"]
|
| 687 |
+
if 't5_features' in conditioning_tensors.keys():
|
| 688 |
+
t5_features = conditioning_tensors["t5_features"]
|
| 689 |
+
if 'metaclip_global_text_features' in conditioning_tensors.keys():
|
| 690 |
+
metaclip_global_text_features = conditioning_tensors["metaclip_global_text_features"]
|
| 691 |
+
return {
|
| 692 |
+
"clip_f": clip_f,
|
| 693 |
+
"sync_f": sync_f,
|
| 694 |
+
"text_f": text_f,
|
| 695 |
+
"inpaint_masked_input": inpaint_masked_input,
|
| 696 |
+
"t5_features": t5_features,
|
| 697 |
+
"metaclip_global_text_features": metaclip_global_text_features
|
| 698 |
+
}
|
| 699 |
+
|
| 700 |
+
def forward(self, x: torch.Tensor, t: torch.Tensor, cond: tp.Dict[str, tp.Any], **kwargs):
|
| 701 |
+
# breakpoint()
|
| 702 |
+
# print(kwargs)
|
| 703 |
+
return self.model(x=x, t=t, **self.get_conditioning_inputs(cond), **kwargs)
|
| 704 |
+
|
| 705 |
+
def generate(self, *args, **kwargs):
|
| 706 |
+
return generate_diffusion_cond(self, *args, **kwargs)
|
| 707 |
+
|
| 708 |
+
class DiTUncondWrapper(DiffusionModel):
|
| 709 |
+
def __init__(
|
| 710 |
+
self,
|
| 711 |
+
io_channels,
|
| 712 |
+
*args,
|
| 713 |
+
**kwargs
|
| 714 |
+
):
|
| 715 |
+
super().__init__()
|
| 716 |
+
|
| 717 |
+
self.model = DiffusionTransformer(io_channels=io_channels, *args, **kwargs)
|
| 718 |
+
|
| 719 |
+
self.io_channels = io_channels
|
| 720 |
+
|
| 721 |
+
with torch.no_grad():
|
| 722 |
+
for param in self.model.parameters():
|
| 723 |
+
param *= 0.5
|
| 724 |
+
|
| 725 |
+
def forward(self, x, t, **kwargs):
|
| 726 |
+
return self.model(x, t, **kwargs)
|
| 727 |
+
|
| 728 |
+
def create_diffusion_uncond_from_config(config: tp.Dict[str, tp.Any]):
|
| 729 |
+
diffusion_uncond_config = config["model"]
|
| 730 |
+
|
| 731 |
+
model_type = diffusion_uncond_config.get('type', None)
|
| 732 |
+
|
| 733 |
+
diffusion_config = diffusion_uncond_config.get('config', {})
|
| 734 |
+
|
| 735 |
+
assert model_type is not None, "Must specify model type in config"
|
| 736 |
+
|
| 737 |
+
pretransform = diffusion_uncond_config.get("pretransform", None)
|
| 738 |
+
|
| 739 |
+
sample_size = config.get("sample_size", None)
|
| 740 |
+
assert sample_size is not None, "Must specify sample size in config"
|
| 741 |
+
|
| 742 |
+
sample_rate = config.get("sample_rate", None)
|
| 743 |
+
assert sample_rate is not None, "Must specify sample rate in config"
|
| 744 |
+
|
| 745 |
+
if pretransform is not None:
|
| 746 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
| 747 |
+
min_input_length = pretransform.downsampling_ratio
|
| 748 |
+
else:
|
| 749 |
+
min_input_length = 1
|
| 750 |
+
|
| 751 |
+
if model_type == 'DAU1d':
|
| 752 |
+
|
| 753 |
+
model = DiffusionAttnUnet1D(
|
| 754 |
+
**diffusion_config
|
| 755 |
+
)
|
| 756 |
+
|
| 757 |
+
elif model_type == "adp_uncond_1d":
|
| 758 |
+
|
| 759 |
+
model = UNet1DUncondWrapper(
|
| 760 |
+
**diffusion_config
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
elif model_type == "dit":
|
| 764 |
+
model = DiTUncondWrapper(
|
| 765 |
+
**diffusion_config
|
| 766 |
+
)
|
| 767 |
+
|
| 768 |
+
else:
|
| 769 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
| 770 |
+
|
| 771 |
+
return DiffusionModelWrapper(model,
|
| 772 |
+
io_channels=model.io_channels,
|
| 773 |
+
sample_size=sample_size,
|
| 774 |
+
sample_rate=sample_rate,
|
| 775 |
+
pretransform=pretransform,
|
| 776 |
+
min_input_length=min_input_length)
|
| 777 |
+
|
| 778 |
+
def create_diffusion_infill_from_config(config: tp.Dict[str, tp.Any]):
|
| 779 |
+
diffusion_uncond_config = config["model"]
|
| 780 |
+
|
| 781 |
+
|
| 782 |
+
diffusion_config = diffusion_uncond_config.get('diffusion', {})
|
| 783 |
+
model_type = diffusion_config.get('type', None)
|
| 784 |
+
model_config = diffusion_config.get("config",{})
|
| 785 |
+
assert model_type is not None, "Must specify model type in config"
|
| 786 |
+
|
| 787 |
+
pretransform = diffusion_uncond_config.get("pretransform", None)
|
| 788 |
+
|
| 789 |
+
sample_size = config.get("sample_size", None)
|
| 790 |
+
assert sample_size is not None, "Must specify sample size in config"
|
| 791 |
+
|
| 792 |
+
sample_rate = config.get("sample_rate", None)
|
| 793 |
+
assert sample_rate is not None, "Must specify sample rate in config"
|
| 794 |
+
|
| 795 |
+
if pretransform is not None:
|
| 796 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
| 797 |
+
min_input_length = pretransform.downsampling_ratio
|
| 798 |
+
else:
|
| 799 |
+
min_input_length = 1
|
| 800 |
+
|
| 801 |
+
if model_type == 'DAU1d':
|
| 802 |
+
|
| 803 |
+
model = DiffusionAttnUnet1D(
|
| 804 |
+
**model_config
|
| 805 |
+
)
|
| 806 |
+
|
| 807 |
+
elif model_type == "adp_uncond_1d":
|
| 808 |
+
|
| 809 |
+
model = UNet1DUncondWrapper(
|
| 810 |
+
io_channels = io_channels,
|
| 811 |
+
**model_config
|
| 812 |
+
)
|
| 813 |
+
elif model_type == "dit":
|
| 814 |
+
model = DiTUncondWrapper(
|
| 815 |
+
**model_config
|
| 816 |
+
)
|
| 817 |
+
|
| 818 |
+
else:
|
| 819 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
| 820 |
+
|
| 821 |
+
return DiffusionModelWrapper(model,
|
| 822 |
+
io_channels=model.io_channels,
|
| 823 |
+
sample_size=sample_size,
|
| 824 |
+
sample_rate=sample_rate,
|
| 825 |
+
pretransform=pretransform,
|
| 826 |
+
min_input_length=min_input_length)
|
| 827 |
+
|
| 828 |
+
def create_diffusion_cond_from_config(config: tp.Dict[str, tp.Any]):
|
| 829 |
+
|
| 830 |
+
model_config = config["model"]
|
| 831 |
+
|
| 832 |
+
model_type = config["model_type"]
|
| 833 |
+
|
| 834 |
+
diffusion_config = model_config.get('diffusion', None)
|
| 835 |
+
assert diffusion_config is not None, "Must specify diffusion config"
|
| 836 |
+
|
| 837 |
+
diffusion_model_type = diffusion_config.get('type', None)
|
| 838 |
+
assert diffusion_model_type is not None, "Must specify diffusion model type"
|
| 839 |
+
|
| 840 |
+
diffusion_model_config = diffusion_config.get('config', None)
|
| 841 |
+
assert diffusion_model_config is not None, "Must specify diffusion model config"
|
| 842 |
+
|
| 843 |
+
if diffusion_model_type == 'adp_cfg_1d':
|
| 844 |
+
diffusion_model = UNetCFG1DWrapper(**diffusion_model_config)
|
| 845 |
+
elif diffusion_model_type == 'adp_1d':
|
| 846 |
+
diffusion_model = UNet1DCondWrapper(**diffusion_model_config)
|
| 847 |
+
elif diffusion_model_type == 'dit':
|
| 848 |
+
diffusion_model = DiTWrapper(**diffusion_model_config)
|
| 849 |
+
elif diffusion_model_type == 'mmdit':
|
| 850 |
+
diffusion_model = MMDiTWrapper(**diffusion_model_config)
|
| 851 |
+
|
| 852 |
+
io_channels = model_config.get('io_channels', None)
|
| 853 |
+
assert io_channels is not None, "Must specify io_channels in model config"
|
| 854 |
+
|
| 855 |
+
sample_rate = config.get('sample_rate', None)
|
| 856 |
+
assert sample_rate is not None, "Must specify sample_rate in config"
|
| 857 |
+
|
| 858 |
+
diffusion_objective = diffusion_config.get('diffusion_objective', 'v')
|
| 859 |
+
|
| 860 |
+
conditioning_config = model_config.get('conditioning', None)
|
| 861 |
+
|
| 862 |
+
conditioner = None
|
| 863 |
+
if conditioning_config is not None:
|
| 864 |
+
conditioner = create_multi_conditioner_from_conditioning_config(conditioning_config)
|
| 865 |
+
|
| 866 |
+
cross_attention_ids = diffusion_config.get('cross_attention_cond_ids', [])
|
| 867 |
+
add_cond_ids = diffusion_config.get('add_cond_ids', [])
|
| 868 |
+
global_cond_ids = diffusion_config.get('global_cond_ids', [])
|
| 869 |
+
input_concat_ids = diffusion_config.get('input_concat_ids', [])
|
| 870 |
+
prepend_cond_ids = diffusion_config.get('prepend_cond_ids', [])
|
| 871 |
+
mm_cond_ids = diffusion_config.get('mm_cond_ids', [])
|
| 872 |
+
|
| 873 |
+
pretransform = model_config.get("pretransform", None)
|
| 874 |
+
|
| 875 |
+
if pretransform is not None:
|
| 876 |
+
pretransform = create_pretransform_from_config(pretransform, sample_rate)
|
| 877 |
+
min_input_length = pretransform.downsampling_ratio
|
| 878 |
+
else:
|
| 879 |
+
min_input_length = 1
|
| 880 |
+
|
| 881 |
+
if diffusion_model_type == "adp_cfg_1d" or diffusion_model_type == "adp_1d":
|
| 882 |
+
min_input_length *= np.prod(diffusion_model_config["factors"])
|
| 883 |
+
elif diffusion_model_type == "dit":
|
| 884 |
+
min_input_length *= diffusion_model.model.patch_size
|
| 885 |
+
|
| 886 |
+
# Get the proper wrapper class
|
| 887 |
+
|
| 888 |
+
extra_kwargs = {}
|
| 889 |
+
|
| 890 |
+
if model_type == "mm_diffusion_cond":
|
| 891 |
+
wrapper_fn = MMConditionedDiffusionModelWrapper
|
| 892 |
+
extra_kwargs["diffusion_objective"] = diffusion_objective
|
| 893 |
+
extra_kwargs["mm_cond_ids"] = mm_cond_ids
|
| 894 |
+
|
| 895 |
+
if model_type == "diffusion_cond" or model_type == "diffusion_cond_inpaint" or model_type == 'diffusion_infill':
|
| 896 |
+
wrapper_fn = ConditionedDiffusionModelWrapper
|
| 897 |
+
extra_kwargs["diffusion_objective"] = diffusion_objective
|
| 898 |
+
|
| 899 |
+
elif model_type == "diffusion_prior":
|
| 900 |
+
prior_type = model_config.get("prior_type", None)
|
| 901 |
+
assert prior_type is not None, "Must specify prior_type in diffusion prior model config"
|
| 902 |
+
|
| 903 |
+
if prior_type == "mono_stereo":
|
| 904 |
+
from .diffusion_prior import MonoToStereoDiffusionPrior
|
| 905 |
+
wrapper_fn = MonoToStereoDiffusionPrior
|
| 906 |
+
|
| 907 |
+
return wrapper_fn(
|
| 908 |
+
diffusion_model,
|
| 909 |
+
conditioner,
|
| 910 |
+
min_input_length=min_input_length,
|
| 911 |
+
sample_rate=sample_rate,
|
| 912 |
+
cross_attn_cond_ids=cross_attention_ids,
|
| 913 |
+
global_cond_ids=global_cond_ids,
|
| 914 |
+
input_concat_ids=input_concat_ids,
|
| 915 |
+
prepend_cond_ids=prepend_cond_ids,
|
| 916 |
+
add_cond_ids=add_cond_ids,
|
| 917 |
+
pretransform=pretransform,
|
| 918 |
+
io_channels=io_channels,
|
| 919 |
+
**extra_kwargs
|
| 920 |
+
)
|
ThinkSound/models/dit.py
ADDED
|
@@ -0,0 +1,439 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as tp
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
# from beartype.typing import Tuple
|
| 5 |
+
from einops import rearrange
|
| 6 |
+
from torch import nn
|
| 7 |
+
from torch.nn import functional as F
|
| 8 |
+
from x_transformers import ContinuousTransformerWrapper, Encoder
|
| 9 |
+
from .mmmodules.model.low_level import MLP, ChannelLastConv1d, ConvMLP
|
| 10 |
+
from .blocks import FourierFeatures
|
| 11 |
+
from .transformer import ContinuousTransformer
|
| 12 |
+
from .utils import mask_from_frac_lengths, resample
|
| 13 |
+
class DiffusionTransformer(nn.Module):
|
| 14 |
+
def __init__(self,
|
| 15 |
+
io_channels=32,
|
| 16 |
+
patch_size=1,
|
| 17 |
+
embed_dim=768,
|
| 18 |
+
cond_token_dim=0,
|
| 19 |
+
project_cond_tokens=True,
|
| 20 |
+
global_cond_dim=0,
|
| 21 |
+
project_global_cond=True,
|
| 22 |
+
input_concat_dim=0,
|
| 23 |
+
prepend_cond_dim=0,
|
| 24 |
+
cond_ctx_dim=0,
|
| 25 |
+
depth=12,
|
| 26 |
+
num_heads=8,
|
| 27 |
+
transformer_type: tp.Literal["x-transformers", "continuous_transformer","mm_transformer"] = "x-transformers",
|
| 28 |
+
global_cond_type: tp.Literal["prepend", "adaLN"] = "prepend",
|
| 29 |
+
frac_lengths_mask = (0.7, 1.),
|
| 30 |
+
ctx_drop: float = 0.1,
|
| 31 |
+
add_token_dim=0,
|
| 32 |
+
use_mlp=False,
|
| 33 |
+
**kwargs):
|
| 34 |
+
|
| 35 |
+
super().__init__()
|
| 36 |
+
|
| 37 |
+
self.cond_token_dim = cond_token_dim
|
| 38 |
+
|
| 39 |
+
# Timestep embeddings
|
| 40 |
+
timestep_features_dim = 256
|
| 41 |
+
|
| 42 |
+
self.timestep_features = FourierFeatures(1, timestep_features_dim)
|
| 43 |
+
|
| 44 |
+
self.to_timestep_embed = nn.Sequential(
|
| 45 |
+
nn.Linear(timestep_features_dim, embed_dim, bias=True),
|
| 46 |
+
nn.SiLU(),
|
| 47 |
+
nn.Linear(embed_dim, embed_dim, bias=True),
|
| 48 |
+
)
|
| 49 |
+
self.use_mlp = use_mlp
|
| 50 |
+
if cond_token_dim > 0:
|
| 51 |
+
# Conditioning tokens
|
| 52 |
+
cond_embed_dim = cond_token_dim if not project_cond_tokens else embed_dim
|
| 53 |
+
self.to_cond_embed = nn.Sequential(
|
| 54 |
+
nn.Linear(cond_token_dim, cond_embed_dim, bias=False),
|
| 55 |
+
nn.SiLU(),
|
| 56 |
+
nn.Linear(cond_embed_dim, cond_embed_dim, bias=False)
|
| 57 |
+
)
|
| 58 |
+
else:
|
| 59 |
+
cond_embed_dim = 0
|
| 60 |
+
|
| 61 |
+
if global_cond_dim > 0:
|
| 62 |
+
# Global conditioning
|
| 63 |
+
global_embed_dim = global_cond_dim if not project_global_cond else embed_dim
|
| 64 |
+
self.to_global_embed = nn.Sequential(
|
| 65 |
+
nn.Linear(global_cond_dim, global_embed_dim, bias=False),
|
| 66 |
+
nn.SiLU(),
|
| 67 |
+
nn.Linear(global_embed_dim, global_embed_dim, bias=False)
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
if add_token_dim > 0:
|
| 71 |
+
# Conditioning tokens
|
| 72 |
+
|
| 73 |
+
add_embed_dim = add_token_dim if not project_cond_tokens else embed_dim
|
| 74 |
+
self.to_add_embed = nn.Sequential(
|
| 75 |
+
nn.SiLU(),
|
| 76 |
+
ConvMLP(add_embed_dim, add_embed_dim * 4, kernel_size=3, padding=1),
|
| 77 |
+
)
|
| 78 |
+
else:
|
| 79 |
+
add_embed_dim = 0
|
| 80 |
+
|
| 81 |
+
if cond_ctx_dim > 0:
|
| 82 |
+
self.ctx_linear = nn.Linear(cond_ctx_dim*2, cond_ctx_dim, bias=True)
|
| 83 |
+
self.frac_lengths_mask = frac_lengths_mask
|
| 84 |
+
self.ctx_drop = ctx_drop
|
| 85 |
+
|
| 86 |
+
if prepend_cond_dim > 0:
|
| 87 |
+
# Prepend conditioning
|
| 88 |
+
self.to_prepend_embed = nn.Sequential(
|
| 89 |
+
nn.Linear(prepend_cond_dim, embed_dim, bias=False),
|
| 90 |
+
nn.SiLU(),
|
| 91 |
+
nn.Linear(embed_dim, embed_dim, bias=False)
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self.input_concat_dim = input_concat_dim
|
| 95 |
+
|
| 96 |
+
dim_in = io_channels + self.input_concat_dim
|
| 97 |
+
|
| 98 |
+
self.patch_size = patch_size
|
| 99 |
+
|
| 100 |
+
# Transformer
|
| 101 |
+
|
| 102 |
+
self.transformer_type = transformer_type
|
| 103 |
+
|
| 104 |
+
self.global_cond_type = global_cond_type
|
| 105 |
+
print("######################")
|
| 106 |
+
print(f'global type: {global_cond_type}')
|
| 107 |
+
print("######################")
|
| 108 |
+
if self.transformer_type == "x-transformers":
|
| 109 |
+
self.transformer = ContinuousTransformerWrapper(
|
| 110 |
+
dim_in=dim_in * patch_size,
|
| 111 |
+
dim_out=io_channels * patch_size,
|
| 112 |
+
max_seq_len=0, #Not relevant without absolute positional embeds
|
| 113 |
+
attn_layers = Encoder(
|
| 114 |
+
dim=embed_dim,
|
| 115 |
+
depth=depth,
|
| 116 |
+
heads=num_heads,
|
| 117 |
+
attn_flash = True,
|
| 118 |
+
cross_attend = cond_token_dim > 0,
|
| 119 |
+
dim_context=None if cond_embed_dim == 0 else cond_embed_dim,
|
| 120 |
+
zero_init_branch_output=True,
|
| 121 |
+
use_abs_pos_emb = False,
|
| 122 |
+
rotary_pos_emb=True,
|
| 123 |
+
ff_swish = True,
|
| 124 |
+
ff_glu = True,
|
| 125 |
+
**kwargs
|
| 126 |
+
)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
elif self.transformer_type == "continuous_transformer":
|
| 130 |
+
|
| 131 |
+
global_dim = None
|
| 132 |
+
|
| 133 |
+
if self.global_cond_type == "adaLN":
|
| 134 |
+
# The global conditioning is projected to the embed_dim already at this point
|
| 135 |
+
global_dim = embed_dim
|
| 136 |
+
|
| 137 |
+
self.transformer = ContinuousTransformer(
|
| 138 |
+
dim=embed_dim,
|
| 139 |
+
depth=depth,
|
| 140 |
+
dim_heads=embed_dim // num_heads,
|
| 141 |
+
dim_in=dim_in * patch_size,
|
| 142 |
+
dim_out=io_channels * patch_size,
|
| 143 |
+
cross_attend = cond_token_dim > 0,
|
| 144 |
+
cond_token_dim = cond_embed_dim,
|
| 145 |
+
global_cond_dim=global_dim,
|
| 146 |
+
**kwargs
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
else:
|
| 150 |
+
raise ValueError(f"Unknown transformer type: {self.transformer_type}")
|
| 151 |
+
|
| 152 |
+
self.preprocess_conv = nn.Conv1d(dim_in, dim_in, 1, bias=False)
|
| 153 |
+
nn.init.zeros_(self.preprocess_conv.weight)
|
| 154 |
+
self.postprocess_conv = nn.Conv1d(io_channels, io_channels, 1, bias=False)
|
| 155 |
+
nn.init.zeros_(self.postprocess_conv.weight)
|
| 156 |
+
|
| 157 |
+
def _forward(
|
| 158 |
+
self,
|
| 159 |
+
x,
|
| 160 |
+
t,
|
| 161 |
+
mask=None,
|
| 162 |
+
cross_attn_cond=None,
|
| 163 |
+
cross_attn_cond_mask=None,
|
| 164 |
+
input_concat_cond=None,
|
| 165 |
+
global_embed=None,
|
| 166 |
+
prepend_cond=None,
|
| 167 |
+
prepend_cond_mask=None,
|
| 168 |
+
add_cond=None,
|
| 169 |
+
add_masks=None,
|
| 170 |
+
# x_ctx=None,
|
| 171 |
+
return_info=False,
|
| 172 |
+
**kwargs):
|
| 173 |
+
|
| 174 |
+
if cross_attn_cond is not None:
|
| 175 |
+
cross_attn_cond = self.to_cond_embed(cross_attn_cond)
|
| 176 |
+
if global_embed is not None:
|
| 177 |
+
# Project the global conditioning to the embedding dimension
|
| 178 |
+
global_embed = self.to_global_embed(global_embed)
|
| 179 |
+
if len(global_embed.shape) == 3:
|
| 180 |
+
global_embed = torch.max(global_embed, dim=1).values
|
| 181 |
+
|
| 182 |
+
prepend_inputs = None
|
| 183 |
+
prepend_mask = None
|
| 184 |
+
prepend_length = 0
|
| 185 |
+
if prepend_cond is not None:
|
| 186 |
+
# Project the prepend conditioning to the embedding dimension
|
| 187 |
+
prepend_cond = self.to_prepend_embed(prepend_cond)
|
| 188 |
+
|
| 189 |
+
prepend_inputs = prepend_cond
|
| 190 |
+
if prepend_cond_mask is not None:
|
| 191 |
+
prepend_mask = prepend_cond_mask
|
| 192 |
+
|
| 193 |
+
if input_concat_cond is not None:
|
| 194 |
+
|
| 195 |
+
# Interpolate input_concat_cond to the same length as x
|
| 196 |
+
if input_concat_cond.shape[2] != x.shape[2]:
|
| 197 |
+
input_concat_cond = F.interpolate(input_concat_cond, (x.shape[2], ), mode='nearest-exact')
|
| 198 |
+
|
| 199 |
+
x = torch.cat([x, input_concat_cond], dim=1)
|
| 200 |
+
|
| 201 |
+
if add_cond is not None:
|
| 202 |
+
# Interpolate input_concat_cond to the same length as x
|
| 203 |
+
|
| 204 |
+
if self.use_mlp:
|
| 205 |
+
add_cond = self.to_add_embed(add_cond)
|
| 206 |
+
if add_cond.shape[1] != x.shape[2]:
|
| 207 |
+
# add_cond = add_cond.transpose(1,2)
|
| 208 |
+
# add_cond = F.interpolate(add_cond, (x.shape[2], ), mode='nearest-exact')
|
| 209 |
+
# add_cond = add_cond.transpose(1,2)
|
| 210 |
+
add_cond = resample(add_cond, x)
|
| 211 |
+
|
| 212 |
+
# Get the batch of timestep embeddings
|
| 213 |
+
timestep_embed = self.to_timestep_embed(self.timestep_features(t[:, None])) # (b, embed_dim)
|
| 214 |
+
# import ipdb
|
| 215 |
+
# ipdb.set_trace()
|
| 216 |
+
# Timestep embedding is considered a global embedding. Add to the global conditioning if it exists
|
| 217 |
+
if global_embed is not None:
|
| 218 |
+
global_embed = global_embed + timestep_embed
|
| 219 |
+
else:
|
| 220 |
+
global_embed = timestep_embed
|
| 221 |
+
|
| 222 |
+
# Add the global_embed to the prepend inputs if there is no global conditioning support in the transformer
|
| 223 |
+
if self.global_cond_type == "prepend":
|
| 224 |
+
if prepend_inputs is None:
|
| 225 |
+
# Prepend inputs are just the global embed, and the mask is all ones
|
| 226 |
+
prepend_inputs = global_embed.unsqueeze(1)
|
| 227 |
+
prepend_mask = torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)
|
| 228 |
+
else:
|
| 229 |
+
# Prepend inputs are the prepend conditioning + the global embed
|
| 230 |
+
prepend_inputs = torch.cat([prepend_inputs, global_embed.unsqueeze(1)], dim=1)
|
| 231 |
+
prepend_mask = torch.cat([prepend_mask, torch.ones((x.shape[0], 1), device=x.device, dtype=torch.bool)], dim=1)
|
| 232 |
+
|
| 233 |
+
prepend_length = prepend_inputs.shape[1]
|
| 234 |
+
|
| 235 |
+
x = self.preprocess_conv(x) + x
|
| 236 |
+
x = rearrange(x, "b c t -> b t c")
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
extra_args = {}
|
| 240 |
+
|
| 241 |
+
if self.global_cond_type == "adaLN":
|
| 242 |
+
extra_args["global_cond"] = global_embed
|
| 243 |
+
|
| 244 |
+
if self.patch_size > 1:
|
| 245 |
+
x = rearrange(x, "b (t p) c -> b t (c p)", p=self.patch_size)
|
| 246 |
+
|
| 247 |
+
if self.transformer_type == "x-transformers":
|
| 248 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, context_mask=cross_attn_cond_mask, add_cond=add_cond, mask=mask, prepend_mask=prepend_mask, **extra_args, **kwargs)
|
| 249 |
+
elif self.transformer_type == "continuous_transformer":
|
| 250 |
+
output = self.transformer(x, prepend_embeds=prepend_inputs, context=cross_attn_cond, add_cond=add_cond, context_mask=cross_attn_cond_mask, mask=mask, prepend_mask=prepend_mask, return_info=return_info, **extra_args, **kwargs)
|
| 251 |
+
|
| 252 |
+
if return_info:
|
| 253 |
+
output, info = output
|
| 254 |
+
elif self.transformer_type == "mm_transformer":
|
| 255 |
+
output = self.transformer(x, context=cross_attn_cond, mask=mask, context_mask=cross_attn_cond_mask, **extra_args, **kwargs)
|
| 256 |
+
|
| 257 |
+
output = rearrange(output, "b t c -> b c t")[:,:,prepend_length:]
|
| 258 |
+
|
| 259 |
+
if self.patch_size > 1:
|
| 260 |
+
output = rearrange(output, "b (c p) t -> b c (t p)", p=self.patch_size)
|
| 261 |
+
|
| 262 |
+
output = self.postprocess_conv(output) + output
|
| 263 |
+
|
| 264 |
+
if return_info:
|
| 265 |
+
return output, info
|
| 266 |
+
|
| 267 |
+
return output
|
| 268 |
+
|
| 269 |
+
def forward(
|
| 270 |
+
self,
|
| 271 |
+
x,
|
| 272 |
+
t,
|
| 273 |
+
cross_attn_cond=None,
|
| 274 |
+
cross_attn_cond_mask=None,
|
| 275 |
+
negative_cross_attn_cond=None,
|
| 276 |
+
negative_cross_attn_mask=None,
|
| 277 |
+
input_concat_cond=None,
|
| 278 |
+
global_embed=None,
|
| 279 |
+
negative_global_embed=None,
|
| 280 |
+
prepend_cond=None,
|
| 281 |
+
prepend_cond_mask=None,
|
| 282 |
+
add_cond=None,
|
| 283 |
+
cfg_scale=1.0,
|
| 284 |
+
cfg_dropout_prob=0.0,
|
| 285 |
+
causal=False,
|
| 286 |
+
scale_phi=0.0,
|
| 287 |
+
mask=None,
|
| 288 |
+
x_ctx=None,
|
| 289 |
+
ctx_mask=None,
|
| 290 |
+
return_info=False,
|
| 291 |
+
**kwargs):
|
| 292 |
+
|
| 293 |
+
assert causal == False, "Causal mode is not supported for DiffusionTransformer"
|
| 294 |
+
bsz, a, b = x.shape
|
| 295 |
+
|
| 296 |
+
if cross_attn_cond_mask is not None:
|
| 297 |
+
cross_attn_cond_mask = cross_attn_cond_mask.bool()
|
| 298 |
+
|
| 299 |
+
cross_attn_cond_mask = None # Temporarily disabling conditioning masks due to kernel issue for flash attention
|
| 300 |
+
|
| 301 |
+
if prepend_cond_mask is not None:
|
| 302 |
+
prepend_cond_mask = prepend_cond_mask.bool()
|
| 303 |
+
|
| 304 |
+
# CFG dropout
|
| 305 |
+
if cfg_dropout_prob > 0.0:
|
| 306 |
+
if cross_attn_cond is not None:
|
| 307 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
| 308 |
+
dropout_mask = torch.bernoulli(torch.full((cross_attn_cond.shape[0], 1, 1), cfg_dropout_prob, device=cross_attn_cond.device)).to(torch.bool)
|
| 309 |
+
cross_attn_cond = torch.where(dropout_mask, null_embed, cross_attn_cond)
|
| 310 |
+
|
| 311 |
+
if prepend_cond is not None:
|
| 312 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
| 313 |
+
dropout_mask = torch.bernoulli(torch.full((prepend_cond.shape[0], 1, 1), cfg_dropout_prob, device=prepend_cond.device)).to(torch.bool)
|
| 314 |
+
prepend_cond = torch.where(dropout_mask, null_embed, prepend_cond)
|
| 315 |
+
|
| 316 |
+
if add_cond is not None:
|
| 317 |
+
null_embed = torch.zeros_like(add_cond, device=add_cond.device)
|
| 318 |
+
dropout_mask = torch.bernoulli(torch.full((add_cond.shape[0], 1, 1), cfg_dropout_prob, device=add_cond.device)).to(torch.bool)
|
| 319 |
+
add_cond = torch.where(dropout_mask, null_embed, add_cond)
|
| 320 |
+
|
| 321 |
+
if cfg_scale != 1.0 and (cross_attn_cond is not None or prepend_cond is not None or add_cond is not None):
|
| 322 |
+
# Classifier-free guidance
|
| 323 |
+
# Concatenate conditioned and unconditioned inputs on the batch dimension
|
| 324 |
+
batch_inputs = torch.cat([x, x], dim=0)
|
| 325 |
+
batch_timestep = torch.cat([t, t], dim=0)
|
| 326 |
+
|
| 327 |
+
if global_embed is not None:
|
| 328 |
+
batch_global_cond = torch.cat([global_embed, global_embed], dim=0)
|
| 329 |
+
else:
|
| 330 |
+
batch_global_cond = None
|
| 331 |
+
|
| 332 |
+
if input_concat_cond is not None:
|
| 333 |
+
batch_input_concat_cond = torch.cat([input_concat_cond, input_concat_cond], dim=0)
|
| 334 |
+
else:
|
| 335 |
+
batch_input_concat_cond = None
|
| 336 |
+
|
| 337 |
+
batch_cond = None
|
| 338 |
+
batch_cond_masks = None
|
| 339 |
+
|
| 340 |
+
# Handle CFG for cross-attention conditioning
|
| 341 |
+
if cross_attn_cond is not None:
|
| 342 |
+
|
| 343 |
+
null_embed = torch.zeros_like(cross_attn_cond, device=cross_attn_cond.device)
|
| 344 |
+
|
| 345 |
+
# For negative cross-attention conditioning, replace the null embed with the negative cross-attention conditioning
|
| 346 |
+
if negative_cross_attn_cond is not None:
|
| 347 |
+
|
| 348 |
+
# If there's a negative cross-attention mask, set the masked tokens to the null embed
|
| 349 |
+
if negative_cross_attn_mask is not None:
|
| 350 |
+
negative_cross_attn_mask = negative_cross_attn_mask.to(torch.bool).unsqueeze(2)
|
| 351 |
+
|
| 352 |
+
negative_cross_attn_cond = torch.where(negative_cross_attn_mask, negative_cross_attn_cond, null_embed)
|
| 353 |
+
|
| 354 |
+
batch_cond = torch.cat([cross_attn_cond, negative_cross_attn_cond], dim=0)
|
| 355 |
+
|
| 356 |
+
else:
|
| 357 |
+
batch_cond = torch.cat([cross_attn_cond, null_embed], dim=0)
|
| 358 |
+
|
| 359 |
+
if cross_attn_cond_mask is not None:
|
| 360 |
+
batch_cond_masks = torch.cat([cross_attn_cond_mask, cross_attn_cond_mask], dim=0)
|
| 361 |
+
|
| 362 |
+
batch_prepend_cond = None
|
| 363 |
+
batch_prepend_cond_mask = None
|
| 364 |
+
|
| 365 |
+
if prepend_cond is not None:
|
| 366 |
+
|
| 367 |
+
null_embed = torch.zeros_like(prepend_cond, device=prepend_cond.device)
|
| 368 |
+
|
| 369 |
+
batch_prepend_cond = torch.cat([prepend_cond, null_embed], dim=0)
|
| 370 |
+
|
| 371 |
+
if prepend_cond_mask is not None:
|
| 372 |
+
batch_prepend_cond_mask = torch.cat([prepend_cond_mask, prepend_cond_mask], dim=0)
|
| 373 |
+
|
| 374 |
+
batch_add_cond = None
|
| 375 |
+
|
| 376 |
+
# Handle CFG for cross-attention conditioning
|
| 377 |
+
if add_cond is not None:
|
| 378 |
+
|
| 379 |
+
null_embed = torch.zeros_like(add_cond, device=add_cond.device)
|
| 380 |
+
|
| 381 |
+
|
| 382 |
+
batch_add_cond = torch.cat([add_cond, null_embed], dim=0)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
if mask is not None:
|
| 386 |
+
batch_masks = torch.cat([mask, mask], dim=0)
|
| 387 |
+
else:
|
| 388 |
+
batch_masks = None
|
| 389 |
+
|
| 390 |
+
batch_output = self._forward(
|
| 391 |
+
batch_inputs,
|
| 392 |
+
batch_timestep,
|
| 393 |
+
cross_attn_cond=batch_cond,
|
| 394 |
+
cross_attn_cond_mask=batch_cond_masks,
|
| 395 |
+
mask = batch_masks,
|
| 396 |
+
# x_ctx=x_ctx,
|
| 397 |
+
input_concat_cond=batch_input_concat_cond,
|
| 398 |
+
global_embed = batch_global_cond,
|
| 399 |
+
prepend_cond = batch_prepend_cond,
|
| 400 |
+
prepend_cond_mask = batch_prepend_cond_mask,
|
| 401 |
+
add_cond = batch_add_cond,
|
| 402 |
+
return_info = return_info,
|
| 403 |
+
**kwargs)
|
| 404 |
+
|
| 405 |
+
if return_info:
|
| 406 |
+
batch_output, info = batch_output
|
| 407 |
+
|
| 408 |
+
cond_output, uncond_output = torch.chunk(batch_output, 2, dim=0)
|
| 409 |
+
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
|
| 410 |
+
|
| 411 |
+
# CFG Rescale
|
| 412 |
+
if scale_phi != 0.0:
|
| 413 |
+
cond_out_std = cond_output.std(dim=1, keepdim=True)
|
| 414 |
+
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
|
| 415 |
+
output = scale_phi * (cfg_output * (cond_out_std/out_cfg_std)) + (1-scale_phi) * cfg_output
|
| 416 |
+
else:
|
| 417 |
+
output = cfg_output
|
| 418 |
+
|
| 419 |
+
if return_info:
|
| 420 |
+
return output, info
|
| 421 |
+
|
| 422 |
+
return output
|
| 423 |
+
|
| 424 |
+
else:
|
| 425 |
+
return self._forward(
|
| 426 |
+
x,
|
| 427 |
+
t,
|
| 428 |
+
cross_attn_cond=cross_attn_cond,
|
| 429 |
+
cross_attn_cond_mask=cross_attn_cond_mask,
|
| 430 |
+
input_concat_cond=input_concat_cond,
|
| 431 |
+
global_embed=global_embed,
|
| 432 |
+
prepend_cond=prepend_cond,
|
| 433 |
+
prepend_cond_mask=prepend_cond_mask,
|
| 434 |
+
add_cond=add_cond,
|
| 435 |
+
# x_ctx=x_ctx,
|
| 436 |
+
mask=mask,
|
| 437 |
+
return_info=return_info,
|
| 438 |
+
**kwargs
|
| 439 |
+
)
|
ThinkSound/models/embeddings.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
# https://github.com/facebookresearch/DiT
|
| 5 |
+
|
| 6 |
+
from typing import Union
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
from einops import rearrange
|
| 10 |
+
from torch import Tensor
|
| 11 |
+
|
| 12 |
+
# Ref: https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
|
| 13 |
+
# Ref: https://github.com/lucidrains/rotary-embedding-torch
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def compute_rope_rotations(length: int,
|
| 17 |
+
dim: int,
|
| 18 |
+
theta: int,
|
| 19 |
+
*,
|
| 20 |
+
freq_scaling: float = 1.0,
|
| 21 |
+
device: Union[torch.device, str] = 'cpu') -> Tensor:
|
| 22 |
+
assert dim % 2 == 0
|
| 23 |
+
|
| 24 |
+
with torch.amp.autocast(device_type='cuda', enabled=False):
|
| 25 |
+
pos = torch.arange(length, dtype=torch.float32, device=device)
|
| 26 |
+
freqs = 1.0 / (theta**(torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim))
|
| 27 |
+
freqs *= freq_scaling
|
| 28 |
+
|
| 29 |
+
rot = torch.einsum('..., f -> ... f', pos, freqs)
|
| 30 |
+
rot = torch.stack([torch.cos(rot), -torch.sin(rot), torch.sin(rot), torch.cos(rot)], dim=-1)
|
| 31 |
+
rot = rearrange(rot, 'n d (i j) -> 1 n d i j', i=2, j=2)
|
| 32 |
+
return rot
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def apply_rope(x: Tensor, rot: Tensor) -> tuple[Tensor, Tensor]:
|
| 36 |
+
with torch.amp.autocast(device_type='cuda', enabled=False):
|
| 37 |
+
_x = x.float()
|
| 38 |
+
_x = _x.view(*_x.shape[:-1], -1, 1, 2)
|
| 39 |
+
x_out = rot[..., 0] * _x[..., 0] + rot[..., 1] * _x[..., 1]
|
| 40 |
+
return x_out.reshape(*x.shape).to(dtype=x.dtype)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class TimestepEmbedder(nn.Module):
|
| 44 |
+
"""
|
| 45 |
+
Embeds scalar timesteps into vector representations.
|
| 46 |
+
"""
|
| 47 |
+
|
| 48 |
+
def __init__(self, dim, frequency_embedding_size, max_period):
|
| 49 |
+
super().__init__()
|
| 50 |
+
self.mlp = nn.Sequential(
|
| 51 |
+
nn.Linear(frequency_embedding_size, dim),
|
| 52 |
+
nn.SiLU(),
|
| 53 |
+
nn.Linear(dim, dim),
|
| 54 |
+
)
|
| 55 |
+
self.dim = dim
|
| 56 |
+
self.max_period = max_period
|
| 57 |
+
assert dim % 2 == 0, 'dim must be even.'
|
| 58 |
+
|
| 59 |
+
with torch.autocast('cuda', enabled=False):
|
| 60 |
+
self.register_buffer("freqs",
|
| 61 |
+
1.0 / (10000**(torch.arange(0, frequency_embedding_size, 2, dtype=torch.float32) /
|
| 62 |
+
frequency_embedding_size)),
|
| 63 |
+
persistent=False)
|
| 64 |
+
freq_scale = 10000 / max_period
|
| 65 |
+
self.freqs = freq_scale * self.freqs
|
| 66 |
+
|
| 67 |
+
def timestep_embedding(self, t):
|
| 68 |
+
"""
|
| 69 |
+
Create sinusoidal timestep embeddings.
|
| 70 |
+
:param t: a 1-D Tensor of N indices, one per batch element.
|
| 71 |
+
These may be fractional.
|
| 72 |
+
:param dim: the dimension of the output.
|
| 73 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
| 74 |
+
:return: an (N, D) Tensor of positional embeddings.
|
| 75 |
+
"""
|
| 76 |
+
# https://github.com/openai/glide-text2im/blob/main/glide_text2im/nn.py
|
| 77 |
+
|
| 78 |
+
args = t[:, None].float() * self.freqs[None]
|
| 79 |
+
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
| 80 |
+
return embedding
|
| 81 |
+
|
| 82 |
+
def forward(self, t):
|
| 83 |
+
t_freq = self.timestep_embedding(t).to(t.dtype)
|
| 84 |
+
t_emb = self.mlp(t_freq)
|
| 85 |
+
return t_emb
|
ThinkSound/models/factory.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
def create_model_from_config(model_config):
|
| 4 |
+
model_type = model_config.get('model_type', None)
|
| 5 |
+
|
| 6 |
+
assert model_type is not None, 'model_type must be specified in model config'
|
| 7 |
+
|
| 8 |
+
if model_type == 'autoencoder':
|
| 9 |
+
from .autoencoders import create_autoencoder_from_config
|
| 10 |
+
return create_autoencoder_from_config(model_config)
|
| 11 |
+
elif model_type == 'diffusion_uncond':
|
| 12 |
+
from .diffusion import create_diffusion_uncond_from_config
|
| 13 |
+
return create_diffusion_uncond_from_config(model_config)
|
| 14 |
+
# elif model_type == 'diffusion_infill':
|
| 15 |
+
# from .diffusion import create_diffusion_infill_from_config
|
| 16 |
+
# return create_diffusion_infill_from_config(model_config)
|
| 17 |
+
elif model_type == 'diffusion_cond' or model_type == 'diffusion_cond_inpaint' or model_type == "diffusion_prior" or model_type == "diffusion_infill" or model_type == "mm_diffusion_cond":
|
| 18 |
+
from .diffusion import create_diffusion_cond_from_config
|
| 19 |
+
return create_diffusion_cond_from_config(model_config)
|
| 20 |
+
elif model_type == 'diffusion_autoencoder':
|
| 21 |
+
from .autoencoders import create_diffAE_from_config
|
| 22 |
+
return create_diffAE_from_config(model_config)
|
| 23 |
+
elif model_type == 'lm':
|
| 24 |
+
from .lm import create_audio_lm_from_config
|
| 25 |
+
return create_audio_lm_from_config(model_config)
|
| 26 |
+
else:
|
| 27 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
| 28 |
+
|
| 29 |
+
def create_model_from_config_path(model_config_path):
|
| 30 |
+
with open(model_config_path) as f:
|
| 31 |
+
model_config = json.load(f)
|
| 32 |
+
|
| 33 |
+
return create_model_from_config(model_config)
|
| 34 |
+
|
| 35 |
+
def create_pretransform_from_config(pretransform_config, sample_rate):
|
| 36 |
+
pretransform_type = pretransform_config.get('type', None)
|
| 37 |
+
|
| 38 |
+
assert pretransform_type is not None, 'type must be specified in pretransform config'
|
| 39 |
+
|
| 40 |
+
if pretransform_type == 'autoencoder':
|
| 41 |
+
from .autoencoders import create_autoencoder_from_config
|
| 42 |
+
from .pretransforms import AutoencoderPretransform
|
| 43 |
+
|
| 44 |
+
# Create fake top-level config to pass sample rate to autoencoder constructor
|
| 45 |
+
# This is a bit of a hack but it keeps us from re-defining the sample rate in the config
|
| 46 |
+
autoencoder_config = {"sample_rate": sample_rate, "model": pretransform_config["config"]}
|
| 47 |
+
autoencoder = create_autoencoder_from_config(autoencoder_config)
|
| 48 |
+
|
| 49 |
+
scale = pretransform_config.get("scale", 1.0)
|
| 50 |
+
model_half = pretransform_config.get("model_half", False)
|
| 51 |
+
iterate_batch = pretransform_config.get("iterate_batch", False)
|
| 52 |
+
chunked = pretransform_config.get("chunked", False)
|
| 53 |
+
|
| 54 |
+
pretransform = AutoencoderPretransform(autoencoder, scale=scale, model_half=model_half, iterate_batch=iterate_batch, chunked=chunked)
|
| 55 |
+
elif pretransform_type == 'wavelet':
|
| 56 |
+
from .pretransforms import WaveletPretransform
|
| 57 |
+
|
| 58 |
+
wavelet_config = pretransform_config["config"]
|
| 59 |
+
channels = wavelet_config["channels"]
|
| 60 |
+
levels = wavelet_config["levels"]
|
| 61 |
+
wavelet = wavelet_config["wavelet"]
|
| 62 |
+
|
| 63 |
+
pretransform = WaveletPretransform(channels, levels, wavelet)
|
| 64 |
+
elif pretransform_type == 'pqmf':
|
| 65 |
+
from .pretransforms import PQMFPretransform
|
| 66 |
+
pqmf_config = pretransform_config["config"]
|
| 67 |
+
pretransform = PQMFPretransform(**pqmf_config)
|
| 68 |
+
elif pretransform_type == 'dac_pretrained':
|
| 69 |
+
from .pretransforms import PretrainedDACPretransform
|
| 70 |
+
pretrained_dac_config = pretransform_config["config"]
|
| 71 |
+
pretransform = PretrainedDACPretransform(**pretrained_dac_config)
|
| 72 |
+
elif pretransform_type == "audiocraft_pretrained":
|
| 73 |
+
from .pretransforms import AudiocraftCompressionPretransform
|
| 74 |
+
|
| 75 |
+
audiocraft_config = pretransform_config["config"]
|
| 76 |
+
pretransform = AudiocraftCompressionPretransform(**audiocraft_config)
|
| 77 |
+
else:
|
| 78 |
+
raise NotImplementedError(f'Unknown pretransform type: {pretransform_type}')
|
| 79 |
+
|
| 80 |
+
enable_grad = pretransform_config.get('enable_grad', False)
|
| 81 |
+
pretransform.enable_grad = enable_grad
|
| 82 |
+
|
| 83 |
+
pretransform.eval().requires_grad_(pretransform.enable_grad)
|
| 84 |
+
|
| 85 |
+
return pretransform
|
| 86 |
+
|
| 87 |
+
def create_bottleneck_from_config(bottleneck_config):
|
| 88 |
+
bottleneck_type = bottleneck_config.get('type', None)
|
| 89 |
+
|
| 90 |
+
assert bottleneck_type is not None, 'type must be specified in bottleneck config'
|
| 91 |
+
|
| 92 |
+
if bottleneck_type == 'tanh':
|
| 93 |
+
from .bottleneck import TanhBottleneck
|
| 94 |
+
bottleneck = TanhBottleneck()
|
| 95 |
+
elif bottleneck_type == 'vae':
|
| 96 |
+
from .bottleneck import VAEBottleneck
|
| 97 |
+
bottleneck = VAEBottleneck()
|
| 98 |
+
elif bottleneck_type == 'rvq':
|
| 99 |
+
from .bottleneck import RVQBottleneck
|
| 100 |
+
|
| 101 |
+
quantizer_params = {
|
| 102 |
+
"dim": 128,
|
| 103 |
+
"codebook_size": 1024,
|
| 104 |
+
"num_quantizers": 8,
|
| 105 |
+
"decay": 0.99,
|
| 106 |
+
"kmeans_init": True,
|
| 107 |
+
"kmeans_iters": 50,
|
| 108 |
+
"threshold_ema_dead_code": 2,
|
| 109 |
+
}
|
| 110 |
+
|
| 111 |
+
quantizer_params.update(bottleneck_config["config"])
|
| 112 |
+
|
| 113 |
+
bottleneck = RVQBottleneck(**quantizer_params)
|
| 114 |
+
elif bottleneck_type == "dac_rvq":
|
| 115 |
+
from .bottleneck import DACRVQBottleneck
|
| 116 |
+
|
| 117 |
+
bottleneck = DACRVQBottleneck(**bottleneck_config["config"])
|
| 118 |
+
|
| 119 |
+
elif bottleneck_type == 'rvq_vae':
|
| 120 |
+
from .bottleneck import RVQVAEBottleneck
|
| 121 |
+
|
| 122 |
+
quantizer_params = {
|
| 123 |
+
"dim": 128,
|
| 124 |
+
"codebook_size": 1024,
|
| 125 |
+
"num_quantizers": 8,
|
| 126 |
+
"decay": 0.99,
|
| 127 |
+
"kmeans_init": True,
|
| 128 |
+
"kmeans_iters": 50,
|
| 129 |
+
"threshold_ema_dead_code": 2,
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
quantizer_params.update(bottleneck_config["config"])
|
| 133 |
+
|
| 134 |
+
bottleneck = RVQVAEBottleneck(**quantizer_params)
|
| 135 |
+
|
| 136 |
+
elif bottleneck_type == 'dac_rvq_vae':
|
| 137 |
+
from .bottleneck import DACRVQVAEBottleneck
|
| 138 |
+
bottleneck = DACRVQVAEBottleneck(**bottleneck_config["config"])
|
| 139 |
+
elif bottleneck_type == 'l2_norm':
|
| 140 |
+
from .bottleneck import L2Bottleneck
|
| 141 |
+
bottleneck = L2Bottleneck()
|
| 142 |
+
elif bottleneck_type == "wasserstein":
|
| 143 |
+
from .bottleneck import WassersteinBottleneck
|
| 144 |
+
bottleneck = WassersteinBottleneck(**bottleneck_config.get("config", {}))
|
| 145 |
+
elif bottleneck_type == "fsq":
|
| 146 |
+
from .bottleneck import FSQBottleneck
|
| 147 |
+
bottleneck = FSQBottleneck(**bottleneck_config["config"])
|
| 148 |
+
else:
|
| 149 |
+
raise NotImplementedError(f'Unknown bottleneck type: {bottleneck_type}')
|
| 150 |
+
|
| 151 |
+
requires_grad = bottleneck_config.get('requires_grad', True)
|
| 152 |
+
if not requires_grad:
|
| 153 |
+
for param in bottleneck.parameters():
|
| 154 |
+
param.requires_grad = False
|
| 155 |
+
|
| 156 |
+
return bottleneck
|
ThinkSound/models/local_attention.py
ADDED
|
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
from einops import rearrange
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
from .blocks import AdaRMSNorm
|
| 7 |
+
from .transformer import Attention, FeedForward, RotaryEmbedding, LayerNorm
|
| 8 |
+
|
| 9 |
+
def checkpoint(function, *args, **kwargs):
|
| 10 |
+
kwargs.setdefault("use_reentrant", False)
|
| 11 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
| 12 |
+
|
| 13 |
+
# Adapted from https://github.com/lucidrains/local-attention/blob/master/local_attention/transformer.py
|
| 14 |
+
class ContinuousLocalTransformer(nn.Module):
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
*,
|
| 18 |
+
dim,
|
| 19 |
+
depth,
|
| 20 |
+
dim_in = None,
|
| 21 |
+
dim_out = None,
|
| 22 |
+
causal = False,
|
| 23 |
+
local_attn_window_size = 64,
|
| 24 |
+
heads = 8,
|
| 25 |
+
ff_mult = 2,
|
| 26 |
+
cond_dim = 0,
|
| 27 |
+
cross_attn_cond_dim = 0,
|
| 28 |
+
**kwargs
|
| 29 |
+
):
|
| 30 |
+
super().__init__()
|
| 31 |
+
|
| 32 |
+
dim_head = dim//heads
|
| 33 |
+
|
| 34 |
+
self.layers = nn.ModuleList([])
|
| 35 |
+
|
| 36 |
+
self.project_in = nn.Linear(dim_in, dim) if dim_in is not None else nn.Identity()
|
| 37 |
+
|
| 38 |
+
self.project_out = nn.Linear(dim, dim_out) if dim_out is not None else nn.Identity()
|
| 39 |
+
|
| 40 |
+
self.local_attn_window_size = local_attn_window_size
|
| 41 |
+
|
| 42 |
+
self.cond_dim = cond_dim
|
| 43 |
+
|
| 44 |
+
self.cross_attn_cond_dim = cross_attn_cond_dim
|
| 45 |
+
|
| 46 |
+
self.rotary_pos_emb = RotaryEmbedding(max(dim_head // 2, 32))
|
| 47 |
+
|
| 48 |
+
for _ in range(depth):
|
| 49 |
+
|
| 50 |
+
self.layers.append(nn.ModuleList([
|
| 51 |
+
AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim),
|
| 52 |
+
Attention(
|
| 53 |
+
dim=dim,
|
| 54 |
+
dim_heads=dim_head,
|
| 55 |
+
causal=causal,
|
| 56 |
+
zero_init_output=True,
|
| 57 |
+
natten_kernel_size=local_attn_window_size,
|
| 58 |
+
),
|
| 59 |
+
Attention(
|
| 60 |
+
dim=dim,
|
| 61 |
+
dim_heads=dim_head,
|
| 62 |
+
dim_context = cross_attn_cond_dim,
|
| 63 |
+
zero_init_output=True
|
| 64 |
+
) if self.cross_attn_cond_dim > 0 else nn.Identity(),
|
| 65 |
+
AdaRMSNorm(dim, cond_dim, eps=1e-8) if cond_dim > 0 else LayerNorm(dim),
|
| 66 |
+
FeedForward(dim = dim, mult = ff_mult, no_bias=True)
|
| 67 |
+
]))
|
| 68 |
+
|
| 69 |
+
def forward(self, x, mask = None, cond = None, cross_attn_cond = None, cross_attn_cond_mask = None, prepend_cond = None):
|
| 70 |
+
|
| 71 |
+
x = checkpoint(self.project_in, x)
|
| 72 |
+
|
| 73 |
+
if prepend_cond is not None:
|
| 74 |
+
x = torch.cat([prepend_cond, x], dim=1)
|
| 75 |
+
|
| 76 |
+
pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
| 77 |
+
|
| 78 |
+
for attn_norm, attn, xattn, ff_norm, ff in self.layers:
|
| 79 |
+
|
| 80 |
+
residual = x
|
| 81 |
+
if cond is not None:
|
| 82 |
+
x = checkpoint(attn_norm, x, cond)
|
| 83 |
+
else:
|
| 84 |
+
x = checkpoint(attn_norm, x)
|
| 85 |
+
|
| 86 |
+
x = checkpoint(attn, x, mask = mask, rotary_pos_emb=pos_emb) + residual
|
| 87 |
+
|
| 88 |
+
if cross_attn_cond is not None:
|
| 89 |
+
x = checkpoint(xattn, x, context=cross_attn_cond, context_mask=cross_attn_cond_mask) + x
|
| 90 |
+
|
| 91 |
+
residual = x
|
| 92 |
+
|
| 93 |
+
if cond is not None:
|
| 94 |
+
x = checkpoint(ff_norm, x, cond)
|
| 95 |
+
else:
|
| 96 |
+
x = checkpoint(ff_norm, x)
|
| 97 |
+
|
| 98 |
+
x = checkpoint(ff, x) + residual
|
| 99 |
+
|
| 100 |
+
return checkpoint(self.project_out, x)
|
| 101 |
+
|
| 102 |
+
class TransformerDownsampleBlock1D(nn.Module):
|
| 103 |
+
def __init__(
|
| 104 |
+
self,
|
| 105 |
+
in_channels,
|
| 106 |
+
embed_dim = 768,
|
| 107 |
+
depth = 3,
|
| 108 |
+
heads = 12,
|
| 109 |
+
downsample_ratio = 2,
|
| 110 |
+
local_attn_window_size = 64,
|
| 111 |
+
**kwargs
|
| 112 |
+
):
|
| 113 |
+
super().__init__()
|
| 114 |
+
|
| 115 |
+
self.downsample_ratio = downsample_ratio
|
| 116 |
+
|
| 117 |
+
self.transformer = ContinuousLocalTransformer(
|
| 118 |
+
dim=embed_dim,
|
| 119 |
+
depth=depth,
|
| 120 |
+
heads=heads,
|
| 121 |
+
local_attn_window_size=local_attn_window_size,
|
| 122 |
+
**kwargs
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity()
|
| 126 |
+
|
| 127 |
+
self.project_down = nn.Linear(embed_dim * self.downsample_ratio, embed_dim, bias=False)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def forward(self, x):
|
| 131 |
+
|
| 132 |
+
x = checkpoint(self.project_in, x)
|
| 133 |
+
|
| 134 |
+
# Compute
|
| 135 |
+
x = self.transformer(x)
|
| 136 |
+
|
| 137 |
+
# Trade sequence length for channels
|
| 138 |
+
x = rearrange(x, "b (n r) c -> b n (c r)", r=self.downsample_ratio)
|
| 139 |
+
|
| 140 |
+
# Project back to embed dim
|
| 141 |
+
x = checkpoint(self.project_down, x)
|
| 142 |
+
|
| 143 |
+
return x
|
| 144 |
+
|
| 145 |
+
class TransformerUpsampleBlock1D(nn.Module):
|
| 146 |
+
def __init__(
|
| 147 |
+
self,
|
| 148 |
+
in_channels,
|
| 149 |
+
embed_dim,
|
| 150 |
+
depth = 3,
|
| 151 |
+
heads = 12,
|
| 152 |
+
upsample_ratio = 2,
|
| 153 |
+
local_attn_window_size = 64,
|
| 154 |
+
**kwargs
|
| 155 |
+
):
|
| 156 |
+
super().__init__()
|
| 157 |
+
|
| 158 |
+
self.upsample_ratio = upsample_ratio
|
| 159 |
+
|
| 160 |
+
self.transformer = ContinuousLocalTransformer(
|
| 161 |
+
dim=embed_dim,
|
| 162 |
+
depth=depth,
|
| 163 |
+
heads=heads,
|
| 164 |
+
local_attn_window_size = local_attn_window_size,
|
| 165 |
+
**kwargs
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
self.project_in = nn.Linear(in_channels, embed_dim, bias=False) if in_channels != embed_dim else nn.Identity()
|
| 169 |
+
|
| 170 |
+
self.project_up = nn.Linear(embed_dim, embed_dim * self.upsample_ratio, bias=False)
|
| 171 |
+
|
| 172 |
+
def forward(self, x):
|
| 173 |
+
|
| 174 |
+
# Project to embed dim
|
| 175 |
+
x = checkpoint(self.project_in, x)
|
| 176 |
+
|
| 177 |
+
# Project to increase channel dim
|
| 178 |
+
x = checkpoint(self.project_up, x)
|
| 179 |
+
|
| 180 |
+
# Trade channels for sequence length
|
| 181 |
+
x = rearrange(x, "b n (c r) -> b (n r) c", r=self.upsample_ratio)
|
| 182 |
+
|
| 183 |
+
# Compute
|
| 184 |
+
x = self.transformer(x)
|
| 185 |
+
|
| 186 |
+
return x
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
class TransformerEncoder1D(nn.Module):
|
| 190 |
+
def __init__(
|
| 191 |
+
self,
|
| 192 |
+
in_channels,
|
| 193 |
+
out_channels,
|
| 194 |
+
embed_dims = [96, 192, 384, 768],
|
| 195 |
+
heads = [12, 12, 12, 12],
|
| 196 |
+
depths = [3, 3, 3, 3],
|
| 197 |
+
ratios = [2, 2, 2, 2],
|
| 198 |
+
local_attn_window_size = 64,
|
| 199 |
+
**kwargs
|
| 200 |
+
):
|
| 201 |
+
super().__init__()
|
| 202 |
+
|
| 203 |
+
layers = []
|
| 204 |
+
|
| 205 |
+
for layer in range(len(depths)):
|
| 206 |
+
prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0]
|
| 207 |
+
|
| 208 |
+
layers.append(
|
| 209 |
+
TransformerDownsampleBlock1D(
|
| 210 |
+
in_channels = prev_dim,
|
| 211 |
+
embed_dim = embed_dims[layer],
|
| 212 |
+
heads = heads[layer],
|
| 213 |
+
depth = depths[layer],
|
| 214 |
+
downsample_ratio = ratios[layer],
|
| 215 |
+
local_attn_window_size = local_attn_window_size,
|
| 216 |
+
**kwargs
|
| 217 |
+
)
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
self.layers = nn.Sequential(*layers)
|
| 221 |
+
|
| 222 |
+
self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False)
|
| 223 |
+
self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False)
|
| 224 |
+
|
| 225 |
+
def forward(self, x):
|
| 226 |
+
x = rearrange(x, "b c n -> b n c")
|
| 227 |
+
x = checkpoint(self.project_in, x)
|
| 228 |
+
x = self.layers(x)
|
| 229 |
+
x = checkpoint(self.project_out, x)
|
| 230 |
+
x = rearrange(x, "b n c -> b c n")
|
| 231 |
+
|
| 232 |
+
return x
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
class TransformerDecoder1D(nn.Module):
|
| 236 |
+
def __init__(
|
| 237 |
+
self,
|
| 238 |
+
in_channels,
|
| 239 |
+
out_channels,
|
| 240 |
+
embed_dims = [768, 384, 192, 96],
|
| 241 |
+
heads = [12, 12, 12, 12],
|
| 242 |
+
depths = [3, 3, 3, 3],
|
| 243 |
+
ratios = [2, 2, 2, 2],
|
| 244 |
+
local_attn_window_size = 64,
|
| 245 |
+
**kwargs
|
| 246 |
+
):
|
| 247 |
+
|
| 248 |
+
super().__init__()
|
| 249 |
+
|
| 250 |
+
layers = []
|
| 251 |
+
|
| 252 |
+
for layer in range(len(depths)):
|
| 253 |
+
prev_dim = embed_dims[layer - 1] if layer > 0 else embed_dims[0]
|
| 254 |
+
|
| 255 |
+
layers.append(
|
| 256 |
+
TransformerUpsampleBlock1D(
|
| 257 |
+
in_channels = prev_dim,
|
| 258 |
+
embed_dim = embed_dims[layer],
|
| 259 |
+
heads = heads[layer],
|
| 260 |
+
depth = depths[layer],
|
| 261 |
+
upsample_ratio = ratios[layer],
|
| 262 |
+
local_attn_window_size = local_attn_window_size,
|
| 263 |
+
**kwargs
|
| 264 |
+
)
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
self.layers = nn.Sequential(*layers)
|
| 268 |
+
|
| 269 |
+
self.project_in = nn.Linear(in_channels, embed_dims[0], bias=False)
|
| 270 |
+
self.project_out = nn.Linear(embed_dims[-1], out_channels, bias=False)
|
| 271 |
+
|
| 272 |
+
def forward(self, x):
|
| 273 |
+
x = rearrange(x, "b c n -> b n c")
|
| 274 |
+
x = checkpoint(self.project_in, x)
|
| 275 |
+
x = self.layers(x)
|
| 276 |
+
x = checkpoint(self.project_out, x)
|
| 277 |
+
x = rearrange(x, "b n c -> b c n")
|
| 278 |
+
return x
|
ThinkSound/models/mmdit.py
ADDED
|
@@ -0,0 +1,578 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
import sys
|
| 9 |
+
from .embeddings import compute_rope_rotations
|
| 10 |
+
from .embeddings import TimestepEmbedder
|
| 11 |
+
from .blocks import MLP, ChannelLastConv1d, ConvMLP
|
| 12 |
+
from .transformer_layers import (FinalBlock, JointBlock, MMDitSingleBlock)
|
| 13 |
+
from .utils import resample
|
| 14 |
+
|
| 15 |
+
log = logging.getLogger()
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
@dataclass
|
| 19 |
+
class PreprocessedConditions:
|
| 20 |
+
clip_f: torch.Tensor
|
| 21 |
+
sync_f: torch.Tensor
|
| 22 |
+
text_f: torch.Tensor
|
| 23 |
+
clip_f_c: torch.Tensor
|
| 24 |
+
text_f_c: torch.Tensor
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
class MMAudio(nn.Module):
|
| 28 |
+
|
| 29 |
+
def __init__(self,
|
| 30 |
+
*,
|
| 31 |
+
latent_dim: int,
|
| 32 |
+
clip_dim: int,
|
| 33 |
+
sync_dim: int,
|
| 34 |
+
text_dim: int,
|
| 35 |
+
hidden_dim: int,
|
| 36 |
+
depth: int,
|
| 37 |
+
fused_depth: int,
|
| 38 |
+
num_heads: int,
|
| 39 |
+
mlp_ratio: float = 4.0,
|
| 40 |
+
latent_seq_len: int,
|
| 41 |
+
clip_seq_len: int,
|
| 42 |
+
sync_seq_len: int,
|
| 43 |
+
text_seq_len: int = 77,
|
| 44 |
+
latent_mean: Optional[torch.Tensor] = None,
|
| 45 |
+
latent_std: Optional[torch.Tensor] = None,
|
| 46 |
+
empty_string_feat: Optional[torch.Tensor] = None,
|
| 47 |
+
v2: bool = False,
|
| 48 |
+
kernel_size: int = 7,
|
| 49 |
+
sync_kernel: int = 7,
|
| 50 |
+
use_inpaint: bool = False,
|
| 51 |
+
use_mlp: bool = False,
|
| 52 |
+
cross_attend: bool = False,
|
| 53 |
+
add_video: bool = False,
|
| 54 |
+
triple_fusion: bool = False,
|
| 55 |
+
gated_video: bool = False) -> None:
|
| 56 |
+
super().__init__()
|
| 57 |
+
|
| 58 |
+
self.v2 = v2
|
| 59 |
+
self.latent_dim = latent_dim
|
| 60 |
+
self._latent_seq_len = latent_seq_len
|
| 61 |
+
self._clip_seq_len = clip_seq_len
|
| 62 |
+
self._sync_seq_len = sync_seq_len
|
| 63 |
+
self._text_seq_len = text_seq_len
|
| 64 |
+
self.hidden_dim = hidden_dim
|
| 65 |
+
self.num_heads = num_heads
|
| 66 |
+
self.cross_attend = cross_attend
|
| 67 |
+
self.add_video = add_video
|
| 68 |
+
self.gated_video = gated_video
|
| 69 |
+
self.triple_fusion = triple_fusion
|
| 70 |
+
self.use_inpaint = use_inpaint
|
| 71 |
+
if self.gated_video:
|
| 72 |
+
self.gated_mlp = nn.Sequential(
|
| 73 |
+
nn.LayerNorm(hidden_dim * 2),
|
| 74 |
+
nn.Linear(hidden_dim*2, hidden_dim * 4, bias=False),
|
| 75 |
+
nn.SiLU(),
|
| 76 |
+
nn.Linear(hidden_dim * 4, hidden_dim, bias=False),
|
| 77 |
+
nn.Sigmoid()
|
| 78 |
+
)
|
| 79 |
+
# 初始化最后一层权重为零,促进初始均匀融合
|
| 80 |
+
nn.init.zeros_(self.gated_mlp[3].weight)
|
| 81 |
+
if self.triple_fusion:
|
| 82 |
+
self.gated_mlp_v = nn.Sequential(
|
| 83 |
+
nn.LayerNorm(hidden_dim * 3),
|
| 84 |
+
nn.Linear(hidden_dim*3, hidden_dim * 4, bias=False),
|
| 85 |
+
nn.SiLU(),
|
| 86 |
+
nn.Linear(hidden_dim * 4, hidden_dim, bias=False),
|
| 87 |
+
nn.Sigmoid()
|
| 88 |
+
)
|
| 89 |
+
self.gated_mlp_t = nn.Sequential(
|
| 90 |
+
nn.LayerNorm(hidden_dim * 3),
|
| 91 |
+
nn.Linear(hidden_dim*3, hidden_dim * 4, bias=False),
|
| 92 |
+
nn.SiLU(),
|
| 93 |
+
nn.Linear(hidden_dim * 4, hidden_dim, bias=False),
|
| 94 |
+
nn.Sigmoid()
|
| 95 |
+
)
|
| 96 |
+
nn.init.zeros_(self.gated_mlp_v[3].weight)
|
| 97 |
+
nn.init.zeros_(self.gated_mlp_t[3].weight)
|
| 98 |
+
if v2:
|
| 99 |
+
padding_size = (kernel_size - 1) // 2
|
| 100 |
+
if use_inpaint:
|
| 101 |
+
self.audio_input_proj = nn.Sequential(
|
| 102 |
+
ChannelLastConv1d(latent_dim*2, hidden_dim, kernel_size=kernel_size, padding=padding_size),
|
| 103 |
+
nn.SiLU(),
|
| 104 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=kernel_size, padding=padding_size),
|
| 105 |
+
)
|
| 106 |
+
else:
|
| 107 |
+
self.audio_input_proj = nn.Sequential(
|
| 108 |
+
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=kernel_size, padding=padding_size),
|
| 109 |
+
nn.SiLU(),
|
| 110 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=kernel_size, padding=padding_size),
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
self.clip_input_proj = nn.Sequential(
|
| 114 |
+
nn.Linear(clip_dim, hidden_dim),
|
| 115 |
+
nn.SiLU(),
|
| 116 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
|
| 117 |
+
)
|
| 118 |
+
sync_pad = (sync_kernel - 1) // 2
|
| 119 |
+
self.sync_input_proj = nn.Sequential(
|
| 120 |
+
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=sync_kernel, padding=sync_pad),
|
| 121 |
+
nn.SiLU(),
|
| 122 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
self.text_input_proj = nn.Sequential(
|
| 126 |
+
nn.Linear(text_dim, hidden_dim),
|
| 127 |
+
nn.SiLU(),
|
| 128 |
+
MLP(hidden_dim, hidden_dim * 4),
|
| 129 |
+
)
|
| 130 |
+
else:
|
| 131 |
+
self.audio_input_proj = nn.Sequential(
|
| 132 |
+
ChannelLastConv1d(latent_dim, hidden_dim, kernel_size=7, padding=3),
|
| 133 |
+
nn.SELU(),
|
| 134 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=7, padding=3),
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
self.clip_input_proj = nn.Sequential(
|
| 138 |
+
nn.Linear(clip_dim, hidden_dim),
|
| 139 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
self.sync_input_proj = nn.Sequential(
|
| 143 |
+
ChannelLastConv1d(sync_dim, hidden_dim, kernel_size=7, padding=3),
|
| 144 |
+
nn.SELU(),
|
| 145 |
+
ConvMLP(hidden_dim, hidden_dim * 4, kernel_size=3, padding=1),
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
self.text_input_proj = nn.Sequential(
|
| 149 |
+
nn.Linear(text_dim, hidden_dim),
|
| 150 |
+
MLP(hidden_dim, hidden_dim * 4),
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
self.clip_cond_proj = nn.Linear(hidden_dim, hidden_dim)
|
| 154 |
+
if use_mlp:
|
| 155 |
+
self.text_cond_proj = nn.Sequential(
|
| 156 |
+
nn.Linear(1024, hidden_dim),
|
| 157 |
+
MLP(hidden_dim, hidden_dim * 4),
|
| 158 |
+
)
|
| 159 |
+
else:
|
| 160 |
+
self.text_cond_proj = nn.Linear(1024, hidden_dim)
|
| 161 |
+
self.global_cond_mlp = MLP(hidden_dim, hidden_dim * 4)
|
| 162 |
+
# each synchformer output segment has 8 feature frames
|
| 163 |
+
self.sync_pos_emb = nn.Parameter(torch.zeros((1, 1, 8, sync_dim)))
|
| 164 |
+
|
| 165 |
+
self.final_layer = FinalBlock(hidden_dim, latent_dim)
|
| 166 |
+
|
| 167 |
+
if v2:
|
| 168 |
+
self.t_embed = TimestepEmbedder(hidden_dim,
|
| 169 |
+
frequency_embedding_size=hidden_dim,
|
| 170 |
+
max_period=1)
|
| 171 |
+
else:
|
| 172 |
+
self.t_embed = TimestepEmbedder(hidden_dim,
|
| 173 |
+
frequency_embedding_size=256,
|
| 174 |
+
max_period=10000)
|
| 175 |
+
self.joint_blocks = nn.ModuleList([
|
| 176 |
+
JointBlock(hidden_dim,
|
| 177 |
+
num_heads,
|
| 178 |
+
mlp_ratio=mlp_ratio,
|
| 179 |
+
pre_only=(i == depth - fused_depth - 1)) for i in range(depth - fused_depth)
|
| 180 |
+
])
|
| 181 |
+
|
| 182 |
+
self.fused_blocks = nn.ModuleList([
|
| 183 |
+
MMDitSingleBlock(hidden_dim, num_heads, mlp_ratio=mlp_ratio, kernel_size=kernel_size, padding=padding_size, cross_attend=cross_attend)
|
| 184 |
+
for i in range(fused_depth)
|
| 185 |
+
])
|
| 186 |
+
|
| 187 |
+
if empty_string_feat is None:
|
| 188 |
+
empty_string_feat = torch.zeros((77, 1024))
|
| 189 |
+
|
| 190 |
+
empty_t5_feat = torch.zeros((77, 2048))
|
| 191 |
+
|
| 192 |
+
self.empty_string_feat = nn.Parameter(empty_string_feat, requires_grad=False)
|
| 193 |
+
self.empty_t5_feat = nn.Parameter(empty_t5_feat, requires_grad=False)
|
| 194 |
+
self.empty_clip_feat = nn.Parameter(torch.zeros(1, clip_dim), requires_grad=True)
|
| 195 |
+
self.empty_sync_feat = nn.Parameter(torch.zeros(1, sync_dim), requires_grad=True)
|
| 196 |
+
|
| 197 |
+
self.initialize_weights()
|
| 198 |
+
self.initialize_rotations()
|
| 199 |
+
|
| 200 |
+
def initialize_rotations(self):
|
| 201 |
+
base_freq = 1.0
|
| 202 |
+
latent_rot = compute_rope_rotations(self._latent_seq_len,
|
| 203 |
+
self.hidden_dim // self.num_heads,
|
| 204 |
+
10000,
|
| 205 |
+
freq_scaling=base_freq,
|
| 206 |
+
device=self.device)
|
| 207 |
+
clip_rot = compute_rope_rotations(self._clip_seq_len,
|
| 208 |
+
self.hidden_dim // self.num_heads,
|
| 209 |
+
10000,
|
| 210 |
+
freq_scaling=base_freq * self._latent_seq_len /
|
| 211 |
+
self._clip_seq_len,
|
| 212 |
+
device=self.device)
|
| 213 |
+
|
| 214 |
+
self.register_buffer("latent_rot", latent_rot, persistent=False)
|
| 215 |
+
self.register_buffer("clip_rot", clip_rot, persistent=False)
|
| 216 |
+
|
| 217 |
+
def update_seq_lengths(self, latent_seq_len: int, clip_seq_len: int, sync_seq_len: int) -> None:
|
| 218 |
+
self._latent_seq_len = latent_seq_len
|
| 219 |
+
self._clip_seq_len = clip_seq_len
|
| 220 |
+
self._sync_seq_len = sync_seq_len
|
| 221 |
+
self.initialize_rotations()
|
| 222 |
+
|
| 223 |
+
def initialize_weights(self):
|
| 224 |
+
|
| 225 |
+
def _basic_init(module):
|
| 226 |
+
if isinstance(module, nn.Linear):
|
| 227 |
+
torch.nn.init.xavier_uniform_(module.weight)
|
| 228 |
+
if module.bias is not None:
|
| 229 |
+
nn.init.constant_(module.bias, 0)
|
| 230 |
+
|
| 231 |
+
self.apply(_basic_init)
|
| 232 |
+
|
| 233 |
+
# Initialize timestep embedding MLP:
|
| 234 |
+
nn.init.normal_(self.t_embed.mlp[0].weight, std=0.02)
|
| 235 |
+
nn.init.normal_(self.t_embed.mlp[2].weight, std=0.02)
|
| 236 |
+
|
| 237 |
+
# Zero-out adaLN modulation layers in DiT blocks:
|
| 238 |
+
for block in self.joint_blocks:
|
| 239 |
+
nn.init.constant_(block.latent_block.adaLN_modulation[-1].weight, 0)
|
| 240 |
+
nn.init.constant_(block.latent_block.adaLN_modulation[-1].bias, 0)
|
| 241 |
+
nn.init.constant_(block.clip_block.adaLN_modulation[-1].weight, 0)
|
| 242 |
+
nn.init.constant_(block.clip_block.adaLN_modulation[-1].bias, 0)
|
| 243 |
+
nn.init.constant_(block.text_block.adaLN_modulation[-1].weight, 0)
|
| 244 |
+
nn.init.constant_(block.text_block.adaLN_modulation[-1].bias, 0)
|
| 245 |
+
for block in self.fused_blocks:
|
| 246 |
+
nn.init.constant_(block.adaLN_modulation[-1].weight, 0)
|
| 247 |
+
nn.init.constant_(block.adaLN_modulation[-1].bias, 0)
|
| 248 |
+
|
| 249 |
+
# Zero-out output layers:
|
| 250 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].weight, 0)
|
| 251 |
+
nn.init.constant_(self.final_layer.adaLN_modulation[-1].bias, 0)
|
| 252 |
+
nn.init.constant_(self.final_layer.conv.weight, 0)
|
| 253 |
+
nn.init.constant_(self.final_layer.conv.bias, 0)
|
| 254 |
+
|
| 255 |
+
# empty string feat shall be initialized by a CLIP encoder
|
| 256 |
+
nn.init.constant_(self.sync_pos_emb, 0)
|
| 257 |
+
nn.init.constant_(self.empty_clip_feat, 0)
|
| 258 |
+
nn.init.constant_(self.empty_sync_feat, 0)
|
| 259 |
+
|
| 260 |
+
def preprocess_conditions(self, clip_f: torch.Tensor, sync_f: torch.Tensor,
|
| 261 |
+
text_f: torch.Tensor, t5_features: torch.Tensor, metaclip_global_text_features: torch.Tensor) -> PreprocessedConditions:
|
| 262 |
+
"""
|
| 263 |
+
cache computations that do not depend on the latent/time step
|
| 264 |
+
i.e., the features are reused over steps during inference
|
| 265 |
+
"""
|
| 266 |
+
# breakpoint()
|
| 267 |
+
assert clip_f.shape[1] == self._clip_seq_len, f'{clip_f.shape=} {self._clip_seq_len=}'
|
| 268 |
+
assert sync_f.shape[1] == self._sync_seq_len, f'{sync_f.shape=} {self._sync_seq_len=}'
|
| 269 |
+
assert text_f.shape[1] == self._text_seq_len, f'{text_f.shape=} {self._text_seq_len=}'
|
| 270 |
+
|
| 271 |
+
bs = clip_f.shape[0]
|
| 272 |
+
|
| 273 |
+
# B * num_segments (24) * 8 * 768
|
| 274 |
+
num_sync_segments = self._sync_seq_len // 8
|
| 275 |
+
sync_f = sync_f.view(bs, num_sync_segments, 8, -1) + self.sync_pos_emb
|
| 276 |
+
sync_f = sync_f.flatten(1, 2) # (B, VN, D)
|
| 277 |
+
|
| 278 |
+
# extend vf to match x
|
| 279 |
+
clip_f = self.clip_input_proj(clip_f) # (B, VN, D)
|
| 280 |
+
sync_f = self.sync_input_proj(sync_f) # (B, VN, D)
|
| 281 |
+
|
| 282 |
+
if t5_features is not None:
|
| 283 |
+
|
| 284 |
+
if metaclip_global_text_features is not None:
|
| 285 |
+
text_f_c = self.text_cond_proj(metaclip_global_text_features) # (B, D)
|
| 286 |
+
else:
|
| 287 |
+
text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D)
|
| 288 |
+
# 计算填充长度
|
| 289 |
+
padding_size = t5_features.size(2) - text_f.size(2) # 渴望填充的数量
|
| 290 |
+
# 当确实需要填充的时候,确保填充是正数
|
| 291 |
+
if padding_size > 0:
|
| 292 |
+
# 填充 text_f 的特征维度两侧
|
| 293 |
+
text_f = F.pad(text_f, pad=(0, padding_size), mode='constant', value=0) # 在最后一个维度上进行填充
|
| 294 |
+
else:
|
| 295 |
+
text_f = text_f # 如果填充长度不是正数,则不需要填充
|
| 296 |
+
text_concat = torch.cat((text_f, t5_features), dim=1)
|
| 297 |
+
text_f = self.text_input_proj(text_concat) # (B, VN, D)
|
| 298 |
+
else:
|
| 299 |
+
text_f = self.text_input_proj(text_f) # (B, VN, D)
|
| 300 |
+
if metaclip_global_text_features is not None:
|
| 301 |
+
text_f_c = self.text_cond_proj(metaclip_global_text_features) # (B, D)
|
| 302 |
+
else:
|
| 303 |
+
text_f_c = self.text_cond_proj(text_f.mean(dim=1)) # (B, D)
|
| 304 |
+
|
| 305 |
+
# upsample the sync features to match the audio
|
| 306 |
+
sync_f = sync_f.transpose(1, 2) # (B, D, VN)
|
| 307 |
+
# sync_f = resample(sync_f, self._latent_seq_len)
|
| 308 |
+
sync_f = F.interpolate(sync_f, size=self._latent_seq_len, mode='nearest-exact')
|
| 309 |
+
sync_f = sync_f.transpose(1, 2) # (B, N, D)
|
| 310 |
+
|
| 311 |
+
# get conditional features from the clip side
|
| 312 |
+
clip_f_c = self.clip_cond_proj(clip_f.mean(dim=1)) # (B, D)
|
| 313 |
+
|
| 314 |
+
return PreprocessedConditions(clip_f=clip_f,
|
| 315 |
+
sync_f=sync_f,
|
| 316 |
+
text_f=text_f,
|
| 317 |
+
clip_f_c=clip_f_c,
|
| 318 |
+
text_f_c=text_f_c)
|
| 319 |
+
|
| 320 |
+
def predict_flow(self, latent: torch.Tensor, t: torch.Tensor,
|
| 321 |
+
conditions: PreprocessedConditions, inpaint_masked_input=None, cfg_scale:float=1.0,cfg_dropout_prob:float=0.0,scale_phi:float=0.0
|
| 322 |
+
) -> torch.Tensor:
|
| 323 |
+
"""
|
| 324 |
+
for non-cacheable computations
|
| 325 |
+
"""
|
| 326 |
+
# print(f'cfg_scale: {cfg_scale}, cfg_dropout_prob: {cfg_dropout_prob}, scale_phi: {scale_phi}')
|
| 327 |
+
assert latent.shape[1] == self._latent_seq_len, f'{latent.shape=} {self._latent_seq_len=}'
|
| 328 |
+
empty_conditions = None
|
| 329 |
+
if inpaint_masked_input is not None:
|
| 330 |
+
inpaint_masked_input = inpaint_masked_input.transpose(1,2)
|
| 331 |
+
clip_f = conditions.clip_f
|
| 332 |
+
sync_f = conditions.sync_f
|
| 333 |
+
text_f = conditions.text_f
|
| 334 |
+
clip_f_c = conditions.clip_f_c
|
| 335 |
+
text_f_c = conditions.text_f_c
|
| 336 |
+
|
| 337 |
+
# breakpoint()
|
| 338 |
+
if inpaint_masked_input is not None:
|
| 339 |
+
latent = torch.cat([latent,inpaint_masked_input],dim=2)
|
| 340 |
+
latent = self.audio_input_proj(latent) # (B, N, D)
|
| 341 |
+
global_c = self.global_cond_mlp(clip_f_c + text_f_c) # (B, D)
|
| 342 |
+
# global_c = text_f_c
|
| 343 |
+
global_c = self.t_embed(t).unsqueeze(1) + global_c.unsqueeze(1) # (B, D)
|
| 344 |
+
extended_c = global_c + sync_f
|
| 345 |
+
|
| 346 |
+
for block in self.joint_blocks:
|
| 347 |
+
latent, clip_f, text_f = block(latent, clip_f, text_f, global_c, extended_c,
|
| 348 |
+
self.latent_rot, self.clip_rot) # (B, N, D)
|
| 349 |
+
if self.add_video:
|
| 350 |
+
if clip_f.shape[1] != latent.shape[1]:
|
| 351 |
+
clip_f = resample(clip_f, latent)
|
| 352 |
+
|
| 353 |
+
if self.triple_fusion:
|
| 354 |
+
text_f = torch.mean(text_f, dim=1, keepdim=True) # (bsz, 1, D)
|
| 355 |
+
text_f = text_f.expand(-1,latent.shape[1], -1) # (T_audio, D)
|
| 356 |
+
fusion = torch.concat((latent, clip_f, text_f),dim=-1)
|
| 357 |
+
gate_v = self.gated_mlp_v(fusion)
|
| 358 |
+
gate_t = self.gated_mlp_t(fusion)
|
| 359 |
+
# modulated_latent = gate * latent # 非对称设计
|
| 360 |
+
latent = latent + gate_v * clip_f + gate_t * text_f
|
| 361 |
+
elif self.gated_video:
|
| 362 |
+
fusion = torch.concat((latent, clip_f),dim=-1)
|
| 363 |
+
gate = self.gated_mlp(fusion)
|
| 364 |
+
modulated_latent = gate * latent # 非对称设计
|
| 365 |
+
latent = latent + modulated_latent
|
| 366 |
+
else:
|
| 367 |
+
latent = latent + clip_f
|
| 368 |
+
|
| 369 |
+
for block in self.fused_blocks:
|
| 370 |
+
if self.cross_attend:
|
| 371 |
+
latent = block(latent, extended_c, self.latent_rot, context=text_f)
|
| 372 |
+
else:
|
| 373 |
+
latent = block(latent, extended_c, self.latent_rot)
|
| 374 |
+
|
| 375 |
+
# should be extended_c; this is a minor implementation error #55
|
| 376 |
+
flow = self.final_layer(latent, extended_c) # (B, N, out_dim), remove t
|
| 377 |
+
return flow
|
| 378 |
+
|
| 379 |
+
def forward(self, latent: torch.Tensor, t: torch.Tensor, clip_f: torch.Tensor, sync_f: torch.Tensor,
|
| 380 |
+
text_f: torch.Tensor, inpaint_masked_input, t5_features, metaclip_global_text_features, cfg_scale:float,cfg_dropout_prob:float,scale_phi:float) -> torch.Tensor:
|
| 381 |
+
"""
|
| 382 |
+
latent: (B, N, C)
|
| 383 |
+
vf: (B, T, C_V)
|
| 384 |
+
t: (B,)
|
| 385 |
+
"""
|
| 386 |
+
# breakpoint()
|
| 387 |
+
# print(f'cfg_scale: {cfg_scale}, cfg_dropout_prob: {cfg_dropout_prob}, scale_phi: {scale_phi}')
|
| 388 |
+
if self.use_inpaint and inpaint_masked_input is None:
|
| 389 |
+
inpaint_masked_input = torch.zeros_like(latent, device=latent.device)
|
| 390 |
+
latent = latent.permute(0, 2, 1)
|
| 391 |
+
|
| 392 |
+
if cfg_dropout_prob > 0.0:
|
| 393 |
+
if inpaint_masked_input is not None:
|
| 394 |
+
null_embed = torch.zeros_like(inpaint_masked_input,device=latent.device)
|
| 395 |
+
dropout_mask = torch.bernoulli(torch.full((inpaint_masked_input.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 396 |
+
inpaint_masked_input = torch.where(dropout_mask, null_embed, inpaint_masked_input)
|
| 397 |
+
|
| 398 |
+
null_embed = torch.zeros_like(clip_f,device=latent.device)
|
| 399 |
+
dropout_mask = torch.bernoulli(torch.full((clip_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 400 |
+
# clip_f = torch.where(dropout_mask, null_embed, clip_f)
|
| 401 |
+
clip_f = torch.where(dropout_mask, self.empty_clip_feat, clip_f)
|
| 402 |
+
null_embed = torch.zeros_like(sync_f,device=latent.device)
|
| 403 |
+
dropout_mask = torch.bernoulli(torch.full((sync_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 404 |
+
# sync_f = torch.where(dropout_mask, null_embed, sync_f)
|
| 405 |
+
sync_f = torch.where(dropout_mask, self.empty_sync_feat, sync_f)
|
| 406 |
+
null_embed = torch.zeros_like(text_f,device=latent.device)
|
| 407 |
+
dropout_mask = torch.bernoulli(torch.full((text_f.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 408 |
+
# text_f = torch.where(dropout_mask, null_embed, text_f)
|
| 409 |
+
text_f = torch.where(dropout_mask, self.empty_string_feat, text_f)
|
| 410 |
+
if t5_features is not None:
|
| 411 |
+
null_embed = torch.zeros_like(t5_features,device=latent.device)
|
| 412 |
+
dropout_mask = torch.bernoulli(torch.full((t5_features.shape[0], 1, 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 413 |
+
# t5_features = torch.where(dropout_mask, null_embed, t5_features)
|
| 414 |
+
t5_features = torch.where(dropout_mask, self.empty_t5_feat, t5_features)
|
| 415 |
+
if metaclip_global_text_features is not None:
|
| 416 |
+
null_embed = torch.zeros_like(metaclip_global_text_features,device=latent.device)
|
| 417 |
+
dropout_mask = torch.bernoulli(torch.full((metaclip_global_text_features.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 418 |
+
metaclip_global_text_features = torch.where(dropout_mask, null_embed, metaclip_global_text_features)
|
| 419 |
+
# null_embed = torch.zeros_like(clip_f_c,device=latent.device)
|
| 420 |
+
# dropout_mask = torch.bernoulli(torch.full((clip_f_c.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 421 |
+
# clip_f_c = torch.where(dropout_mask, null_embed, clip_f_c)
|
| 422 |
+
# null_embed = torch.zeros_like(text_f_c,device=latent.device)
|
| 423 |
+
# dropout_mask = torch.bernoulli(torch.full((text_f_c.shape[0], 1), cfg_dropout_prob, device=latent.device)).to(torch.bool)
|
| 424 |
+
# text_f_c = torch.where(dropout_mask, null_embed, text_f_c)
|
| 425 |
+
|
| 426 |
+
if cfg_scale != 1.0:
|
| 427 |
+
# empty_conditions = self.get_empty_conditions(latent.shape[0])
|
| 428 |
+
# breakpoint()
|
| 429 |
+
bsz = latent.shape[0]
|
| 430 |
+
latent = torch.cat([latent,latent], dim=0)
|
| 431 |
+
if inpaint_masked_input is not None:
|
| 432 |
+
empty_inpaint_masked_input = torch.zeros_like(inpaint_masked_input, device=latent.device)
|
| 433 |
+
inpaint_masked_input = torch.cat([inpaint_masked_input,empty_inpaint_masked_input], dim=0)
|
| 434 |
+
t = torch.cat([t, t], dim=0)
|
| 435 |
+
empty_clip_f = torch.zeros_like(clip_f, device=latent.device)
|
| 436 |
+
empty_sync_f = torch.zeros_like(sync_f, device=latent.device)
|
| 437 |
+
empty_text_f = torch.zeros_like(text_f, device=latent.device)
|
| 438 |
+
|
| 439 |
+
# clip_f = torch.cat([clip_f,empty_clip_f], dim=0)
|
| 440 |
+
# sync_f = torch.cat([sync_f,empty_sync_f], dim=0)
|
| 441 |
+
# text_f = torch.cat([text_f,empty_text_f], dim=0)
|
| 442 |
+
clip_f = safe_cat(clip_f,self.get_empty_clip_sequence(bsz), dim=0, match_dim=1)
|
| 443 |
+
sync_f = safe_cat(sync_f,self.get_empty_sync_sequence(bsz), dim=0, match_dim=1)
|
| 444 |
+
text_f = safe_cat(text_f,self.get_empty_string_sequence(bsz), dim=0, match_dim=1)
|
| 445 |
+
if t5_features is not None:
|
| 446 |
+
empty_t5_features = torch.zeros_like(t5_features, device=latent.device)
|
| 447 |
+
# t5_features = torch.cat([t5_features,empty_t5_features], dim=0)
|
| 448 |
+
t5_features = torch.cat([t5_features,self.get_empty_t5_sequence(bsz)], dim=0)
|
| 449 |
+
if metaclip_global_text_features is not None:
|
| 450 |
+
empty_metaclip_global_text_features = torch.zeros_like(metaclip_global_text_features, device=latent.device)
|
| 451 |
+
metaclip_global_text_features = torch.cat([metaclip_global_text_features,empty_metaclip_global_text_features], dim=0)
|
| 452 |
+
# metaclip_global_text_features = torch.cat([metaclip_global_text_features,metaclip_global_text_features], dim=0)
|
| 453 |
+
# clip_f_c = torch.cat([clip_f_c,empty_clip_f_c], dim=0)
|
| 454 |
+
# text_f_c = torch.cat([text_f_c,empty_text_f_c], dim=0)
|
| 455 |
+
|
| 456 |
+
conditions = self.preprocess_conditions(clip_f, sync_f, text_f, t5_features, metaclip_global_text_features)
|
| 457 |
+
flow = self.predict_flow(latent, t, conditions, inpaint_masked_input, cfg_scale,cfg_dropout_prob,scale_phi)
|
| 458 |
+
if cfg_scale != 1.0:
|
| 459 |
+
cond_output, uncond_output = torch.chunk(flow, 2, dim=0)
|
| 460 |
+
cfg_output = uncond_output + (cond_output - uncond_output) * cfg_scale
|
| 461 |
+
if scale_phi != 0.0:
|
| 462 |
+
cond_out_std = cond_output.std(dim=1, keepdim=True)
|
| 463 |
+
out_cfg_std = cfg_output.std(dim=1, keepdim=True)
|
| 464 |
+
flow = scale_phi * (cfg_output * (cond_out_std/out_cfg_std)) + (1-scale_phi) * cfg_output
|
| 465 |
+
else:
|
| 466 |
+
flow = cfg_output
|
| 467 |
+
flow = flow.permute(0, 2, 1)
|
| 468 |
+
return flow
|
| 469 |
+
|
| 470 |
+
def get_empty_string_sequence(self, bs: int) -> torch.Tensor:
|
| 471 |
+
return self.empty_string_feat.unsqueeze(0).expand(bs, -1, -1)
|
| 472 |
+
|
| 473 |
+
def get_empty_t5_sequence(self, bs: int) -> torch.Tensor:
|
| 474 |
+
return self.empty_t5_feat.unsqueeze(0).expand(bs, -1, -1)
|
| 475 |
+
|
| 476 |
+
def get_empty_clip_sequence(self, bs: int) -> torch.Tensor:
|
| 477 |
+
return self.empty_clip_feat.unsqueeze(0).expand(bs, self._clip_seq_len, -1)
|
| 478 |
+
|
| 479 |
+
def get_empty_sync_sequence(self, bs: int) -> torch.Tensor:
|
| 480 |
+
return self.empty_sync_feat.unsqueeze(0).expand(bs, self._sync_seq_len, -1)
|
| 481 |
+
|
| 482 |
+
def get_empty_conditions(
|
| 483 |
+
self,
|
| 484 |
+
bs: int,
|
| 485 |
+
*,
|
| 486 |
+
negative_text_features: Optional[torch.Tensor] = None) -> PreprocessedConditions:
|
| 487 |
+
if negative_text_features is not None:
|
| 488 |
+
empty_text = negative_text_features
|
| 489 |
+
else:
|
| 490 |
+
empty_text = self.get_empty_string_sequence(1)
|
| 491 |
+
|
| 492 |
+
empty_clip = self.get_empty_clip_sequence(1)
|
| 493 |
+
empty_sync = self.get_empty_sync_sequence(1)
|
| 494 |
+
conditions = self.preprocess_conditions(empty_clip, empty_sync, empty_text)
|
| 495 |
+
conditions.clip_f = conditions.clip_f.expand(bs, -1, -1)
|
| 496 |
+
conditions.sync_f = conditions.sync_f.expand(bs, -1, -1)
|
| 497 |
+
conditions.clip_f_c = conditions.clip_f_c.expand(bs, -1)
|
| 498 |
+
if negative_text_features is None:
|
| 499 |
+
conditions.text_f = conditions.text_f.expand(bs, -1, -1)
|
| 500 |
+
conditions.text_f_c = conditions.text_f_c.expand(bs, -1)
|
| 501 |
+
|
| 502 |
+
return conditions
|
| 503 |
+
|
| 504 |
+
def load_weights(self, src_dict) -> None:
|
| 505 |
+
if 't_embed.freqs' in src_dict:
|
| 506 |
+
del src_dict['t_embed.freqs']
|
| 507 |
+
if 'latent_rot' in src_dict:
|
| 508 |
+
del src_dict['latent_rot']
|
| 509 |
+
if 'clip_rot' in src_dict:
|
| 510 |
+
del src_dict['clip_rot']
|
| 511 |
+
|
| 512 |
+
self.load_state_dict(src_dict, strict=True)
|
| 513 |
+
|
| 514 |
+
@property
|
| 515 |
+
def device(self) -> torch.device:
|
| 516 |
+
return self.empty_clip_feat.device
|
| 517 |
+
|
| 518 |
+
@property
|
| 519 |
+
def latent_seq_len(self) -> int:
|
| 520 |
+
return self._latent_seq_len
|
| 521 |
+
|
| 522 |
+
@property
|
| 523 |
+
def clip_seq_len(self) -> int:
|
| 524 |
+
return self._clip_seq_len
|
| 525 |
+
|
| 526 |
+
@property
|
| 527 |
+
def sync_seq_len(self) -> int:
|
| 528 |
+
return self._sync_seq_len
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
|
| 543 |
+
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def truncate_to_target(tensor, target_size, dim=1):
|
| 547 |
+
current_size = tensor.size(dim)
|
| 548 |
+
if current_size > target_size:
|
| 549 |
+
slices = [slice(None)] * tensor.dim()
|
| 550 |
+
slices[dim] = slice(0, target_size)
|
| 551 |
+
return tensor[slices]
|
| 552 |
+
return tensor
|
| 553 |
+
|
| 554 |
+
def pad_to_target(tensor, target_size, dim=1, pad_value=0):
|
| 555 |
+
current_size = tensor.size(dim)
|
| 556 |
+
if current_size < target_size:
|
| 557 |
+
pad_size = target_size - current_size
|
| 558 |
+
|
| 559 |
+
pad_config = [0, 0] * tensor.dim()
|
| 560 |
+
pad_index = 2 * (tensor.dim() - dim - 1) + 1
|
| 561 |
+
pad_config[pad_index] = pad_size
|
| 562 |
+
|
| 563 |
+
return torch.nn.functional.pad(tensor, pad_config, value=pad_value)
|
| 564 |
+
return tensor
|
| 565 |
+
|
| 566 |
+
|
| 567 |
+
def safe_cat(tensor1, tensor2, dim=0, match_dim=1):
|
| 568 |
+
|
| 569 |
+
target_size = tensor2.size(match_dim)
|
| 570 |
+
|
| 571 |
+
if tensor1.size(match_dim) > target_size:
|
| 572 |
+
tensor1 = truncate_to_target(tensor1, target_size, match_dim)
|
| 573 |
+
|
| 574 |
+
else:
|
| 575 |
+
tensor1 = pad_to_target(tensor1, target_size, match_dim)
|
| 576 |
+
|
| 577 |
+
return torch.cat([tensor1, tensor2], dim=dim)
|
| 578 |
+
|
ThinkSound/models/pretrained.py
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
|
| 3 |
+
from .factory import create_model_from_config
|
| 4 |
+
from .utils import load_ckpt_state_dict
|
| 5 |
+
|
| 6 |
+
from huggingface_hub import hf_hub_download
|
| 7 |
+
|
| 8 |
+
def get_pretrained_model(name: str):
|
| 9 |
+
|
| 10 |
+
model_config_path = hf_hub_download(name, filename="model_config.json", repo_type='model')
|
| 11 |
+
|
| 12 |
+
with open(model_config_path) as f:
|
| 13 |
+
model_config = json.load(f)
|
| 14 |
+
|
| 15 |
+
model = create_model_from_config(model_config)
|
| 16 |
+
|
| 17 |
+
# Try to download the model.safetensors file first, if it doesn't exist, download the model.ckpt file
|
| 18 |
+
try:
|
| 19 |
+
model_ckpt_path = hf_hub_download(name, filename="model.safetensors", repo_type='model')
|
| 20 |
+
except Exception as e:
|
| 21 |
+
model_ckpt_path = hf_hub_download(name, filename="model.ckpt", repo_type='model')
|
| 22 |
+
|
| 23 |
+
model.load_state_dict(load_ckpt_state_dict(model_ckpt_path))
|
| 24 |
+
|
| 25 |
+
return model, model_config
|
ThinkSound/models/pretransforms.py
ADDED
|
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from einops import rearrange
|
| 3 |
+
from torch import nn
|
| 4 |
+
|
| 5 |
+
class Pretransform(nn.Module):
|
| 6 |
+
def __init__(self, enable_grad, io_channels, is_discrete):
|
| 7 |
+
super().__init__()
|
| 8 |
+
|
| 9 |
+
self.is_discrete = is_discrete
|
| 10 |
+
self.io_channels = io_channels
|
| 11 |
+
self.encoded_channels = None
|
| 12 |
+
self.downsampling_ratio = None
|
| 13 |
+
|
| 14 |
+
self.enable_grad = enable_grad
|
| 15 |
+
|
| 16 |
+
def encode(self, x):
|
| 17 |
+
raise NotImplementedError
|
| 18 |
+
|
| 19 |
+
def decode(self, z):
|
| 20 |
+
raise NotImplementedError
|
| 21 |
+
|
| 22 |
+
def tokenize(self, x):
|
| 23 |
+
raise NotImplementedError
|
| 24 |
+
|
| 25 |
+
def decode_tokens(self, tokens):
|
| 26 |
+
raise NotImplementedError
|
| 27 |
+
|
| 28 |
+
class AutoencoderPretransform(Pretransform):
|
| 29 |
+
def __init__(self, model, scale=1.0, model_half=False, iterate_batch=False, chunked=False):
|
| 30 |
+
super().__init__(enable_grad=False, io_channels=model.io_channels, is_discrete=model.bottleneck is not None and model.bottleneck.is_discrete)
|
| 31 |
+
self.model = model
|
| 32 |
+
self.model.requires_grad_(False).eval()
|
| 33 |
+
self.scale=scale
|
| 34 |
+
self.downsampling_ratio = model.downsampling_ratio
|
| 35 |
+
self.io_channels = model.io_channels
|
| 36 |
+
self.sample_rate = model.sample_rate
|
| 37 |
+
|
| 38 |
+
self.model_half = model_half
|
| 39 |
+
self.iterate_batch = iterate_batch
|
| 40 |
+
|
| 41 |
+
self.encoded_channels = model.latent_dim
|
| 42 |
+
|
| 43 |
+
self.chunked = chunked
|
| 44 |
+
self.num_quantizers = model.bottleneck.num_quantizers if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
| 45 |
+
self.codebook_size = model.bottleneck.codebook_size if model.bottleneck is not None and model.bottleneck.is_discrete else None
|
| 46 |
+
|
| 47 |
+
if self.model_half:
|
| 48 |
+
self.model.half()
|
| 49 |
+
|
| 50 |
+
def encode(self, x, **kwargs):
|
| 51 |
+
|
| 52 |
+
if self.model_half:
|
| 53 |
+
x = x.half()
|
| 54 |
+
self.model.to(torch.float16)
|
| 55 |
+
|
| 56 |
+
encoded = self.model.encode_audio(x, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
| 57 |
+
|
| 58 |
+
if self.model_half:
|
| 59 |
+
encoded = encoded.float()
|
| 60 |
+
|
| 61 |
+
return encoded / self.scale
|
| 62 |
+
|
| 63 |
+
def decode(self, z, **kwargs):
|
| 64 |
+
z = z * self.scale
|
| 65 |
+
|
| 66 |
+
if self.model_half:
|
| 67 |
+
z = z.half()
|
| 68 |
+
self.model.to(torch.float16)
|
| 69 |
+
|
| 70 |
+
decoded = self.model.decode_audio(z, chunked=self.chunked, iterate_batch=self.iterate_batch, **kwargs)
|
| 71 |
+
|
| 72 |
+
if self.model_half:
|
| 73 |
+
decoded = decoded.float()
|
| 74 |
+
|
| 75 |
+
return decoded
|
| 76 |
+
|
| 77 |
+
def tokenize(self, x, **kwargs):
|
| 78 |
+
assert self.model.is_discrete, "Cannot tokenize with a continuous model"
|
| 79 |
+
|
| 80 |
+
_, info = self.model.encode(x, return_info = True, **kwargs)
|
| 81 |
+
|
| 82 |
+
return info[self.model.bottleneck.tokens_id]
|
| 83 |
+
|
| 84 |
+
def decode_tokens(self, tokens, **kwargs):
|
| 85 |
+
assert self.model.is_discrete, "Cannot decode tokens with a continuous model"
|
| 86 |
+
|
| 87 |
+
return self.model.decode_tokens(tokens, **kwargs)
|
| 88 |
+
|
| 89 |
+
def load_state_dict(self, state_dict, strict=True):
|
| 90 |
+
self.model.load_state_dict(state_dict, strict=strict)
|
| 91 |
+
|
| 92 |
+
class WaveletPretransform(Pretransform):
|
| 93 |
+
def __init__(self, channels, levels, wavelet):
|
| 94 |
+
super().__init__(enable_grad=False, io_channels=channels, is_discrete=False)
|
| 95 |
+
|
| 96 |
+
from .wavelets import WaveletEncode1d, WaveletDecode1d
|
| 97 |
+
|
| 98 |
+
self.encoder = WaveletEncode1d(channels, levels, wavelet)
|
| 99 |
+
self.decoder = WaveletDecode1d(channels, levels, wavelet)
|
| 100 |
+
|
| 101 |
+
self.downsampling_ratio = 2 ** levels
|
| 102 |
+
self.io_channels = channels
|
| 103 |
+
self.encoded_channels = channels * self.downsampling_ratio
|
| 104 |
+
|
| 105 |
+
def encode(self, x):
|
| 106 |
+
return self.encoder(x)
|
| 107 |
+
|
| 108 |
+
def decode(self, z):
|
| 109 |
+
return self.decoder(z)
|
| 110 |
+
|
| 111 |
+
class PQMFPretransform(Pretransform):
|
| 112 |
+
def __init__(self, attenuation=100, num_bands=16):
|
| 113 |
+
# TODO: Fix PQMF to take in in-channels
|
| 114 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=False)
|
| 115 |
+
from .pqmf import PQMF
|
| 116 |
+
self.pqmf = PQMF(attenuation, num_bands)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def encode(self, x):
|
| 120 |
+
# x is (Batch x Channels x Time)
|
| 121 |
+
x = self.pqmf.forward(x)
|
| 122 |
+
# pqmf.forward returns (Batch x Channels x Bands x Time)
|
| 123 |
+
# but Pretransform needs Batch x Channels x Time
|
| 124 |
+
# so concatenate channels and bands into one axis
|
| 125 |
+
return rearrange(x, "b c n t -> b (c n) t")
|
| 126 |
+
|
| 127 |
+
def decode(self, x):
|
| 128 |
+
# x is (Batch x (Channels Bands) x Time), convert back to (Batch x Channels x Bands x Time)
|
| 129 |
+
x = rearrange(x, "b (c n) t -> b c n t", n=self.pqmf.num_bands)
|
| 130 |
+
# returns (Batch x Channels x Time)
|
| 131 |
+
return self.pqmf.inverse(x)
|
| 132 |
+
|
| 133 |
+
class PretrainedDACPretransform(Pretransform):
|
| 134 |
+
def __init__(self, model_type="44khz", model_bitrate="8kbps", scale=1.0, quantize_on_decode: bool = True, chunked=True):
|
| 135 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
| 136 |
+
|
| 137 |
+
import dac
|
| 138 |
+
|
| 139 |
+
model_path = dac.utils.download(model_type=model_type, model_bitrate=model_bitrate)
|
| 140 |
+
|
| 141 |
+
self.model = dac.DAC.load(model_path)
|
| 142 |
+
|
| 143 |
+
self.quantize_on_decode = quantize_on_decode
|
| 144 |
+
|
| 145 |
+
if model_type == "44khz":
|
| 146 |
+
self.downsampling_ratio = 512
|
| 147 |
+
else:
|
| 148 |
+
self.downsampling_ratio = 320
|
| 149 |
+
|
| 150 |
+
self.io_channels = 1
|
| 151 |
+
|
| 152 |
+
self.scale = scale
|
| 153 |
+
|
| 154 |
+
self.chunked = chunked
|
| 155 |
+
|
| 156 |
+
self.encoded_channels = self.model.latent_dim
|
| 157 |
+
|
| 158 |
+
self.num_quantizers = self.model.n_codebooks
|
| 159 |
+
|
| 160 |
+
self.codebook_size = self.model.codebook_size
|
| 161 |
+
|
| 162 |
+
def encode(self, x):
|
| 163 |
+
|
| 164 |
+
latents = self.model.encoder(x)
|
| 165 |
+
|
| 166 |
+
if self.quantize_on_decode:
|
| 167 |
+
output = latents
|
| 168 |
+
else:
|
| 169 |
+
z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
| 170 |
+
output = z
|
| 171 |
+
|
| 172 |
+
if self.scale != 1.0:
|
| 173 |
+
output = output / self.scale
|
| 174 |
+
|
| 175 |
+
return output
|
| 176 |
+
|
| 177 |
+
def decode(self, z):
|
| 178 |
+
|
| 179 |
+
if self.scale != 1.0:
|
| 180 |
+
z = z * self.scale
|
| 181 |
+
|
| 182 |
+
if self.quantize_on_decode:
|
| 183 |
+
z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
| 184 |
+
|
| 185 |
+
return self.model.decode(z)
|
| 186 |
+
|
| 187 |
+
def tokenize(self, x):
|
| 188 |
+
return self.model.encode(x)[1]
|
| 189 |
+
|
| 190 |
+
def decode_tokens(self, tokens):
|
| 191 |
+
latents = self.model.quantizer.from_codes(tokens)
|
| 192 |
+
return self.model.decode(latents)
|
| 193 |
+
|
| 194 |
+
class AudiocraftCompressionPretransform(Pretransform):
|
| 195 |
+
def __init__(self, model_type="facebook/encodec_32khz", scale=1.0, quantize_on_decode: bool = True):
|
| 196 |
+
super().__init__(enable_grad=False, io_channels=1, is_discrete=True)
|
| 197 |
+
|
| 198 |
+
try:
|
| 199 |
+
from audiocraft.models import CompressionModel
|
| 200 |
+
except ImportError:
|
| 201 |
+
raise ImportError("Audiocraft is not installed. Please install audiocraft to use Audiocraft models.")
|
| 202 |
+
|
| 203 |
+
self.model = CompressionModel.get_pretrained(model_type)
|
| 204 |
+
|
| 205 |
+
self.quantize_on_decode = quantize_on_decode
|
| 206 |
+
|
| 207 |
+
self.downsampling_ratio = round(self.model.sample_rate / self.model.frame_rate)
|
| 208 |
+
|
| 209 |
+
self.sample_rate = self.model.sample_rate
|
| 210 |
+
|
| 211 |
+
self.io_channels = self.model.channels
|
| 212 |
+
|
| 213 |
+
self.scale = scale
|
| 214 |
+
|
| 215 |
+
#self.encoded_channels = self.model.latent_dim
|
| 216 |
+
|
| 217 |
+
self.num_quantizers = self.model.num_codebooks
|
| 218 |
+
|
| 219 |
+
self.codebook_size = self.model.cardinality
|
| 220 |
+
|
| 221 |
+
self.model.to(torch.float16).eval().requires_grad_(False)
|
| 222 |
+
|
| 223 |
+
def encode(self, x):
|
| 224 |
+
|
| 225 |
+
assert False, "Audiocraft compression models do not support continuous encoding"
|
| 226 |
+
|
| 227 |
+
# latents = self.model.encoder(x)
|
| 228 |
+
|
| 229 |
+
# if self.quantize_on_decode:
|
| 230 |
+
# output = latents
|
| 231 |
+
# else:
|
| 232 |
+
# z, _, _, _, _ = self.model.quantizer(latents, n_quantizers=self.model.n_codebooks)
|
| 233 |
+
# output = z
|
| 234 |
+
|
| 235 |
+
# if self.scale != 1.0:
|
| 236 |
+
# output = output / self.scale
|
| 237 |
+
|
| 238 |
+
# return output
|
| 239 |
+
|
| 240 |
+
def decode(self, z):
|
| 241 |
+
|
| 242 |
+
assert False, "Audiocraft compression models do not support continuous decoding"
|
| 243 |
+
|
| 244 |
+
# if self.scale != 1.0:
|
| 245 |
+
# z = z * self.scale
|
| 246 |
+
|
| 247 |
+
# if self.quantize_on_decode:
|
| 248 |
+
# z, _, _, _, _ = self.model.quantizer(z, n_quantizers=self.model.n_codebooks)
|
| 249 |
+
|
| 250 |
+
# return self.model.decode(z)
|
| 251 |
+
|
| 252 |
+
def tokenize(self, x):
|
| 253 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 254 |
+
return self.model.encode(x.to(torch.float16))[0]
|
| 255 |
+
|
| 256 |
+
def decode_tokens(self, tokens):
|
| 257 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 258 |
+
return self.model.decode(tokens)
|
ThinkSound/models/transformer.py
ADDED
|
@@ -0,0 +1,821 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import reduce, partial
|
| 2 |
+
from packaging import version
|
| 3 |
+
|
| 4 |
+
from einops import rearrange, repeat
|
| 5 |
+
from einops.layers.torch import Rearrange
|
| 6 |
+
import torch
|
| 7 |
+
import torch.nn.functional as F
|
| 8 |
+
from torch import nn, einsum
|
| 9 |
+
from torch.cuda.amp import autocast
|
| 10 |
+
from typing import Callable, Literal
|
| 11 |
+
|
| 12 |
+
try:
|
| 13 |
+
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
|
| 14 |
+
except ImportError as e:
|
| 15 |
+
print(e)
|
| 16 |
+
print('flash_attn not installed, disabling Flash Attention')
|
| 17 |
+
flash_attn_kvpacked_func = None
|
| 18 |
+
flash_attn_func = None
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
import natten
|
| 22 |
+
except ImportError:
|
| 23 |
+
natten = None
|
| 24 |
+
|
| 25 |
+
def checkpoint(function, *args, **kwargs):
|
| 26 |
+
kwargs.setdefault("use_reentrant", False)
|
| 27 |
+
return torch.utils.checkpoint.checkpoint(function, *args, **kwargs)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# Copied and modified from https://github.com/lucidrains/x-transformers/blob/main/x_transformers/attend.py under MIT License
|
| 31 |
+
# License can be found in LICENSES/LICENSE_XTRANSFORMERS.txt
|
| 32 |
+
|
| 33 |
+
def create_causal_mask(i, j, device):
|
| 34 |
+
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
| 35 |
+
|
| 36 |
+
def or_reduce(masks):
|
| 37 |
+
head, *body = masks
|
| 38 |
+
for rest in body:
|
| 39 |
+
head = head | rest
|
| 40 |
+
return head
|
| 41 |
+
|
| 42 |
+
# positional embeddings
|
| 43 |
+
|
| 44 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
| 45 |
+
def __init__(self, dim, max_seq_len):
|
| 46 |
+
super().__init__()
|
| 47 |
+
self.scale = dim ** -0.5
|
| 48 |
+
self.max_seq_len = max_seq_len
|
| 49 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
| 50 |
+
|
| 51 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
| 52 |
+
seq_len, device = x.shape[1], x.device
|
| 53 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
| 54 |
+
|
| 55 |
+
if pos is None:
|
| 56 |
+
pos = torch.arange(seq_len, device = device)
|
| 57 |
+
|
| 58 |
+
if seq_start_pos is not None:
|
| 59 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
| 60 |
+
|
| 61 |
+
pos_emb = self.emb(pos)
|
| 62 |
+
pos_emb = pos_emb * self.scale
|
| 63 |
+
return pos_emb
|
| 64 |
+
|
| 65 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
| 66 |
+
def __init__(self, dim, theta = 10000):
|
| 67 |
+
super().__init__()
|
| 68 |
+
assert (dim % 2) == 0, 'dimension must be divisible by 2'
|
| 69 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
| 70 |
+
|
| 71 |
+
half_dim = dim // 2
|
| 72 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
| 73 |
+
inv_freq = theta ** -freq_seq
|
| 74 |
+
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
| 75 |
+
|
| 76 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
| 77 |
+
seq_len, device = x.shape[1], x.device
|
| 78 |
+
|
| 79 |
+
if pos is None:
|
| 80 |
+
pos = torch.arange(seq_len, device = device)
|
| 81 |
+
|
| 82 |
+
if seq_start_pos is not None:
|
| 83 |
+
pos = pos - seq_start_pos[..., None]
|
| 84 |
+
|
| 85 |
+
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
| 86 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
| 87 |
+
return emb * self.scale
|
| 88 |
+
|
| 89 |
+
class RotaryEmbedding(nn.Module):
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
dim,
|
| 93 |
+
use_xpos = False,
|
| 94 |
+
scale_base = 512,
|
| 95 |
+
interpolation_factor = 1.,
|
| 96 |
+
base = 10000,
|
| 97 |
+
base_rescale_factor = 1.
|
| 98 |
+
):
|
| 99 |
+
super().__init__()
|
| 100 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
| 101 |
+
# has some connection to NTK literature
|
| 102 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
| 103 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
| 104 |
+
|
| 105 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 106 |
+
self.register_buffer('inv_freq', inv_freq)
|
| 107 |
+
|
| 108 |
+
assert interpolation_factor >= 1.
|
| 109 |
+
self.interpolation_factor = interpolation_factor
|
| 110 |
+
|
| 111 |
+
if not use_xpos:
|
| 112 |
+
self.register_buffer('scale', None)
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
| 116 |
+
|
| 117 |
+
self.scale_base = scale_base
|
| 118 |
+
self.register_buffer('scale', scale)
|
| 119 |
+
|
| 120 |
+
def forward_from_seq_len(self, seq_len):
|
| 121 |
+
device = self.inv_freq.device
|
| 122 |
+
|
| 123 |
+
t = torch.arange(seq_len, device = device)
|
| 124 |
+
return self.forward(t)
|
| 125 |
+
|
| 126 |
+
@autocast(enabled = False)
|
| 127 |
+
def forward(self, t):
|
| 128 |
+
device = self.inv_freq.device
|
| 129 |
+
|
| 130 |
+
t = t.to(torch.float32)
|
| 131 |
+
|
| 132 |
+
t = t / self.interpolation_factor
|
| 133 |
+
|
| 134 |
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
| 135 |
+
freqs = torch.cat((freqs, freqs), dim = -1)
|
| 136 |
+
|
| 137 |
+
if self.scale is None:
|
| 138 |
+
return freqs, 1.
|
| 139 |
+
|
| 140 |
+
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
| 141 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
| 142 |
+
scale = torch.cat((scale, scale), dim = -1)
|
| 143 |
+
|
| 144 |
+
return freqs, scale
|
| 145 |
+
|
| 146 |
+
def rotate_half(x):
|
| 147 |
+
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
| 148 |
+
x1, x2 = x.unbind(dim = -2)
|
| 149 |
+
return torch.cat((-x2, x1), dim = -1)
|
| 150 |
+
|
| 151 |
+
@autocast(enabled = False)
|
| 152 |
+
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
| 153 |
+
out_dtype = t.dtype
|
| 154 |
+
|
| 155 |
+
# cast to float32 if necessary for numerical stability
|
| 156 |
+
dtype = reduce(torch.promote_types, (t.dtype, freqs.dtype, torch.float32))
|
| 157 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
| 158 |
+
freqs, t = freqs.to(dtype), t.to(dtype)
|
| 159 |
+
freqs = freqs[-seq_len:, :]
|
| 160 |
+
|
| 161 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
| 162 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
| 163 |
+
|
| 164 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
| 165 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
| 166 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
| 167 |
+
|
| 168 |
+
t, t_unrotated = t.to(out_dtype), t_unrotated.to(out_dtype)
|
| 169 |
+
|
| 170 |
+
return torch.cat((t, t_unrotated), dim = -1)
|
| 171 |
+
|
| 172 |
+
# norms
|
| 173 |
+
class LayerNorm(nn.Module):
|
| 174 |
+
def __init__(self, dim, bias=False, fix_scale=False):
|
| 175 |
+
"""
|
| 176 |
+
bias-less layernorm has been shown to be more stable. most newer models have moved towards rmsnorm, also bias-less
|
| 177 |
+
"""
|
| 178 |
+
super().__init__()
|
| 179 |
+
|
| 180 |
+
if fix_scale:
|
| 181 |
+
self.register_buffer("gamma", torch.ones(dim))
|
| 182 |
+
else:
|
| 183 |
+
self.gamma = nn.Parameter(torch.ones(dim))
|
| 184 |
+
|
| 185 |
+
if bias:
|
| 186 |
+
self.beta = nn.Parameter(torch.zeros(dim))
|
| 187 |
+
else:
|
| 188 |
+
self.register_buffer("beta", torch.zeros(dim))
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def forward(self, x):
|
| 192 |
+
return F.layer_norm(x, x.shape[-1:], weight=self.gamma, bias=self.beta)
|
| 193 |
+
|
| 194 |
+
# feedforward
|
| 195 |
+
|
| 196 |
+
class GLU(nn.Module):
|
| 197 |
+
def __init__(
|
| 198 |
+
self,
|
| 199 |
+
dim_in,
|
| 200 |
+
dim_out,
|
| 201 |
+
activation: Callable,
|
| 202 |
+
use_conv = False,
|
| 203 |
+
conv_kernel_size = 3,
|
| 204 |
+
):
|
| 205 |
+
super().__init__()
|
| 206 |
+
self.act = activation
|
| 207 |
+
self.proj = nn.Linear(dim_in, dim_out * 2) if not use_conv else nn.Conv1d(dim_in, dim_out * 2, conv_kernel_size, padding = (conv_kernel_size // 2))
|
| 208 |
+
self.use_conv = use_conv
|
| 209 |
+
|
| 210 |
+
def forward(self, x):
|
| 211 |
+
if self.use_conv:
|
| 212 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 213 |
+
x = self.proj(x)
|
| 214 |
+
x = rearrange(x, 'b d n -> b n d')
|
| 215 |
+
else:
|
| 216 |
+
x = self.proj(x)
|
| 217 |
+
|
| 218 |
+
x, gate = x.chunk(2, dim = -1)
|
| 219 |
+
return x * self.act(gate)
|
| 220 |
+
|
| 221 |
+
class FeedForward(nn.Module):
|
| 222 |
+
def __init__(
|
| 223 |
+
self,
|
| 224 |
+
dim,
|
| 225 |
+
dim_out = None,
|
| 226 |
+
mult = 4,
|
| 227 |
+
no_bias = False,
|
| 228 |
+
glu = True,
|
| 229 |
+
use_conv = False,
|
| 230 |
+
conv_kernel_size = 3,
|
| 231 |
+
zero_init_output = True,
|
| 232 |
+
):
|
| 233 |
+
super().__init__()
|
| 234 |
+
inner_dim = int(dim * mult)
|
| 235 |
+
|
| 236 |
+
# Default to SwiGLU
|
| 237 |
+
|
| 238 |
+
activation = nn.SiLU()
|
| 239 |
+
|
| 240 |
+
dim_out = dim if dim_out is None else dim_out
|
| 241 |
+
|
| 242 |
+
if glu:
|
| 243 |
+
linear_in = GLU(dim, inner_dim, activation)
|
| 244 |
+
else:
|
| 245 |
+
linear_in = nn.Sequential(
|
| 246 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
| 247 |
+
nn.Linear(dim, inner_dim, bias = not no_bias) if not use_conv else nn.Conv1d(dim, inner_dim, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias),
|
| 248 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
| 249 |
+
activation
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
linear_out = nn.Linear(inner_dim, dim_out, bias = not no_bias) if not use_conv else nn.Conv1d(inner_dim, dim_out, conv_kernel_size, padding = (conv_kernel_size // 2), bias = not no_bias)
|
| 253 |
+
|
| 254 |
+
# init last linear layer to 0
|
| 255 |
+
if zero_init_output:
|
| 256 |
+
nn.init.zeros_(linear_out.weight)
|
| 257 |
+
if not no_bias:
|
| 258 |
+
nn.init.zeros_(linear_out.bias)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
self.ff = nn.Sequential(
|
| 262 |
+
linear_in,
|
| 263 |
+
Rearrange('b d n -> b n d') if use_conv else nn.Identity(),
|
| 264 |
+
linear_out,
|
| 265 |
+
Rearrange('b n d -> b d n') if use_conv else nn.Identity(),
|
| 266 |
+
)
|
| 267 |
+
|
| 268 |
+
def forward(self, x):
|
| 269 |
+
return self.ff(x)
|
| 270 |
+
|
| 271 |
+
class Attention(nn.Module):
|
| 272 |
+
def __init__(
|
| 273 |
+
self,
|
| 274 |
+
dim,
|
| 275 |
+
dim_heads = 64,
|
| 276 |
+
dim_context = None,
|
| 277 |
+
causal = False,
|
| 278 |
+
zero_init_output=True,
|
| 279 |
+
qk_norm: Literal['l2', 'ln', 'none'] = 'none',
|
| 280 |
+
natten_kernel_size = None
|
| 281 |
+
):
|
| 282 |
+
super().__init__()
|
| 283 |
+
self.dim = dim
|
| 284 |
+
self.dim_heads = dim_heads
|
| 285 |
+
self.causal = causal
|
| 286 |
+
|
| 287 |
+
dim_kv = dim_context if dim_context is not None else dim
|
| 288 |
+
|
| 289 |
+
self.num_heads = dim // dim_heads
|
| 290 |
+
self.kv_heads = dim_kv // dim_heads
|
| 291 |
+
|
| 292 |
+
if dim_context is not None:
|
| 293 |
+
self.to_q = nn.Linear(dim, dim, bias=False)
|
| 294 |
+
self.to_kv = nn.Linear(dim_kv, dim_kv * 2, bias=False)
|
| 295 |
+
else:
|
| 296 |
+
self.to_qkv = nn.Linear(dim, dim * 3, bias=False)
|
| 297 |
+
|
| 298 |
+
self.to_out = nn.Linear(dim, dim, bias=False)
|
| 299 |
+
|
| 300 |
+
if zero_init_output:
|
| 301 |
+
nn.init.zeros_(self.to_out.weight)
|
| 302 |
+
|
| 303 |
+
self.qk_norm = qk_norm
|
| 304 |
+
|
| 305 |
+
if self.qk_norm == "ln":
|
| 306 |
+
self.q_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
| 307 |
+
self.k_norm = nn.LayerNorm(dim_heads, elementwise_affine=True, eps=1.0e-6)
|
| 308 |
+
elif self.qk_norm == 'rns':
|
| 309 |
+
self.q_norm = nn.RMSNorm(dim_heads)
|
| 310 |
+
self.k_norm = nn.RMSNorm(dim_heads)
|
| 311 |
+
|
| 312 |
+
# Using 1d neighborhood attention
|
| 313 |
+
self.natten_kernel_size = natten_kernel_size
|
| 314 |
+
if natten_kernel_size is not None:
|
| 315 |
+
return
|
| 316 |
+
|
| 317 |
+
self.use_pt_flash = torch.cuda.is_available() and version.parse(torch.__version__) >= version.parse('2.0.0')
|
| 318 |
+
|
| 319 |
+
self.use_fa_flash = torch.cuda.is_available() and flash_attn_func is not None
|
| 320 |
+
|
| 321 |
+
self.sdp_kwargs = dict(
|
| 322 |
+
enable_flash = True,
|
| 323 |
+
enable_math = True,
|
| 324 |
+
enable_mem_efficient = True
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
def flash_attn(
|
| 328 |
+
self,
|
| 329 |
+
q,
|
| 330 |
+
k,
|
| 331 |
+
v,
|
| 332 |
+
mask = None,
|
| 333 |
+
causal = None
|
| 334 |
+
):
|
| 335 |
+
batch, heads, q_len, _, k_len, device = *q.shape, k.shape[-2], q.device
|
| 336 |
+
kv_heads = k.shape[1]
|
| 337 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
| 338 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
| 339 |
+
|
| 340 |
+
if heads != kv_heads:
|
| 341 |
+
# Repeat interleave kv_heads to match q_heads
|
| 342 |
+
heads_per_kv_head = heads // kv_heads
|
| 343 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
| 344 |
+
|
| 345 |
+
if k.ndim == 3:
|
| 346 |
+
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
| 347 |
+
|
| 348 |
+
if v.ndim == 3:
|
| 349 |
+
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
| 350 |
+
|
| 351 |
+
causal = self.causal if causal is None else causal
|
| 352 |
+
|
| 353 |
+
if q_len == 1 and causal:
|
| 354 |
+
causal = False
|
| 355 |
+
|
| 356 |
+
if mask is not None:
|
| 357 |
+
assert mask.ndim == 4
|
| 358 |
+
mask = mask.expand(batch, heads, q_len, k_len)
|
| 359 |
+
|
| 360 |
+
# handle kv cache - this should be bypassable in updated flash attention 2
|
| 361 |
+
|
| 362 |
+
if k_len > q_len and causal:
|
| 363 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
| 364 |
+
if mask is None:
|
| 365 |
+
mask = ~causal_mask
|
| 366 |
+
else:
|
| 367 |
+
mask = mask & ~causal_mask
|
| 368 |
+
causal = False
|
| 369 |
+
|
| 370 |
+
# manually handle causal mask, if another mask was given
|
| 371 |
+
|
| 372 |
+
row_is_entirely_masked = None
|
| 373 |
+
|
| 374 |
+
if mask is not None and causal:
|
| 375 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
| 376 |
+
mask = mask & ~causal_mask
|
| 377 |
+
|
| 378 |
+
# protect against an entire row being masked out
|
| 379 |
+
|
| 380 |
+
row_is_entirely_masked = ~mask.any(dim = -1)
|
| 381 |
+
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
| 382 |
+
|
| 383 |
+
causal = False
|
| 384 |
+
|
| 385 |
+
with torch.backends.cuda.sdp_kernel(**self.sdp_kwargs):
|
| 386 |
+
out = F.scaled_dot_product_attention(
|
| 387 |
+
q, k, v,
|
| 388 |
+
attn_mask = mask,
|
| 389 |
+
is_causal = causal
|
| 390 |
+
)
|
| 391 |
+
|
| 392 |
+
# for a row that is entirely masked out, should zero out the output of that row token
|
| 393 |
+
|
| 394 |
+
if row_is_entirely_masked is not None:
|
| 395 |
+
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
| 396 |
+
|
| 397 |
+
return out
|
| 398 |
+
|
| 399 |
+
def forward(
|
| 400 |
+
self,
|
| 401 |
+
x,
|
| 402 |
+
context = None,
|
| 403 |
+
mask = None,
|
| 404 |
+
context_mask = None,
|
| 405 |
+
rotary_pos_emb = None,
|
| 406 |
+
causal = None
|
| 407 |
+
):
|
| 408 |
+
h, kv_h, has_context = self.num_heads, self.kv_heads, context is not None
|
| 409 |
+
kv_input = context if has_context else x
|
| 410 |
+
|
| 411 |
+
if hasattr(self, 'to_q'):
|
| 412 |
+
# Use separate linear projections for q and k/v
|
| 413 |
+
q = self.to_q(x)
|
| 414 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
| 415 |
+
|
| 416 |
+
k, v = self.to_kv(kv_input).chunk(2, dim=-1)
|
| 417 |
+
|
| 418 |
+
k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = kv_h), (k, v))
|
| 419 |
+
else:
|
| 420 |
+
# Use fused linear projection
|
| 421 |
+
q, k, v = self.to_qkv(x).chunk(3, dim=-1)
|
| 422 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = h), (q, k, v))
|
| 423 |
+
|
| 424 |
+
# Normalize q and k for cosine sim attention
|
| 425 |
+
if self.qk_norm == "l2":
|
| 426 |
+
q = F.normalize(q, dim=-1)
|
| 427 |
+
k = F.normalize(k, dim=-1)
|
| 428 |
+
elif self.qk_norm == "ln":
|
| 429 |
+
q = self.q_norm(q)
|
| 430 |
+
k = self.k_norm(k)
|
| 431 |
+
elif self.qk_norm == "rns":
|
| 432 |
+
q = self.q_norm(q)
|
| 433 |
+
k = self.k_norm(k)
|
| 434 |
+
|
| 435 |
+
if rotary_pos_emb is not None and not has_context:
|
| 436 |
+
freqs, _ = rotary_pos_emb
|
| 437 |
+
|
| 438 |
+
q_dtype = q.dtype
|
| 439 |
+
k_dtype = k.dtype
|
| 440 |
+
|
| 441 |
+
q = q.to(torch.float32)
|
| 442 |
+
k = k.to(torch.float32)
|
| 443 |
+
freqs = freqs.to(torch.float32)
|
| 444 |
+
|
| 445 |
+
q = apply_rotary_pos_emb(q, freqs)
|
| 446 |
+
k = apply_rotary_pos_emb(k, freqs)
|
| 447 |
+
|
| 448 |
+
q = q.to(q_dtype)
|
| 449 |
+
k = k.to(k_dtype)
|
| 450 |
+
|
| 451 |
+
input_mask = context_mask
|
| 452 |
+
|
| 453 |
+
if input_mask is None and not has_context:
|
| 454 |
+
input_mask = mask
|
| 455 |
+
|
| 456 |
+
# determine masking
|
| 457 |
+
masks = []
|
| 458 |
+
final_attn_mask = None # The mask that will be applied to the attention matrix, taking all masks into account
|
| 459 |
+
|
| 460 |
+
if input_mask is not None:
|
| 461 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
| 462 |
+
masks.append(~input_mask)
|
| 463 |
+
|
| 464 |
+
# Other masks will be added here later
|
| 465 |
+
|
| 466 |
+
if len(masks) > 0:
|
| 467 |
+
final_attn_mask = ~or_reduce(masks)
|
| 468 |
+
|
| 469 |
+
n, device = q.shape[-2], q.device
|
| 470 |
+
|
| 471 |
+
causal = self.causal if causal is None else causal
|
| 472 |
+
|
| 473 |
+
if n == 1 and causal:
|
| 474 |
+
causal = False
|
| 475 |
+
|
| 476 |
+
if self.natten_kernel_size is not None:
|
| 477 |
+
if natten is None:
|
| 478 |
+
raise ImportError('natten not installed, please install natten to use neighborhood attention')
|
| 479 |
+
|
| 480 |
+
dtype_in = q.dtype
|
| 481 |
+
q, k, v = map(lambda t: t.to(torch.float32), (q, k, v))
|
| 482 |
+
|
| 483 |
+
attn = natten.functional.natten1dqk(q, k, kernel_size = self.natten_kernel_size, dilation=1)
|
| 484 |
+
|
| 485 |
+
if final_attn_mask is not None:
|
| 486 |
+
attn = attn.masked_fill(final_attn_mask, -torch.finfo(attn.dtype).max)
|
| 487 |
+
|
| 488 |
+
attn = F.softmax(attn, dim=-1, dtype=torch.float32)
|
| 489 |
+
|
| 490 |
+
out = natten.functional.natten1dav(attn, v, kernel_size = self.natten_kernel_size, dilation=1).to(dtype_in)
|
| 491 |
+
|
| 492 |
+
# Prioritize Flash Attention 2
|
| 493 |
+
elif self.use_fa_flash:
|
| 494 |
+
assert final_attn_mask is None, 'masking not yet supported for Flash Attention 2'
|
| 495 |
+
# Flash Attention 2 requires FP16 inputs
|
| 496 |
+
fa_dtype_in = q.dtype
|
| 497 |
+
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.float16), (q, k, v))
|
| 498 |
+
|
| 499 |
+
out = flash_attn_func(q, k, v, causal = causal)
|
| 500 |
+
|
| 501 |
+
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b h n d')
|
| 502 |
+
|
| 503 |
+
# Fall back to PyTorch implementation
|
| 504 |
+
elif self.use_pt_flash:
|
| 505 |
+
out = self.flash_attn(q, k, v, causal = causal, mask = final_attn_mask)
|
| 506 |
+
|
| 507 |
+
else:
|
| 508 |
+
# Fall back to custom implementation
|
| 509 |
+
|
| 510 |
+
if h != kv_h:
|
| 511 |
+
# Repeat interleave kv_heads to match q_heads
|
| 512 |
+
heads_per_kv_head = h // kv_h
|
| 513 |
+
k, v = map(lambda t: t.repeat_interleave(heads_per_kv_head, dim = 1), (k, v))
|
| 514 |
+
|
| 515 |
+
scale = 1. / (q.shape[-1] ** 0.5)
|
| 516 |
+
|
| 517 |
+
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
| 518 |
+
|
| 519 |
+
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
| 520 |
+
|
| 521 |
+
i, j, dtype = *dots.shape[-2:], dots.dtype
|
| 522 |
+
|
| 523 |
+
mask_value = -torch.finfo(dots.dtype).max
|
| 524 |
+
|
| 525 |
+
if final_attn_mask is not None:
|
| 526 |
+
dots = dots.masked_fill(~final_attn_mask, mask_value)
|
| 527 |
+
|
| 528 |
+
if causal:
|
| 529 |
+
causal_mask = self.create_causal_mask(i, j, device = device)
|
| 530 |
+
dots = dots.masked_fill(causal_mask, mask_value)
|
| 531 |
+
|
| 532 |
+
attn = F.softmax(dots, dim=-1, dtype=torch.float32)
|
| 533 |
+
attn = attn.type(dtype)
|
| 534 |
+
|
| 535 |
+
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
| 536 |
+
|
| 537 |
+
# merge heads
|
| 538 |
+
out = rearrange(out, ' b h n d -> b n (h d)')
|
| 539 |
+
|
| 540 |
+
# Communicate between heads
|
| 541 |
+
|
| 542 |
+
# with autocast(enabled = False):
|
| 543 |
+
# out_dtype = out.dtype
|
| 544 |
+
# out = out.to(torch.float32)
|
| 545 |
+
# out = self.to_out(out).to(out_dtype)
|
| 546 |
+
out = self.to_out(out)
|
| 547 |
+
|
| 548 |
+
if mask is not None:
|
| 549 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
| 550 |
+
out = out.masked_fill(~mask, 0.)
|
| 551 |
+
|
| 552 |
+
return out
|
| 553 |
+
|
| 554 |
+
class ConformerModule(nn.Module):
|
| 555 |
+
def __init__(
|
| 556 |
+
self,
|
| 557 |
+
dim,
|
| 558 |
+
norm_kwargs = {},
|
| 559 |
+
):
|
| 560 |
+
|
| 561 |
+
super().__init__()
|
| 562 |
+
|
| 563 |
+
self.dim = dim
|
| 564 |
+
|
| 565 |
+
self.in_norm = LayerNorm(dim, **norm_kwargs)
|
| 566 |
+
self.pointwise_conv = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
| 567 |
+
self.glu = GLU(dim, dim, nn.SiLU())
|
| 568 |
+
self.depthwise_conv = nn.Conv1d(dim, dim, kernel_size=17, groups=dim, padding=8, bias=False)
|
| 569 |
+
self.mid_norm = LayerNorm(dim, **norm_kwargs) # This is a batch norm in the original but I don't like batch norm
|
| 570 |
+
self.swish = nn.SiLU()
|
| 571 |
+
self.pointwise_conv_2 = nn.Conv1d(dim, dim, kernel_size=1, bias=False)
|
| 572 |
+
|
| 573 |
+
def forward(self, x):
|
| 574 |
+
x = self.in_norm(x)
|
| 575 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 576 |
+
x = self.pointwise_conv(x)
|
| 577 |
+
x = rearrange(x, 'b d n -> b n d')
|
| 578 |
+
x = self.glu(x)
|
| 579 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 580 |
+
x = self.depthwise_conv(x)
|
| 581 |
+
x = rearrange(x, 'b d n -> b n d')
|
| 582 |
+
x = self.mid_norm(x)
|
| 583 |
+
x = self.swish(x)
|
| 584 |
+
x = rearrange(x, 'b n d -> b d n')
|
| 585 |
+
x = self.pointwise_conv_2(x)
|
| 586 |
+
x = rearrange(x, 'b d n -> b n d')
|
| 587 |
+
|
| 588 |
+
return x
|
| 589 |
+
|
| 590 |
+
class TransformerBlock(nn.Module):
|
| 591 |
+
def __init__(
|
| 592 |
+
self,
|
| 593 |
+
dim,
|
| 594 |
+
dim_heads = 64,
|
| 595 |
+
cross_attend = False,
|
| 596 |
+
dim_context = None,
|
| 597 |
+
global_cond_dim = None,
|
| 598 |
+
causal = False,
|
| 599 |
+
zero_init_branch_outputs = True,
|
| 600 |
+
conformer = False,
|
| 601 |
+
layer_ix = -1,
|
| 602 |
+
remove_norms = False,
|
| 603 |
+
attn_kwargs = {},
|
| 604 |
+
ff_kwargs = {},
|
| 605 |
+
norm_kwargs = {}
|
| 606 |
+
):
|
| 607 |
+
|
| 608 |
+
super().__init__()
|
| 609 |
+
self.dim = dim
|
| 610 |
+
self.dim_heads = dim_heads
|
| 611 |
+
self.cross_attend = cross_attend
|
| 612 |
+
self.dim_context = dim_context
|
| 613 |
+
self.causal = causal
|
| 614 |
+
|
| 615 |
+
self.pre_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
| 616 |
+
|
| 617 |
+
self.self_attn = Attention(
|
| 618 |
+
dim,
|
| 619 |
+
dim_heads = dim_heads,
|
| 620 |
+
causal = causal,
|
| 621 |
+
zero_init_output=zero_init_branch_outputs,
|
| 622 |
+
**attn_kwargs
|
| 623 |
+
)
|
| 624 |
+
|
| 625 |
+
if cross_attend:
|
| 626 |
+
self.cross_attend_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
| 627 |
+
self.cross_attn = Attention(
|
| 628 |
+
dim,
|
| 629 |
+
dim_heads = dim_heads,
|
| 630 |
+
dim_context=dim_context,
|
| 631 |
+
causal = causal,
|
| 632 |
+
zero_init_output=zero_init_branch_outputs,
|
| 633 |
+
**attn_kwargs
|
| 634 |
+
)
|
| 635 |
+
|
| 636 |
+
self.ff_norm = LayerNorm(dim, **norm_kwargs) if not remove_norms else nn.Identity()
|
| 637 |
+
self.ff = FeedForward(dim, zero_init_output=zero_init_branch_outputs, **ff_kwargs)
|
| 638 |
+
|
| 639 |
+
self.layer_ix = layer_ix
|
| 640 |
+
|
| 641 |
+
self.conformer = ConformerModule(dim, norm_kwargs=norm_kwargs) if conformer else None
|
| 642 |
+
|
| 643 |
+
self.global_cond_dim = global_cond_dim
|
| 644 |
+
|
| 645 |
+
if global_cond_dim is not None:
|
| 646 |
+
self.to_scale_shift_gate = nn.Sequential(
|
| 647 |
+
nn.SiLU(),
|
| 648 |
+
nn.Linear(global_cond_dim, dim * 6, bias=False)
|
| 649 |
+
)
|
| 650 |
+
|
| 651 |
+
nn.init.zeros_(self.to_scale_shift_gate[1].weight)
|
| 652 |
+
#nn.init.zeros_(self.to_scale_shift_gate_self[1].bias)
|
| 653 |
+
|
| 654 |
+
def forward(
|
| 655 |
+
self,
|
| 656 |
+
x,
|
| 657 |
+
context = None,
|
| 658 |
+
global_cond=None,
|
| 659 |
+
mask = None,
|
| 660 |
+
context_mask = None,
|
| 661 |
+
rotary_pos_emb = None
|
| 662 |
+
):
|
| 663 |
+
if self.global_cond_dim is not None and self.global_cond_dim > 0 and global_cond is not None:
|
| 664 |
+
|
| 665 |
+
scale_self, shift_self, gate_self, scale_ff, shift_ff, gate_ff = self.to_scale_shift_gate(global_cond).unsqueeze(1).chunk(6, dim = -1)
|
| 666 |
+
|
| 667 |
+
# self-attention with adaLN
|
| 668 |
+
residual = x
|
| 669 |
+
x = self.pre_norm(x)
|
| 670 |
+
x = x * (1 + scale_self) + shift_self
|
| 671 |
+
x = self.self_attn(x, mask = mask, rotary_pos_emb = rotary_pos_emb)
|
| 672 |
+
x = x * torch.sigmoid(1 - gate_self)
|
| 673 |
+
x = x + residual
|
| 674 |
+
|
| 675 |
+
if context is not None:
|
| 676 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
| 677 |
+
|
| 678 |
+
if self.conformer is not None:
|
| 679 |
+
x = x + self.conformer(x)
|
| 680 |
+
|
| 681 |
+
# feedforward with adaLN
|
| 682 |
+
residual = x
|
| 683 |
+
x = self.ff_norm(x)
|
| 684 |
+
x = x * (1 + scale_ff) + shift_ff
|
| 685 |
+
x = self.ff(x)
|
| 686 |
+
x = x * torch.sigmoid(1 - gate_ff)
|
| 687 |
+
x = x + residual
|
| 688 |
+
|
| 689 |
+
else:
|
| 690 |
+
x = x + self.self_attn(self.pre_norm(x), mask = mask, rotary_pos_emb = rotary_pos_emb)
|
| 691 |
+
|
| 692 |
+
if context is not None:
|
| 693 |
+
x = x + self.cross_attn(self.cross_attend_norm(x), context = context, context_mask = context_mask)
|
| 694 |
+
|
| 695 |
+
if self.conformer is not None:
|
| 696 |
+
x = x + self.conformer(x)
|
| 697 |
+
|
| 698 |
+
x = x + self.ff(self.ff_norm(x))
|
| 699 |
+
|
| 700 |
+
return x
|
| 701 |
+
|
| 702 |
+
class ContinuousTransformer(nn.Module):
|
| 703 |
+
def __init__(
|
| 704 |
+
self,
|
| 705 |
+
dim,
|
| 706 |
+
depth,
|
| 707 |
+
*,
|
| 708 |
+
dim_in = None,
|
| 709 |
+
dim_out = None,
|
| 710 |
+
dim_heads = 64,
|
| 711 |
+
cross_attend=False,
|
| 712 |
+
cond_token_dim=None,
|
| 713 |
+
global_cond_dim=None,
|
| 714 |
+
causal=False,
|
| 715 |
+
rotary_pos_emb=True,
|
| 716 |
+
zero_init_branch_outputs=True,
|
| 717 |
+
conformer=False,
|
| 718 |
+
use_sinusoidal_emb=False,
|
| 719 |
+
use_abs_pos_emb=False,
|
| 720 |
+
abs_pos_emb_max_length=10000,
|
| 721 |
+
**kwargs
|
| 722 |
+
):
|
| 723 |
+
|
| 724 |
+
super().__init__()
|
| 725 |
+
|
| 726 |
+
self.dim = dim
|
| 727 |
+
self.depth = depth
|
| 728 |
+
self.causal = causal
|
| 729 |
+
self.layers = nn.ModuleList([])
|
| 730 |
+
|
| 731 |
+
self.project_in = nn.Linear(dim_in, dim, bias=False) if dim_in is not None else nn.Identity()
|
| 732 |
+
self.project_out = nn.Linear(dim, dim_out, bias=False) if dim_out is not None else nn.Identity()
|
| 733 |
+
|
| 734 |
+
if rotary_pos_emb:
|
| 735 |
+
self.rotary_pos_emb = RotaryEmbedding(max(dim_heads // 2, 32))
|
| 736 |
+
else:
|
| 737 |
+
self.rotary_pos_emb = None
|
| 738 |
+
|
| 739 |
+
self.use_sinusoidal_emb = use_sinusoidal_emb
|
| 740 |
+
if use_sinusoidal_emb:
|
| 741 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
| 742 |
+
|
| 743 |
+
self.use_abs_pos_emb = use_abs_pos_emb
|
| 744 |
+
if use_abs_pos_emb:
|
| 745 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, abs_pos_emb_max_length)
|
| 746 |
+
|
| 747 |
+
for i in range(depth):
|
| 748 |
+
self.layers.append(
|
| 749 |
+
TransformerBlock(
|
| 750 |
+
dim,
|
| 751 |
+
dim_heads = dim_heads,
|
| 752 |
+
cross_attend = cross_attend,
|
| 753 |
+
dim_context = cond_token_dim,
|
| 754 |
+
global_cond_dim = global_cond_dim,
|
| 755 |
+
causal = causal,
|
| 756 |
+
zero_init_branch_outputs = zero_init_branch_outputs,
|
| 757 |
+
conformer=conformer,
|
| 758 |
+
layer_ix=i,
|
| 759 |
+
**kwargs
|
| 760 |
+
)
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
def forward(
|
| 764 |
+
self,
|
| 765 |
+
x,
|
| 766 |
+
mask = None,
|
| 767 |
+
prepend_embeds = None,
|
| 768 |
+
prepend_mask = None,
|
| 769 |
+
add_cond = None,
|
| 770 |
+
global_cond = None,
|
| 771 |
+
return_info = False,
|
| 772 |
+
**kwargs
|
| 773 |
+
):
|
| 774 |
+
batch, seq, device = *x.shape[:2], x.device
|
| 775 |
+
|
| 776 |
+
info = {
|
| 777 |
+
"hidden_states": [],
|
| 778 |
+
}
|
| 779 |
+
|
| 780 |
+
x = self.project_in(x)
|
| 781 |
+
if add_cond is not None:
|
| 782 |
+
x = x + add_cond
|
| 783 |
+
|
| 784 |
+
if prepend_embeds is not None:
|
| 785 |
+
prepend_length, prepend_dim = prepend_embeds.shape[1:]
|
| 786 |
+
|
| 787 |
+
assert prepend_dim == x.shape[-1], 'prepend dimension must match sequence dimension'
|
| 788 |
+
|
| 789 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
| 790 |
+
|
| 791 |
+
if prepend_mask is not None or mask is not None:
|
| 792 |
+
mask = mask if mask is not None else torch.ones((batch, seq), device = device, dtype = torch.bool)
|
| 793 |
+
prepend_mask = prepend_mask if prepend_mask is not None else torch.ones((batch, prepend_length), device = device, dtype = torch.bool)
|
| 794 |
+
|
| 795 |
+
mask = torch.cat((prepend_mask, mask), dim = -1)
|
| 796 |
+
|
| 797 |
+
|
| 798 |
+
# Attention layers
|
| 799 |
+
|
| 800 |
+
if self.rotary_pos_emb is not None:
|
| 801 |
+
rotary_pos_emb = self.rotary_pos_emb.forward_from_seq_len(x.shape[1])
|
| 802 |
+
else:
|
| 803 |
+
rotary_pos_emb = None
|
| 804 |
+
|
| 805 |
+
if self.use_sinusoidal_emb or self.use_abs_pos_emb:
|
| 806 |
+
x = x + self.pos_emb(x)
|
| 807 |
+
|
| 808 |
+
# Iterate over the transformer layers
|
| 809 |
+
for layer in self.layers:
|
| 810 |
+
#x = layer(x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
| 811 |
+
x = checkpoint(layer, x, rotary_pos_emb = rotary_pos_emb, global_cond=global_cond, **kwargs)
|
| 812 |
+
|
| 813 |
+
if return_info:
|
| 814 |
+
info["hidden_states"].append(x)
|
| 815 |
+
|
| 816 |
+
x = self.project_out(x)
|
| 817 |
+
|
| 818 |
+
if return_info:
|
| 819 |
+
return x, info
|
| 820 |
+
|
| 821 |
+
return x
|
ThinkSound/models/transformer_layers.py
ADDED
|
@@ -0,0 +1,271 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from einops.layers.torch import Rearrange
|
| 8 |
+
|
| 9 |
+
from .embeddings import apply_rope
|
| 10 |
+
from .blocks import MLP, ChannelLastConv1d, ConvMLP
|
| 11 |
+
try:
|
| 12 |
+
from flash_attn import flash_attn_func, flash_attn_kvpacked_func
|
| 13 |
+
print('flash_attn installed, using Flash Attention')
|
| 14 |
+
except ImportError as e:
|
| 15 |
+
print(e)
|
| 16 |
+
print('flash_attn not installed, disabling Flash Attention')
|
| 17 |
+
flash_attn_kvpacked_func = None
|
| 18 |
+
flash_attn_func = None
|
| 19 |
+
|
| 20 |
+
def modulate(x: torch.Tensor, shift: torch.Tensor, scale: torch.Tensor):
|
| 21 |
+
return x * (1 + scale) + shift
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def attention(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor):
|
| 25 |
+
# training will crash without these contiguous calls and the CUDNN limitation
|
| 26 |
+
# I believe this is related to https://github.com/pytorch/pytorch/issues/133974
|
| 27 |
+
# unresolved at the time of writing
|
| 28 |
+
fa_dtype_in = q.dtype
|
| 29 |
+
|
| 30 |
+
q = q.contiguous()
|
| 31 |
+
k = k.contiguous()
|
| 32 |
+
v = v.contiguous()
|
| 33 |
+
out = F.scaled_dot_product_attention(q, k, v)
|
| 34 |
+
out = rearrange(out, 'b h n d -> b n (h d)').contiguous()
|
| 35 |
+
return out
|
| 36 |
+
q, k, v = map(lambda t: rearrange(t, 'b h n d -> b n h d').to(torch.bfloat16), (q, k, v))
|
| 37 |
+
# print(f"q dtype: {q.dtype}")
|
| 38 |
+
# print(f"k dtype: {k.dtype}")
|
| 39 |
+
# print(f"v dtype: {v.dtype}")
|
| 40 |
+
# breakpoint()
|
| 41 |
+
out = flash_attn_func(q, k, v)
|
| 42 |
+
out = rearrange(out.to(fa_dtype_in), 'b n h d -> b n (h d)')
|
| 43 |
+
# out = rearrange(out.to(fa_dtype_in), 'b h n d -> b n (h d)').contiguous()
|
| 44 |
+
return out
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
class SelfAttention(nn.Module):
|
| 48 |
+
|
| 49 |
+
def __init__(self, dim: int, nheads: int):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.dim = dim
|
| 52 |
+
self.nheads = nheads
|
| 53 |
+
|
| 54 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=True)
|
| 55 |
+
self.q_norm = nn.RMSNorm(dim // nheads)
|
| 56 |
+
self.k_norm = nn.RMSNorm(dim // nheads)
|
| 57 |
+
|
| 58 |
+
self.split_into_heads = Rearrange('b n (h d j) -> b h n d j',
|
| 59 |
+
h=nheads,
|
| 60 |
+
d=dim // nheads,
|
| 61 |
+
j=3)
|
| 62 |
+
|
| 63 |
+
def pre_attention(
|
| 64 |
+
self, x: torch.Tensor,
|
| 65 |
+
rot: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 66 |
+
# x: batch_size * n_tokens * n_channels
|
| 67 |
+
qkv = self.qkv(x)
|
| 68 |
+
q, k, v = self.split_into_heads(qkv).chunk(3, dim=-1)
|
| 69 |
+
q = q.squeeze(-1)
|
| 70 |
+
k = k.squeeze(-1)
|
| 71 |
+
v = v.squeeze(-1)
|
| 72 |
+
q = self.q_norm(q)
|
| 73 |
+
k = self.k_norm(k)
|
| 74 |
+
|
| 75 |
+
if rot is not None:
|
| 76 |
+
q = apply_rope(q, rot)
|
| 77 |
+
k = apply_rope(k, rot)
|
| 78 |
+
|
| 79 |
+
return q, k, v
|
| 80 |
+
|
| 81 |
+
def forward(
|
| 82 |
+
self,
|
| 83 |
+
x: torch.Tensor, # batch_size * n_tokens * n_channels
|
| 84 |
+
) -> torch.Tensor:
|
| 85 |
+
q, v, k = self.pre_attention(x)
|
| 86 |
+
out = attention(q, k, v)
|
| 87 |
+
return out
|
| 88 |
+
|
| 89 |
+
class CrossAttention(nn.Module):
|
| 90 |
+
|
| 91 |
+
def __init__(self, dim: int, nheads: int):
|
| 92 |
+
super().__init__()
|
| 93 |
+
self.dim = dim
|
| 94 |
+
self.nheads = nheads
|
| 95 |
+
|
| 96 |
+
self.to_q = nn.Linear(dim, dim, bias=False)
|
| 97 |
+
self.to_kv = nn.Linear(dim, dim * 2, bias=False)
|
| 98 |
+
self.q_norm = nn.RMSNorm(dim // nheads)
|
| 99 |
+
self.k_norm = nn.RMSNorm(dim // nheads)
|
| 100 |
+
|
| 101 |
+
self.split_q_into_heads = Rearrange('b n (h d) -> b h n d',
|
| 102 |
+
h=nheads,
|
| 103 |
+
d=dim // nheads)
|
| 104 |
+
self.split_kv_into_heads = Rearrange('b n (h d j) -> b h n d j',
|
| 105 |
+
h=nheads,
|
| 106 |
+
d=dim // nheads,
|
| 107 |
+
j=2)
|
| 108 |
+
|
| 109 |
+
def pre_attention(
|
| 110 |
+
self, x: torch.Tensor,
|
| 111 |
+
context: Optional[torch.Tensor]) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 112 |
+
# x: batch_size * n_tokens * n_channels
|
| 113 |
+
q = self.to_q(x)
|
| 114 |
+
kv = self.to_kv(context)
|
| 115 |
+
q = self.split_q_into_heads(q)
|
| 116 |
+
k, v = self.split_kv_into_heads(kv).chunk(2, dim=-1)
|
| 117 |
+
q = q.squeeze(-1)
|
| 118 |
+
k = k.squeeze(-1)
|
| 119 |
+
v = v.squeeze(-1)
|
| 120 |
+
q = self.q_norm(q)
|
| 121 |
+
k = self.k_norm(k)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
return q, k, v
|
| 125 |
+
|
| 126 |
+
def forward(
|
| 127 |
+
self,
|
| 128 |
+
x: torch.Tensor, context=None
|
| 129 |
+
) -> torch.Tensor:
|
| 130 |
+
q, v, k = self.pre_attention(x, context=context)
|
| 131 |
+
out = attention(q, k, v)
|
| 132 |
+
return out
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
class MMDitSingleBlock(nn.Module):
|
| 136 |
+
|
| 137 |
+
def __init__(self,
|
| 138 |
+
dim: int,
|
| 139 |
+
nhead: int,
|
| 140 |
+
mlp_ratio: float = 4.0,
|
| 141 |
+
pre_only: bool = False,
|
| 142 |
+
kernel_size: int = 7,
|
| 143 |
+
padding: int = 3,
|
| 144 |
+
cross_attend: bool = False):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.norm1 = nn.LayerNorm(dim, elementwise_affine=False)
|
| 147 |
+
self.attn = SelfAttention(dim, nhead)
|
| 148 |
+
if cross_attend:
|
| 149 |
+
self.cross_attn = CrossAttention(dim, nhead)
|
| 150 |
+
self.pre_only = pre_only
|
| 151 |
+
if pre_only:
|
| 152 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
|
| 153 |
+
else:
|
| 154 |
+
if kernel_size == 1:
|
| 155 |
+
self.linear1 = nn.Linear(dim, dim)
|
| 156 |
+
else:
|
| 157 |
+
self.linear1 = ChannelLastConv1d(dim, dim, kernel_size=kernel_size, padding=padding)
|
| 158 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False)
|
| 159 |
+
|
| 160 |
+
if kernel_size == 1:
|
| 161 |
+
self.ffn = MLP(dim, int(dim * mlp_ratio))
|
| 162 |
+
else:
|
| 163 |
+
self.ffn = ConvMLP(dim,
|
| 164 |
+
int(dim * mlp_ratio),
|
| 165 |
+
kernel_size=kernel_size,
|
| 166 |
+
padding=padding)
|
| 167 |
+
|
| 168 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 6 * dim, bias=True))
|
| 169 |
+
|
| 170 |
+
def pre_attention(self, x: torch.Tensor, c: torch.Tensor, rot: Optional[torch.Tensor]):
|
| 171 |
+
# x: BS * N * D
|
| 172 |
+
# cond: BS * D
|
| 173 |
+
modulation = self.adaLN_modulation(c)
|
| 174 |
+
if self.pre_only:
|
| 175 |
+
(shift_msa, scale_msa) = modulation.chunk(2, dim=-1)
|
| 176 |
+
gate_msa = shift_mlp = scale_mlp = gate_mlp = None
|
| 177 |
+
else:
|
| 178 |
+
(shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp,
|
| 179 |
+
gate_mlp) = modulation.chunk(6, dim=-1)
|
| 180 |
+
|
| 181 |
+
x = modulate(self.norm1(x), shift_msa, scale_msa)
|
| 182 |
+
q, k, v = self.attn.pre_attention(x, rot)
|
| 183 |
+
return (q, k, v), (gate_msa, shift_mlp, scale_mlp, gate_mlp)
|
| 184 |
+
|
| 185 |
+
def post_attention(self, x: torch.Tensor, attn_out: torch.Tensor, c: tuple[torch.Tensor], context=None):
|
| 186 |
+
if self.pre_only:
|
| 187 |
+
return x
|
| 188 |
+
|
| 189 |
+
(gate_msa, shift_mlp, scale_mlp, gate_mlp) = c
|
| 190 |
+
x = x + self.linear1(attn_out) * gate_msa
|
| 191 |
+
|
| 192 |
+
if context is not None:
|
| 193 |
+
x = x + self.cross_attn(x, context=context)
|
| 194 |
+
|
| 195 |
+
r = modulate(self.norm2(x), shift_mlp, scale_mlp)
|
| 196 |
+
x = x + self.ffn(r) * gate_mlp
|
| 197 |
+
|
| 198 |
+
return x
|
| 199 |
+
|
| 200 |
+
def forward(self, x: torch.Tensor, cond: torch.Tensor,
|
| 201 |
+
rot: Optional[torch.Tensor], context: torch.Tensor = None) -> torch.Tensor:
|
| 202 |
+
# x: BS * N * D
|
| 203 |
+
# cond: BS * D
|
| 204 |
+
x_qkv, x_conditions = self.pre_attention(x, cond, rot)
|
| 205 |
+
attn_out = attention(*x_qkv)
|
| 206 |
+
x = self.post_attention(x, attn_out, x_conditions, context = context)
|
| 207 |
+
|
| 208 |
+
return x
|
| 209 |
+
|
| 210 |
+
|
| 211 |
+
class JointBlock(nn.Module):
|
| 212 |
+
|
| 213 |
+
def __init__(self, dim: int, nhead: int, mlp_ratio: float = 4.0, pre_only: bool = False):
|
| 214 |
+
super().__init__()
|
| 215 |
+
self.pre_only = pre_only
|
| 216 |
+
self.latent_block = MMDitSingleBlock(dim,
|
| 217 |
+
nhead,
|
| 218 |
+
mlp_ratio,
|
| 219 |
+
pre_only=False,
|
| 220 |
+
kernel_size=3,
|
| 221 |
+
padding=1)
|
| 222 |
+
self.clip_block = MMDitSingleBlock(dim,
|
| 223 |
+
nhead,
|
| 224 |
+
mlp_ratio,
|
| 225 |
+
pre_only=pre_only,
|
| 226 |
+
kernel_size=3,
|
| 227 |
+
padding=1)
|
| 228 |
+
self.text_block = MMDitSingleBlock(dim, nhead, mlp_ratio, pre_only=pre_only, kernel_size=1)
|
| 229 |
+
|
| 230 |
+
def forward(self, latent: torch.Tensor, clip_f: torch.Tensor, text_f: torch.Tensor,
|
| 231 |
+
global_c: torch.Tensor, extended_c: torch.Tensor, latent_rot: torch.Tensor,
|
| 232 |
+
clip_rot: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
| 233 |
+
# latent: BS * N1 * D
|
| 234 |
+
# clip_f: BS * N2 * D
|
| 235 |
+
# c: BS * (1/N) * D
|
| 236 |
+
x_qkv, x_mod = self.latent_block.pre_attention(latent, extended_c, latent_rot)
|
| 237 |
+
c_qkv, c_mod = self.clip_block.pre_attention(clip_f, global_c, clip_rot)
|
| 238 |
+
t_qkv, t_mod = self.text_block.pre_attention(text_f, global_c, rot=None)
|
| 239 |
+
|
| 240 |
+
latent_len = latent.shape[1]
|
| 241 |
+
clip_len = clip_f.shape[1]
|
| 242 |
+
text_len = text_f.shape[1]
|
| 243 |
+
|
| 244 |
+
joint_qkv = [torch.cat([x_qkv[i], c_qkv[i], t_qkv[i]], dim=2) for i in range(3)]
|
| 245 |
+
|
| 246 |
+
attn_out = attention(*joint_qkv)
|
| 247 |
+
x_attn_out = attn_out[:, :latent_len]
|
| 248 |
+
c_attn_out = attn_out[:, latent_len:latent_len + clip_len]
|
| 249 |
+
t_attn_out = attn_out[:, latent_len + clip_len:]
|
| 250 |
+
|
| 251 |
+
latent = self.latent_block.post_attention(latent, x_attn_out, x_mod)
|
| 252 |
+
if not self.pre_only:
|
| 253 |
+
clip_f = self.clip_block.post_attention(clip_f, c_attn_out, c_mod)
|
| 254 |
+
text_f = self.text_block.post_attention(text_f, t_attn_out, t_mod)
|
| 255 |
+
|
| 256 |
+
return latent, clip_f, text_f
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
class FinalBlock(nn.Module):
|
| 260 |
+
|
| 261 |
+
def __init__(self, dim, out_dim):
|
| 262 |
+
super().__init__()
|
| 263 |
+
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(dim, 2 * dim, bias=True))
|
| 264 |
+
self.norm = nn.LayerNorm(dim, elementwise_affine=False)
|
| 265 |
+
self.conv = ChannelLastConv1d(dim, out_dim, kernel_size=7, padding=3)
|
| 266 |
+
|
| 267 |
+
def forward(self, latent, c):
|
| 268 |
+
shift, scale = self.adaLN_modulation(c).chunk(2, dim=-1)
|
| 269 |
+
latent = modulate(self.norm(latent), shift, scale)
|
| 270 |
+
latent = self.conv(latent)
|
| 271 |
+
return latent
|
ThinkSound/models/utils.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from safetensors.torch import load_file
|
| 3 |
+
from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor
|
| 4 |
+
from torchcubicspline import natural_cubic_spline_coeffs, NaturalCubicSpline
|
| 5 |
+
from torch.nn.utils import remove_weight_norm
|
| 6 |
+
|
| 7 |
+
def load_ckpt_state_dict(ckpt_path, prefix=None):
|
| 8 |
+
if ckpt_path.endswith(".safetensors"):
|
| 9 |
+
state_dict = load_file(ckpt_path)
|
| 10 |
+
else:
|
| 11 |
+
state_dict = torch.load(ckpt_path, map_location="cpu")["state_dict"]
|
| 12 |
+
|
| 13 |
+
# 过滤特定前缀的state_dict
|
| 14 |
+
filtered_state_dict = {k.replace(f'{prefix}',''): v for k, v in state_dict.items() if k.startswith(prefix)} if prefix is not None else state_dict
|
| 15 |
+
|
| 16 |
+
return filtered_state_dict
|
| 17 |
+
|
| 18 |
+
def remove_weight_norm_from_model(model):
|
| 19 |
+
for module in model.modules():
|
| 20 |
+
if hasattr(module, "weight"):
|
| 21 |
+
print(f"Removing weight norm from {module}")
|
| 22 |
+
remove_weight_norm(module)
|
| 23 |
+
|
| 24 |
+
return model
|
| 25 |
+
|
| 26 |
+
# Sampling functions copied from https://github.com/facebookresearch/audiocraft/blob/main/audiocraft/utils/utils.py under MIT license
|
| 27 |
+
# License can be found in LICENSES/LICENSE_META.txt
|
| 28 |
+
|
| 29 |
+
def multinomial(input: torch.Tensor, num_samples: int, replacement=False, *, generator=None):
|
| 30 |
+
"""torch.multinomial with arbitrary number of dimensions, and number of candidates on the last dimension.
|
| 31 |
+
|
| 32 |
+
Args:
|
| 33 |
+
input (torch.Tensor): The input tensor containing probabilities.
|
| 34 |
+
num_samples (int): Number of samples to draw.
|
| 35 |
+
replacement (bool): Whether to draw with replacement or not.
|
| 36 |
+
Keywords args:
|
| 37 |
+
generator (torch.Generator): A pseudorandom number generator for sampling.
|
| 38 |
+
Returns:
|
| 39 |
+
torch.Tensor: Last dimension contains num_samples indices
|
| 40 |
+
sampled from the multinomial probability distribution
|
| 41 |
+
located in the last dimension of tensor input.
|
| 42 |
+
"""
|
| 43 |
+
|
| 44 |
+
if num_samples == 1:
|
| 45 |
+
q = torch.empty_like(input).exponential_(1, generator=generator)
|
| 46 |
+
return torch.argmax(input / q, dim=-1, keepdim=True).to(torch.int64)
|
| 47 |
+
|
| 48 |
+
input_ = input.reshape(-1, input.shape[-1])
|
| 49 |
+
output_ = torch.multinomial(input_, num_samples=num_samples, replacement=replacement, generator=generator)
|
| 50 |
+
output = output_.reshape(*list(input.shape[:-1]), -1)
|
| 51 |
+
return output
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def sample_top_k(probs: torch.Tensor, k: int) -> torch.Tensor:
|
| 55 |
+
"""Sample next token from top K values along the last dimension of the input probs tensor.
|
| 56 |
+
|
| 57 |
+
Args:
|
| 58 |
+
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
|
| 59 |
+
k (int): The k in “top-k”.
|
| 60 |
+
Returns:
|
| 61 |
+
torch.Tensor: Sampled tokens.
|
| 62 |
+
"""
|
| 63 |
+
top_k_value, _ = torch.topk(probs, k, dim=-1)
|
| 64 |
+
min_value_top_k = top_k_value[..., [-1]]
|
| 65 |
+
probs *= (probs >= min_value_top_k).float()
|
| 66 |
+
probs.div_(probs.sum(dim=-1, keepdim=True))
|
| 67 |
+
next_token = multinomial(probs, num_samples=1)
|
| 68 |
+
return next_token
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def sample_top_p(probs: torch.Tensor, p: float) -> torch.Tensor:
|
| 72 |
+
"""Sample next token from top P probabilities along the last dimension of the input probs tensor.
|
| 73 |
+
|
| 74 |
+
Args:
|
| 75 |
+
probs (torch.Tensor): Input probabilities with token candidates on the last dimension.
|
| 76 |
+
p (int): The p in “top-p”.
|
| 77 |
+
Returns:
|
| 78 |
+
torch.Tensor: Sampled tokens.
|
| 79 |
+
"""
|
| 80 |
+
probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
|
| 81 |
+
probs_sum = torch.cumsum(probs_sort, dim=-1)
|
| 82 |
+
mask = probs_sum - probs_sort > p
|
| 83 |
+
probs_sort *= (~mask).float()
|
| 84 |
+
probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
|
| 85 |
+
next_token = multinomial(probs_sort, num_samples=1)
|
| 86 |
+
next_token = torch.gather(probs_idx, -1, next_token)
|
| 87 |
+
return next_token
|
| 88 |
+
|
| 89 |
+
def next_power_of_two(n):
|
| 90 |
+
return 2 ** (n - 1).bit_length()
|
| 91 |
+
|
| 92 |
+
def next_multiple_of_64(n):
|
| 93 |
+
return ((n + 63) // 64) * 64
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
# mask construction helpers
|
| 97 |
+
|
| 98 |
+
def mask_from_start_end_indices(
|
| 99 |
+
seq_len: int,
|
| 100 |
+
start: Tensor,
|
| 101 |
+
end: Tensor
|
| 102 |
+
):
|
| 103 |
+
assert start.shape == end.shape
|
| 104 |
+
device = start.device
|
| 105 |
+
|
| 106 |
+
seq = torch.arange(seq_len, device = device, dtype = torch.long)
|
| 107 |
+
seq = seq.reshape(*((-1,) * start.ndim), seq_len)
|
| 108 |
+
seq = seq.expand(*start.shape, seq_len)
|
| 109 |
+
|
| 110 |
+
mask = seq >= start[..., None].long()
|
| 111 |
+
mask &= seq < end[..., None].long()
|
| 112 |
+
return mask
|
| 113 |
+
|
| 114 |
+
def mask_from_frac_lengths(
|
| 115 |
+
seq_len: int,
|
| 116 |
+
frac_lengths: Tensor
|
| 117 |
+
):
|
| 118 |
+
device = frac_lengths.device
|
| 119 |
+
|
| 120 |
+
lengths = (frac_lengths * seq_len).long()
|
| 121 |
+
max_start = seq_len - lengths
|
| 122 |
+
|
| 123 |
+
rand = torch.zeros_like(frac_lengths, device = device).float().uniform_(0, 1)
|
| 124 |
+
start = (max_start * rand).clamp(min = 0)
|
| 125 |
+
end = start + lengths
|
| 126 |
+
|
| 127 |
+
return mask_from_start_end_indices(seq_len, start, end)
|
| 128 |
+
|
| 129 |
+
def _build_spline(video_feat, video_t, target_t):
|
| 130 |
+
# 三次样条插值核心实现
|
| 131 |
+
coeffs = natural_cubic_spline_coeffs(video_t, video_feat.permute(0,2,1))
|
| 132 |
+
spline = NaturalCubicSpline(coeffs)
|
| 133 |
+
return spline.evaluate(target_t).permute(0,2,1)
|
| 134 |
+
|
| 135 |
+
def resample(video_feat, audio_latent):
|
| 136 |
+
"""
|
| 137 |
+
9s
|
| 138 |
+
video_feat: [B, 72, D]
|
| 139 |
+
audio_latent: [B, D', 194] or int
|
| 140 |
+
"""
|
| 141 |
+
B, Tv, D = video_feat.shape
|
| 142 |
+
|
| 143 |
+
if isinstance(audio_latent, torch.Tensor):
|
| 144 |
+
# audio_latent is a tensor
|
| 145 |
+
if audio_latent.shape[1] != D:
|
| 146 |
+
Ta = audio_latent.shape[1]
|
| 147 |
+
else:
|
| 148 |
+
Ta = audio_latent.shape[2]
|
| 149 |
+
elif isinstance(audio_latent, int):
|
| 150 |
+
# audio_latent is an int
|
| 151 |
+
Ta = audio_latent
|
| 152 |
+
else:
|
| 153 |
+
raise TypeError("audio_latent must be either a tensor or an int")
|
| 154 |
+
|
| 155 |
+
# 构建时间戳 (关键改进点)
|
| 156 |
+
video_time = torch.linspace(0, 9, Tv, device=video_feat.device)
|
| 157 |
+
audio_time = torch.linspace(0, 9, Ta, device=video_feat.device)
|
| 158 |
+
|
| 159 |
+
# 三维化处理 (Batch, Feature, Time)
|
| 160 |
+
video_feat = video_feat.permute(0, 2, 1) # [B, D, Tv]
|
| 161 |
+
|
| 162 |
+
# 三次样条插值
|
| 163 |
+
aligned_video = _build_spline(video_feat, video_time, audio_time) # [B, D, Ta]
|
| 164 |
+
return aligned_video.permute(0, 2, 1) # [B, Ta, D]
|
ThinkSound/training/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .factory import create_training_wrapper_from_config, create_demo_callback_from_config
|
ThinkSound/training/autoencoders.py
ADDED
|
@@ -0,0 +1,504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
+
import wandb
|
| 4 |
+
from einops import rearrange
|
| 5 |
+
from safetensors.torch import save_file, save_model
|
| 6 |
+
from ema_pytorch import EMA
|
| 7 |
+
from .losses.auraloss import SumAndDifferenceSTFTLoss, MultiResolutionSTFTLoss, SpatialSTFTLoss
|
| 8 |
+
# import pytorch_lightning as pl
|
| 9 |
+
import lightning as L
|
| 10 |
+
from lightning.pytorch.callbacks import Callback
|
| 11 |
+
from ..models.autoencoders import AudioAutoencoder
|
| 12 |
+
from ..models.bottleneck import VAEBottleneck, RVQBottleneck, DACRVQBottleneck, DACRVQVAEBottleneck, RVQVAEBottleneck, WassersteinBottleneck
|
| 13 |
+
from .losses import MultiLoss, AuralossLoss, ValueLoss, L1Loss
|
| 14 |
+
from .utils import create_optimizer_from_config, create_scheduler_from_config
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
| 18 |
+
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
|
| 19 |
+
|
| 20 |
+
class AutoencoderTrainingWrapper(L.LightningModule):
|
| 21 |
+
def __init__(
|
| 22 |
+
self,
|
| 23 |
+
autoencoder: AudioAutoencoder,
|
| 24 |
+
lr: float = 1e-4,
|
| 25 |
+
warmup_steps: int = 0,
|
| 26 |
+
encoder_freeze_on_warmup: bool = False,
|
| 27 |
+
sample_rate=48000,
|
| 28 |
+
loss_config: dict = None,
|
| 29 |
+
optimizer_configs: dict = None,
|
| 30 |
+
use_ema: bool = True,
|
| 31 |
+
ema_copy = None,
|
| 32 |
+
force_input_mono = False,
|
| 33 |
+
latent_mask_ratio = 0.0,
|
| 34 |
+
teacher_model: AudioAutoencoder = None
|
| 35 |
+
):
|
| 36 |
+
super().__init__()
|
| 37 |
+
|
| 38 |
+
self.automatic_optimization = False
|
| 39 |
+
|
| 40 |
+
self.autoencoder = autoencoder
|
| 41 |
+
|
| 42 |
+
self.warmed_up = False
|
| 43 |
+
self.warmup_steps = warmup_steps
|
| 44 |
+
self.encoder_freeze_on_warmup = encoder_freeze_on_warmup
|
| 45 |
+
self.lr = lr
|
| 46 |
+
|
| 47 |
+
self.force_input_mono = force_input_mono
|
| 48 |
+
|
| 49 |
+
self.teacher_model = teacher_model
|
| 50 |
+
|
| 51 |
+
if optimizer_configs is None:
|
| 52 |
+
optimizer_configs ={
|
| 53 |
+
"autoencoder": {
|
| 54 |
+
"optimizer": {
|
| 55 |
+
"type": "AdamW",
|
| 56 |
+
"config": {
|
| 57 |
+
"lr": lr,
|
| 58 |
+
"betas": (.8, .99)
|
| 59 |
+
}
|
| 60 |
+
}
|
| 61 |
+
},
|
| 62 |
+
"discriminator": {
|
| 63 |
+
"optimizer": {
|
| 64 |
+
"type": "AdamW",
|
| 65 |
+
"config": {
|
| 66 |
+
"lr": lr,
|
| 67 |
+
"betas": (.8, .99)
|
| 68 |
+
}
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
self.optimizer_configs = optimizer_configs
|
| 75 |
+
|
| 76 |
+
if loss_config is None:
|
| 77 |
+
scales = [2048, 1024, 512, 256, 128, 64, 32]
|
| 78 |
+
hop_sizes = []
|
| 79 |
+
win_lengths = []
|
| 80 |
+
overlap = 0.75
|
| 81 |
+
for s in scales:
|
| 82 |
+
hop_sizes.append(int(s * (1 - overlap)))
|
| 83 |
+
win_lengths.append(s)
|
| 84 |
+
|
| 85 |
+
loss_config = {
|
| 86 |
+
"discriminator": {
|
| 87 |
+
"type": "encodec",
|
| 88 |
+
"config": {
|
| 89 |
+
"n_ffts": scales,
|
| 90 |
+
"hop_lengths": hop_sizes,
|
| 91 |
+
"win_lengths": win_lengths,
|
| 92 |
+
"filters": 32
|
| 93 |
+
},
|
| 94 |
+
"weights": {
|
| 95 |
+
"adversarial": 0.1,
|
| 96 |
+
"feature_matching": 5.0,
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
"spectral": {
|
| 100 |
+
"type": "mrstft",
|
| 101 |
+
"config": {
|
| 102 |
+
"fft_sizes": scales,
|
| 103 |
+
"hop_sizes": hop_sizes,
|
| 104 |
+
"win_lengths": win_lengths,
|
| 105 |
+
"perceptual_weighting": True
|
| 106 |
+
},
|
| 107 |
+
"weights": {
|
| 108 |
+
"mrstft": 1.0,
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
"time": {
|
| 112 |
+
"type": "l1",
|
| 113 |
+
"config": {},
|
| 114 |
+
"weights": {
|
| 115 |
+
"l1": 0.0,
|
| 116 |
+
}
|
| 117 |
+
}
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
self.loss_config = loss_config
|
| 121 |
+
|
| 122 |
+
# Spectral reconstruction loss
|
| 123 |
+
|
| 124 |
+
stft_loss_args = loss_config['spectral']['config']
|
| 125 |
+
|
| 126 |
+
if self.autoencoder.out_channels == 2:
|
| 127 |
+
self.sdstft = SumAndDifferenceSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
| 128 |
+
self.lrstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
| 129 |
+
elif self.autoencoder.out_channels == 4:
|
| 130 |
+
# self.sdstft = SpatialSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
| 131 |
+
self.sdstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
| 132 |
+
else:
|
| 133 |
+
self.sdstft = MultiResolutionSTFTLoss(sample_rate=sample_rate, **stft_loss_args)
|
| 134 |
+
|
| 135 |
+
# Discriminator
|
| 136 |
+
|
| 137 |
+
if loss_config['discriminator']['type'] == 'oobleck':
|
| 138 |
+
self.discriminator = OobleckDiscriminator(**loss_config['discriminator']['config'])
|
| 139 |
+
elif loss_config['discriminator']['type'] == 'encodec':
|
| 140 |
+
self.discriminator = EncodecDiscriminator(in_channels=self.autoencoder.out_channels, **loss_config['discriminator']['config'])
|
| 141 |
+
elif loss_config['discriminator']['type'] == 'dac':
|
| 142 |
+
self.discriminator = DACGANLoss(channels=self.autoencoder.out_channels, sample_rate=sample_rate, **loss_config['discriminator']['config'])
|
| 143 |
+
|
| 144 |
+
self.gen_loss_modules = []
|
| 145 |
+
|
| 146 |
+
# Adversarial and feature matching losses
|
| 147 |
+
self.gen_loss_modules += [
|
| 148 |
+
ValueLoss(key='loss_adv', weight=self.loss_config['discriminator']['weights']['adversarial'], name='loss_adv'),
|
| 149 |
+
ValueLoss(key='feature_matching_distance', weight=self.loss_config['discriminator']['weights']['feature_matching'], name='feature_matching'),
|
| 150 |
+
]
|
| 151 |
+
|
| 152 |
+
if self.teacher_model is not None:
|
| 153 |
+
# Distillation losses
|
| 154 |
+
|
| 155 |
+
stft_loss_weight = self.loss_config['spectral']['weights']['mrstft'] * 0.25
|
| 156 |
+
self.gen_loss_modules += [
|
| 157 |
+
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=stft_loss_weight), # Reconstruction loss
|
| 158 |
+
AuralossLoss(self.sdstft, 'decoded', 'teacher_decoded', name='mrstft_loss_distill', weight=stft_loss_weight), # Distilled model's decoder is compatible with teacher's decoder
|
| 159 |
+
AuralossLoss(self.sdstft, 'reals', 'own_latents_teacher_decoded', name='mrstft_loss_own_latents_teacher', weight=stft_loss_weight), # Distilled model's encoder is compatible with teacher's decoder
|
| 160 |
+
AuralossLoss(self.sdstft, 'reals', 'teacher_latents_own_decoded', name='mrstft_loss_teacher_latents_own', weight=stft_loss_weight) # Teacher's encoder is compatible with distilled model's decoder
|
| 161 |
+
]
|
| 162 |
+
|
| 163 |
+
else:
|
| 164 |
+
|
| 165 |
+
# Reconstruction loss
|
| 166 |
+
self.gen_loss_modules += [
|
| 167 |
+
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
|
| 168 |
+
]
|
| 169 |
+
|
| 170 |
+
if self.autoencoder.out_channels == 2:
|
| 171 |
+
|
| 172 |
+
# Add left and right channel reconstruction losses in addition to the sum and difference
|
| 173 |
+
self.gen_loss_modules += [
|
| 174 |
+
AuralossLoss(self.lrstft, 'reals_left', 'decoded_left', name='stft_loss_left', weight=self.loss_config['spectral']['weights']['mrstft']/2),
|
| 175 |
+
AuralossLoss(self.lrstft, 'reals_right', 'decoded_right', name='stft_loss_right', weight=self.loss_config['spectral']['weights']['mrstft']/2),
|
| 176 |
+
]
|
| 177 |
+
elif self.autoencoder.out_channels == 4:
|
| 178 |
+
# self.gen_loss_modules += [
|
| 179 |
+
# AuralossLoss(self.lrstft, 'reals', 'decoded', name='stft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
|
| 180 |
+
# ]
|
| 181 |
+
# Add left and right channel reconstruction losses in addition to the sum and difference
|
| 182 |
+
self.gen_loss_modules += [
|
| 183 |
+
AuralossLoss(self.sdstft, 'reals_w', 'decoded_w', name='stft_loss_w', weight=self.loss_config['spectral']['weights']['mrstft']/4),
|
| 184 |
+
AuralossLoss(self.sdstft, 'reals_x', 'decoded_x', name='stft_loss_x', weight=self.loss_config['spectral']['weights']['mrstft']/4),
|
| 185 |
+
AuralossLoss(self.sdstft, 'reals_y', 'decoded_y', name='stft_loss_y', weight=self.loss_config['spectral']['weights']['mrstft']/4),
|
| 186 |
+
AuralossLoss(self.sdstft, 'reals_z', 'decoded_z', name='stft_loss_z', weight=self.loss_config['spectral']['weights']['mrstft']/4),
|
| 187 |
+
]
|
| 188 |
+
|
| 189 |
+
self.gen_loss_modules += [
|
| 190 |
+
AuralossLoss(self.sdstft, 'reals', 'decoded', name='mrstft_loss', weight=self.loss_config['spectral']['weights']['mrstft']),
|
| 191 |
+
]
|
| 192 |
+
|
| 193 |
+
if self.loss_config['time']['weights']['l1'] > 0.0:
|
| 194 |
+
self.gen_loss_modules.append(L1Loss(key_a='reals', key_b='decoded', weight=self.loss_config['time']['weights']['l1'], name='l1_time_loss'))
|
| 195 |
+
|
| 196 |
+
if self.autoencoder.bottleneck is not None:
|
| 197 |
+
self.gen_loss_modules += create_loss_modules_from_bottleneck(self.autoencoder.bottleneck, self.loss_config)
|
| 198 |
+
|
| 199 |
+
self.losses_gen = MultiLoss(self.gen_loss_modules)
|
| 200 |
+
|
| 201 |
+
self.disc_loss_modules = [
|
| 202 |
+
ValueLoss(key='loss_dis', weight=1.0, name='discriminator_loss'),
|
| 203 |
+
]
|
| 204 |
+
|
| 205 |
+
self.losses_disc = MultiLoss(self.disc_loss_modules)
|
| 206 |
+
|
| 207 |
+
# Set up EMA for model weights
|
| 208 |
+
self.autoencoder_ema = None
|
| 209 |
+
|
| 210 |
+
self.use_ema = use_ema
|
| 211 |
+
|
| 212 |
+
if self.use_ema:
|
| 213 |
+
self.autoencoder_ema = EMA(
|
| 214 |
+
self.autoencoder,
|
| 215 |
+
ema_model=ema_copy,
|
| 216 |
+
beta=0.9999,
|
| 217 |
+
power=3/4,
|
| 218 |
+
update_every=1,
|
| 219 |
+
update_after_step=1
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
self.latent_mask_ratio = latent_mask_ratio
|
| 223 |
+
|
| 224 |
+
def configure_optimizers(self):
|
| 225 |
+
|
| 226 |
+
opt_gen = create_optimizer_from_config(self.optimizer_configs['autoencoder']['optimizer'], self.autoencoder.parameters())
|
| 227 |
+
opt_disc = create_optimizer_from_config(self.optimizer_configs['discriminator']['optimizer'], self.discriminator.parameters())
|
| 228 |
+
|
| 229 |
+
if "scheduler" in self.optimizer_configs['autoencoder'] and "scheduler" in self.optimizer_configs['discriminator']:
|
| 230 |
+
sched_gen = create_scheduler_from_config(self.optimizer_configs['autoencoder']['scheduler'], opt_gen)
|
| 231 |
+
sched_disc = create_scheduler_from_config(self.optimizer_configs['discriminator']['scheduler'], opt_disc)
|
| 232 |
+
return [opt_gen, opt_disc], [sched_gen, sched_disc]
|
| 233 |
+
|
| 234 |
+
return [opt_gen, opt_disc]
|
| 235 |
+
|
| 236 |
+
def training_step(self, batch, batch_idx):
|
| 237 |
+
reals, _ = batch
|
| 238 |
+
|
| 239 |
+
# Remove extra dimension added by WebDataset
|
| 240 |
+
if reals.ndim == 4 and reals.shape[0] == 1:
|
| 241 |
+
reals = reals[0]
|
| 242 |
+
|
| 243 |
+
if self.global_step >= self.warmup_steps:
|
| 244 |
+
self.warmed_up = True
|
| 245 |
+
|
| 246 |
+
loss_info = {}
|
| 247 |
+
|
| 248 |
+
loss_info["reals"] = reals
|
| 249 |
+
|
| 250 |
+
encoder_input = reals
|
| 251 |
+
|
| 252 |
+
if self.force_input_mono and encoder_input.shape[1] > 1:
|
| 253 |
+
encoder_input = encoder_input.mean(dim=1, keepdim=True)
|
| 254 |
+
|
| 255 |
+
loss_info["encoder_input"] = encoder_input
|
| 256 |
+
|
| 257 |
+
data_std = encoder_input.std()
|
| 258 |
+
|
| 259 |
+
if self.warmed_up and self.encoder_freeze_on_warmup:
|
| 260 |
+
with torch.no_grad():
|
| 261 |
+
latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)
|
| 262 |
+
else:
|
| 263 |
+
latents, encoder_info = self.autoencoder.encode(encoder_input, return_info=True)
|
| 264 |
+
|
| 265 |
+
loss_info["latents"] = latents
|
| 266 |
+
|
| 267 |
+
loss_info.update(encoder_info)
|
| 268 |
+
|
| 269 |
+
# Encode with teacher model for distillation
|
| 270 |
+
if self.teacher_model is not None:
|
| 271 |
+
with torch.no_grad():
|
| 272 |
+
teacher_latents = self.teacher_model.encode(encoder_input, return_info=False)
|
| 273 |
+
loss_info['teacher_latents'] = teacher_latents
|
| 274 |
+
|
| 275 |
+
# Optionally mask out some latents for noise resistance
|
| 276 |
+
if self.latent_mask_ratio > 0.0:
|
| 277 |
+
mask = torch.rand_like(latents) < self.latent_mask_ratio
|
| 278 |
+
latents = torch.where(mask, torch.zeros_like(latents), latents)
|
| 279 |
+
decoded = self.autoencoder.decode(latents)
|
| 280 |
+
|
| 281 |
+
loss_info["decoded"] = decoded
|
| 282 |
+
|
| 283 |
+
if self.autoencoder.out_channels == 2:
|
| 284 |
+
loss_info["decoded_left"] = decoded[:, 0:1, :]
|
| 285 |
+
loss_info["decoded_right"] = decoded[:, 1:2, :]
|
| 286 |
+
loss_info["reals_left"] = reals[:, 0:1, :]
|
| 287 |
+
loss_info["reals_right"] = reals[:, 1:2, :]
|
| 288 |
+
elif self.autoencoder.out_channels == 4:
|
| 289 |
+
loss_info["decoded_w"] = decoded[:, 0:1, :]
|
| 290 |
+
loss_info["decoded_x"] = decoded[:, 1:2, :]
|
| 291 |
+
loss_info["decoded_y"] = decoded[:, 2:3, :]
|
| 292 |
+
loss_info["decoded_z"] = decoded[:, 3:4, :]
|
| 293 |
+
loss_info["reals_w"] = reals[:, 0:1, :]
|
| 294 |
+
loss_info["reals_x"] = reals[:, 1:2, :]
|
| 295 |
+
loss_info["reals_y"] = reals[:, 2:3, :]
|
| 296 |
+
loss_info["reals_z"] = reals[:, 3:4, :]
|
| 297 |
+
|
| 298 |
+
# Distillation
|
| 299 |
+
if self.teacher_model is not None:
|
| 300 |
+
with torch.no_grad():
|
| 301 |
+
teacher_decoded = self.teacher_model.decode(teacher_latents)
|
| 302 |
+
own_latents_teacher_decoded = self.teacher_model.decode(latents) #Distilled model's latents decoded by teacher
|
| 303 |
+
teacher_latents_own_decoded = self.autoencoder.decode(teacher_latents) #Teacher's latents decoded by distilled model
|
| 304 |
+
|
| 305 |
+
loss_info['teacher_decoded'] = teacher_decoded
|
| 306 |
+
loss_info['own_latents_teacher_decoded'] = own_latents_teacher_decoded
|
| 307 |
+
loss_info['teacher_latents_own_decoded'] = teacher_latents_own_decoded
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
if self.warmed_up:
|
| 311 |
+
loss_dis, loss_adv, feature_matching_distance = self.discriminator.loss(reals, decoded)
|
| 312 |
+
else:
|
| 313 |
+
loss_dis = torch.tensor(0.).to(reals)
|
| 314 |
+
loss_adv = torch.tensor(0.).to(reals)
|
| 315 |
+
feature_matching_distance = torch.tensor(0.).to(reals)
|
| 316 |
+
|
| 317 |
+
loss_info["loss_dis"] = loss_dis
|
| 318 |
+
loss_info["loss_adv"] = loss_adv
|
| 319 |
+
loss_info["feature_matching_distance"] = feature_matching_distance
|
| 320 |
+
|
| 321 |
+
opt_gen, opt_disc = self.optimizers()
|
| 322 |
+
|
| 323 |
+
lr_schedulers = self.lr_schedulers()
|
| 324 |
+
|
| 325 |
+
sched_gen = None
|
| 326 |
+
sched_disc = None
|
| 327 |
+
|
| 328 |
+
if lr_schedulers is not None:
|
| 329 |
+
sched_gen, sched_disc = lr_schedulers
|
| 330 |
+
|
| 331 |
+
# Train the discriminator
|
| 332 |
+
if self.global_step % 2 and self.warmed_up:
|
| 333 |
+
loss, losses = self.losses_disc(loss_info)
|
| 334 |
+
|
| 335 |
+
log_dict = {
|
| 336 |
+
'train/disc_lr': opt_disc.param_groups[0]['lr']
|
| 337 |
+
}
|
| 338 |
+
|
| 339 |
+
opt_disc.zero_grad()
|
| 340 |
+
self.manual_backward(loss)
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
opt_disc.step()
|
| 344 |
+
|
| 345 |
+
if sched_disc is not None:
|
| 346 |
+
# sched step every step
|
| 347 |
+
sched_disc.step()
|
| 348 |
+
|
| 349 |
+
# Train the generator
|
| 350 |
+
else:
|
| 351 |
+
|
| 352 |
+
# import ipdb
|
| 353 |
+
# ipdb.set_trace()
|
| 354 |
+
loss, losses = self.losses_gen(loss_info)
|
| 355 |
+
|
| 356 |
+
if self.use_ema:
|
| 357 |
+
self.autoencoder_ema.update()
|
| 358 |
+
|
| 359 |
+
opt_gen.zero_grad()
|
| 360 |
+
self.manual_backward(loss)
|
| 361 |
+
opt_gen.step()
|
| 362 |
+
|
| 363 |
+
if sched_gen is not None:
|
| 364 |
+
# scheduler step every step
|
| 365 |
+
sched_gen.step()
|
| 366 |
+
|
| 367 |
+
log_dict = {
|
| 368 |
+
'train/loss': loss.detach(),
|
| 369 |
+
'train/latent_std': latents.std().detach(),
|
| 370 |
+
'train/data_std': data_std.detach(),
|
| 371 |
+
'train/gen_lr': opt_gen.param_groups[0]['lr']
|
| 372 |
+
}
|
| 373 |
+
|
| 374 |
+
for loss_name, loss_value in losses.items():
|
| 375 |
+
log_dict[f'train/{loss_name}'] = loss_value.detach()
|
| 376 |
+
|
| 377 |
+
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
| 378 |
+
|
| 379 |
+
return loss
|
| 380 |
+
|
| 381 |
+
def export_model(self, path, use_safetensors=False):
|
| 382 |
+
if self.autoencoder_ema is not None:
|
| 383 |
+
model = self.autoencoder_ema.ema_model
|
| 384 |
+
else:
|
| 385 |
+
model = self.autoencoder
|
| 386 |
+
|
| 387 |
+
if use_safetensors:
|
| 388 |
+
save_model(model, path)
|
| 389 |
+
else:
|
| 390 |
+
torch.save({"state_dict": model.state_dict()}, path)
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
class AutoencoderDemoCallback(Callback):
|
| 394 |
+
def __init__(
|
| 395 |
+
self,
|
| 396 |
+
demo_dl,
|
| 397 |
+
demo_every=2000,
|
| 398 |
+
sample_size=65536,
|
| 399 |
+
sample_rate=48000
|
| 400 |
+
):
|
| 401 |
+
super().__init__()
|
| 402 |
+
self.demo_every = demo_every
|
| 403 |
+
self.demo_samples = sample_size
|
| 404 |
+
self.demo_dl = iter(demo_dl)
|
| 405 |
+
self.sample_rate = sample_rate
|
| 406 |
+
self.last_demo_step = -1
|
| 407 |
+
|
| 408 |
+
@rank_zero_only
|
| 409 |
+
@torch.no_grad()
|
| 410 |
+
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
|
| 411 |
+
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
| 412 |
+
return
|
| 413 |
+
|
| 414 |
+
self.last_demo_step = trainer.global_step
|
| 415 |
+
|
| 416 |
+
module.eval()
|
| 417 |
+
|
| 418 |
+
try:
|
| 419 |
+
demo_reals, _ = next(self.demo_dl)
|
| 420 |
+
|
| 421 |
+
# Remove extra dimension added by WebDataset
|
| 422 |
+
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
| 423 |
+
demo_reals = demo_reals[0]
|
| 424 |
+
|
| 425 |
+
encoder_input = demo_reals
|
| 426 |
+
|
| 427 |
+
encoder_input = encoder_input.to(module.device)
|
| 428 |
+
|
| 429 |
+
if module.force_input_mono:
|
| 430 |
+
encoder_input = encoder_input.mean(dim=1, keepdim=True)
|
| 431 |
+
|
| 432 |
+
demo_reals = demo_reals.to(module.device)
|
| 433 |
+
|
| 434 |
+
with torch.no_grad():
|
| 435 |
+
if module.use_ema:
|
| 436 |
+
|
| 437 |
+
latents = module.autoencoder_ema.ema_model.encode(encoder_input)
|
| 438 |
+
|
| 439 |
+
fakes = module.autoencoder_ema.ema_model.decode(latents)
|
| 440 |
+
else:
|
| 441 |
+
latents = module.autoencoder.encode(encoder_input)
|
| 442 |
+
|
| 443 |
+
fakes = module.autoencoder.decode(latents)
|
| 444 |
+
|
| 445 |
+
#Interleave reals and fakes
|
| 446 |
+
reals_fakes = rearrange([demo_reals, fakes], 'i b d n -> (b i) d n')
|
| 447 |
+
|
| 448 |
+
# Put the demos together
|
| 449 |
+
reals_fakes = rearrange(reals_fakes, 'b d n -> d (b n)')
|
| 450 |
+
|
| 451 |
+
log_dict = {}
|
| 452 |
+
|
| 453 |
+
filename = f'demos/recon_{trainer.global_step:08}.wav'
|
| 454 |
+
reals_fakes = reals_fakes.to(torch.float32).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 455 |
+
torchaudio.save(filename, reals_fakes, self.sample_rate)
|
| 456 |
+
|
| 457 |
+
log_dict[f'recon'] = wandb.Audio(filename,
|
| 458 |
+
sample_rate=self.sample_rate,
|
| 459 |
+
caption=f'Reconstructed')
|
| 460 |
+
|
| 461 |
+
log_dict[f'embeddings_3dpca'] = pca_point_cloud(latents)
|
| 462 |
+
log_dict[f'embeddings_spec'] = wandb.Image(tokens_spectrogram_image(latents))
|
| 463 |
+
|
| 464 |
+
log_dict[f'recon_melspec_left'] = wandb.Image(audio_spectrogram_image(reals_fakes))
|
| 465 |
+
|
| 466 |
+
trainer.logger.experiment.log(log_dict)
|
| 467 |
+
except Exception as e:
|
| 468 |
+
print(f'{type(e).__name__}: {e}')
|
| 469 |
+
raise e
|
| 470 |
+
finally:
|
| 471 |
+
module.train()
|
| 472 |
+
|
| 473 |
+
def create_loss_modules_from_bottleneck(bottleneck, loss_config):
|
| 474 |
+
losses = []
|
| 475 |
+
|
| 476 |
+
if isinstance(bottleneck, VAEBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
|
| 477 |
+
try:
|
| 478 |
+
kl_weight = loss_config['bottleneck']['weights']['kl']
|
| 479 |
+
except:
|
| 480 |
+
kl_weight = 1e-6
|
| 481 |
+
|
| 482 |
+
kl_loss = ValueLoss(key='kl', weight=kl_weight, name='kl_loss')
|
| 483 |
+
losses.append(kl_loss)
|
| 484 |
+
|
| 485 |
+
if isinstance(bottleneck, RVQBottleneck) or isinstance(bottleneck, RVQVAEBottleneck):
|
| 486 |
+
quantizer_loss = ValueLoss(key='quantizer_loss', weight=1.0, name='quantizer_loss')
|
| 487 |
+
losses.append(quantizer_loss)
|
| 488 |
+
|
| 489 |
+
if isinstance(bottleneck, DACRVQBottleneck) or isinstance(bottleneck, DACRVQVAEBottleneck):
|
| 490 |
+
codebook_loss = ValueLoss(key='vq/codebook_loss', weight=1.0, name='codebook_loss')
|
| 491 |
+
commitment_loss = ValueLoss(key='vq/commitment_loss', weight=0.25, name='commitment_loss')
|
| 492 |
+
losses.append(codebook_loss)
|
| 493 |
+
losses.append(commitment_loss)
|
| 494 |
+
|
| 495 |
+
if isinstance(bottleneck, WassersteinBottleneck):
|
| 496 |
+
try:
|
| 497 |
+
mmd_weight = loss_config['bottleneck']['weights']['mmd']
|
| 498 |
+
except:
|
| 499 |
+
mmd_weight = 100
|
| 500 |
+
|
| 501 |
+
mmd_loss = ValueLoss(key='mmd', weight=mmd_weight, name='mmd_loss')
|
| 502 |
+
losses.append(mmd_loss)
|
| 503 |
+
|
| 504 |
+
return losses
|
ThinkSound/training/diffusion.py
ADDED
|
@@ -0,0 +1,1076 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# import pytorch_lightning as pl
|
| 2 |
+
import lightning as L
|
| 3 |
+
from lightning.pytorch.callbacks import Callback
|
| 4 |
+
import sys, gc
|
| 5 |
+
import random
|
| 6 |
+
import torch
|
| 7 |
+
import torchaudio
|
| 8 |
+
import typing as tp
|
| 9 |
+
import wandb
|
| 10 |
+
# from beartype.typing import Tuple
|
| 11 |
+
from aeiou.viz import pca_point_cloud, audio_spectrogram_image, tokens_spectrogram_image
|
| 12 |
+
import auraloss
|
| 13 |
+
from ema_pytorch import EMA
|
| 14 |
+
from einops import rearrange
|
| 15 |
+
from safetensors.torch import save_file
|
| 16 |
+
from torch import optim
|
| 17 |
+
from torch.nn import functional as F
|
| 18 |
+
from pytorch_lightning.utilities.rank_zero import rank_zero_only
|
| 19 |
+
|
| 20 |
+
from ..inference.sampling import get_alphas_sigmas, sample, sample_discrete_euler
|
| 21 |
+
from ..models.diffusion import DiffusionModelWrapper, ConditionedDiffusionModelWrapper
|
| 22 |
+
from ..models.autoencoders import DiffusionAutoencoder
|
| 23 |
+
from .autoencoders import create_loss_modules_from_bottleneck
|
| 24 |
+
from .losses import AuralossLoss, MSELoss, MultiLoss
|
| 25 |
+
from .utils import create_optimizer_from_config, create_scheduler_from_config, mask_from_frac_lengths, generate_mask, generate_channel_mask
|
| 26 |
+
import os
|
| 27 |
+
from pathlib import Path
|
| 28 |
+
from time import time
|
| 29 |
+
import numpy as np
|
| 30 |
+
|
| 31 |
+
class Profiler:
|
| 32 |
+
|
| 33 |
+
def __init__(self):
|
| 34 |
+
self.ticks = [[time(), None]]
|
| 35 |
+
|
| 36 |
+
def tick(self, msg):
|
| 37 |
+
self.ticks.append([time(), msg])
|
| 38 |
+
|
| 39 |
+
def __repr__(self):
|
| 40 |
+
rep = 80 * "=" + "\n"
|
| 41 |
+
for i in range(1, len(self.ticks)):
|
| 42 |
+
msg = self.ticks[i][1]
|
| 43 |
+
ellapsed = self.ticks[i][0] - self.ticks[i - 1][0]
|
| 44 |
+
rep += msg + f": {ellapsed*1000:.2f}ms\n"
|
| 45 |
+
rep += 80 * "=" + "\n\n\n"
|
| 46 |
+
return rep
|
| 47 |
+
|
| 48 |
+
class DiffusionUncondTrainingWrapper(L.LightningModule):
|
| 49 |
+
'''
|
| 50 |
+
Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
|
| 51 |
+
'''
|
| 52 |
+
def __init__(
|
| 53 |
+
self,
|
| 54 |
+
model: DiffusionModelWrapper,
|
| 55 |
+
lr: float = 1e-4,
|
| 56 |
+
pre_encoded: bool = False
|
| 57 |
+
):
|
| 58 |
+
super().__init__()
|
| 59 |
+
|
| 60 |
+
self.diffusion = model
|
| 61 |
+
|
| 62 |
+
self.diffusion_ema = EMA(
|
| 63 |
+
self.diffusion.model,
|
| 64 |
+
beta=0.9999,
|
| 65 |
+
power=3/4,
|
| 66 |
+
update_every=1,
|
| 67 |
+
update_after_step=1
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
self.lr = lr
|
| 71 |
+
|
| 72 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
| 73 |
+
|
| 74 |
+
loss_modules = [
|
| 75 |
+
MSELoss("v",
|
| 76 |
+
"targets",
|
| 77 |
+
weight=1.0,
|
| 78 |
+
name="mse_loss"
|
| 79 |
+
)
|
| 80 |
+
]
|
| 81 |
+
|
| 82 |
+
self.losses = MultiLoss(loss_modules)
|
| 83 |
+
|
| 84 |
+
self.pre_encoded = pre_encoded
|
| 85 |
+
|
| 86 |
+
def configure_optimizers(self):
|
| 87 |
+
return optim.Adam([*self.diffusion.parameters()], lr=self.lr)
|
| 88 |
+
|
| 89 |
+
def training_step(self, batch, batch_idx):
|
| 90 |
+
reals = batch[0]
|
| 91 |
+
|
| 92 |
+
if reals.ndim == 4 and reals.shape[0] == 1:
|
| 93 |
+
reals = reals[0]
|
| 94 |
+
|
| 95 |
+
diffusion_input = reals
|
| 96 |
+
|
| 97 |
+
loss_info = {}
|
| 98 |
+
|
| 99 |
+
if not self.pre_encoded:
|
| 100 |
+
loss_info["audio_reals"] = diffusion_input
|
| 101 |
+
|
| 102 |
+
if self.diffusion.pretransform is not None:
|
| 103 |
+
if not self.pre_encoded:
|
| 104 |
+
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
| 105 |
+
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
| 106 |
+
else:
|
| 107 |
+
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
| 108 |
+
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
| 109 |
+
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
| 110 |
+
|
| 111 |
+
loss_info["reals"] = diffusion_input
|
| 112 |
+
|
| 113 |
+
# Draw uniformly distributed continuous timesteps
|
| 114 |
+
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
| 115 |
+
|
| 116 |
+
# Calculate the noise schedule parameters for those timesteps
|
| 117 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
| 118 |
+
|
| 119 |
+
# Combine the ground truth data and the noise
|
| 120 |
+
alphas = alphas[:, None, None]
|
| 121 |
+
sigmas = sigmas[:, None, None]
|
| 122 |
+
noise = torch.randn_like(diffusion_input)
|
| 123 |
+
noised_inputs = diffusion_input * alphas + noise * sigmas
|
| 124 |
+
targets = noise * alphas - diffusion_input * sigmas
|
| 125 |
+
|
| 126 |
+
with torch.amp.autocast('cuda'):
|
| 127 |
+
v = self.diffusion(noised_inputs, t)
|
| 128 |
+
|
| 129 |
+
loss_info.update({
|
| 130 |
+
"v": v,
|
| 131 |
+
"targets": targets
|
| 132 |
+
})
|
| 133 |
+
|
| 134 |
+
loss, losses = self.losses(loss_info)
|
| 135 |
+
|
| 136 |
+
log_dict = {
|
| 137 |
+
'train/loss': loss.detach(),
|
| 138 |
+
'train/std_data': diffusion_input.std(),
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
for loss_name, loss_value in losses.items():
|
| 142 |
+
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
| 143 |
+
|
| 144 |
+
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
| 145 |
+
return loss
|
| 146 |
+
|
| 147 |
+
def on_before_zero_grad(self, *args, **kwargs):
|
| 148 |
+
self.diffusion_ema.update()
|
| 149 |
+
|
| 150 |
+
def export_model(self, path, use_safetensors=False):
|
| 151 |
+
|
| 152 |
+
self.diffusion.model = self.diffusion_ema.ema_model
|
| 153 |
+
|
| 154 |
+
if use_safetensors:
|
| 155 |
+
save_file(self.diffusion.state_dict(), path)
|
| 156 |
+
else:
|
| 157 |
+
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
| 158 |
+
|
| 159 |
+
class DiffusionUncondDemoCallback(Callback):
|
| 160 |
+
def __init__(self,
|
| 161 |
+
demo_every=2000,
|
| 162 |
+
num_demos=8,
|
| 163 |
+
demo_steps=250,
|
| 164 |
+
sample_rate=48000
|
| 165 |
+
):
|
| 166 |
+
super().__init__()
|
| 167 |
+
|
| 168 |
+
self.demo_every = demo_every
|
| 169 |
+
self.num_demos = num_demos
|
| 170 |
+
self.demo_steps = demo_steps
|
| 171 |
+
self.sample_rate = sample_rate
|
| 172 |
+
self.last_demo_step = -1
|
| 173 |
+
|
| 174 |
+
@rank_zero_only
|
| 175 |
+
@torch.no_grad()
|
| 176 |
+
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
|
| 177 |
+
|
| 178 |
+
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
| 179 |
+
return
|
| 180 |
+
|
| 181 |
+
self.last_demo_step = trainer.global_step
|
| 182 |
+
|
| 183 |
+
demo_samples = module.diffusion.sample_size
|
| 184 |
+
|
| 185 |
+
if module.diffusion.pretransform is not None:
|
| 186 |
+
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
|
| 187 |
+
|
| 188 |
+
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
|
| 189 |
+
|
| 190 |
+
try:
|
| 191 |
+
with torch.amp.autocast('cuda'):
|
| 192 |
+
fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
|
| 193 |
+
|
| 194 |
+
if module.diffusion.pretransform is not None:
|
| 195 |
+
fakes = module.diffusion.pretransform.decode(fakes)
|
| 196 |
+
|
| 197 |
+
# Put the demos together
|
| 198 |
+
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
| 199 |
+
|
| 200 |
+
log_dict = {}
|
| 201 |
+
|
| 202 |
+
filename = f'demo_{trainer.global_step:08}.wav'
|
| 203 |
+
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
| 204 |
+
torchaudio.save(filename, fakes, self.sample_rate)
|
| 205 |
+
|
| 206 |
+
log_dict[f'demo'] = wandb.Audio(filename,
|
| 207 |
+
sample_rate=self.sample_rate,
|
| 208 |
+
caption=f'Reconstructed')
|
| 209 |
+
|
| 210 |
+
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))
|
| 211 |
+
|
| 212 |
+
trainer.logger.experiment.log(log_dict)
|
| 213 |
+
|
| 214 |
+
del fakes
|
| 215 |
+
|
| 216 |
+
except Exception as e:
|
| 217 |
+
print(f'{type(e).__name__}: {e}')
|
| 218 |
+
finally:
|
| 219 |
+
gc.collect()
|
| 220 |
+
torch.cuda.empty_cache()
|
| 221 |
+
|
| 222 |
+
class DiffusionInfillTrainingWrapper(L.LightningModule):
|
| 223 |
+
'''
|
| 224 |
+
Wrapper for training an unconditional audio diffusion model (like Dance Diffusion).
|
| 225 |
+
'''
|
| 226 |
+
def __init__(
|
| 227 |
+
self,
|
| 228 |
+
model: ConditionedDiffusionModelWrapper,
|
| 229 |
+
lr: float = 1e-4,
|
| 230 |
+
optimizer_configs: dict = None,
|
| 231 |
+
pre_encoded: bool = False,
|
| 232 |
+
frac_lengths_mask = (0.7, 1.),
|
| 233 |
+
min_span_len = 10,
|
| 234 |
+
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
|
| 235 |
+
diffusion_objective = 'rectified_flow',
|
| 236 |
+
ctx_drop: float = 0.1,
|
| 237 |
+
r_drop: float = 0.0,
|
| 238 |
+
):
|
| 239 |
+
super().__init__()
|
| 240 |
+
|
| 241 |
+
self.diffusion = model
|
| 242 |
+
|
| 243 |
+
self.diffusion_ema = EMA(
|
| 244 |
+
self.diffusion.model,
|
| 245 |
+
beta=0.9999,
|
| 246 |
+
power=3/4,
|
| 247 |
+
update_every=1,
|
| 248 |
+
update_after_step=1
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if optimizer_configs is None:
|
| 252 |
+
optimizer_configs = {
|
| 253 |
+
"diffusion": {
|
| 254 |
+
"optimizer": {
|
| 255 |
+
"type": "Adam",
|
| 256 |
+
"config": {
|
| 257 |
+
"lr": lr
|
| 258 |
+
}
|
| 259 |
+
}
|
| 260 |
+
}
|
| 261 |
+
}
|
| 262 |
+
else:
|
| 263 |
+
if lr is not None:
|
| 264 |
+
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
|
| 265 |
+
|
| 266 |
+
self.optimizer_configs = optimizer_configs
|
| 267 |
+
|
| 268 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
| 269 |
+
self.frac_lengths_mask = frac_lengths_mask
|
| 270 |
+
self.min_span_len = min_span_len
|
| 271 |
+
self.timestep_sampler = timestep_sampler
|
| 272 |
+
self.ctx_drop = ctx_drop
|
| 273 |
+
self.r_drop = r_drop
|
| 274 |
+
self.diffusion_objective = diffusion_objective
|
| 275 |
+
print(f'Training in the {diffusion_objective} formulation')
|
| 276 |
+
loss_modules = [
|
| 277 |
+
MSELoss("v",
|
| 278 |
+
"targets",
|
| 279 |
+
weight=1.0,
|
| 280 |
+
name="mse_loss",
|
| 281 |
+
mask_key="mask"
|
| 282 |
+
)
|
| 283 |
+
]
|
| 284 |
+
|
| 285 |
+
self.losses = MultiLoss(loss_modules)
|
| 286 |
+
|
| 287 |
+
self.pre_encoded = pre_encoded
|
| 288 |
+
|
| 289 |
+
def configure_optimizers(self):
|
| 290 |
+
diffusion_opt_config = self.optimizer_configs['diffusion']
|
| 291 |
+
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
|
| 292 |
+
|
| 293 |
+
if "scheduler" in diffusion_opt_config:
|
| 294 |
+
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
|
| 295 |
+
sched_diff_config = {
|
| 296 |
+
"scheduler": sched_diff,
|
| 297 |
+
"interval": "step"
|
| 298 |
+
}
|
| 299 |
+
return [opt_diff], [sched_diff_config]
|
| 300 |
+
|
| 301 |
+
return [opt_diff]
|
| 302 |
+
|
| 303 |
+
def training_step(self, batch, batch_idx):
|
| 304 |
+
reals, metadata = batch
|
| 305 |
+
if reals.ndim == 4 and reals.shape[0] == 1:
|
| 306 |
+
reals = reals[0]
|
| 307 |
+
# import ipdb
|
| 308 |
+
# ipdb.set_trace()
|
| 309 |
+
p_drop = torch.rand(1).item()
|
| 310 |
+
# r_drop = torch.rand(1).item()
|
| 311 |
+
# if p_drop >= self.ctx_drop and self.r_drop > 0.0 and r_drop < self.r_drop:
|
| 312 |
+
# generate_channel_mask(reals)
|
| 313 |
+
|
| 314 |
+
diffusion_input = reals
|
| 315 |
+
assert torch.all(torch.isfinite(diffusion_input)), "Non-finite values detected in diffusion_input"
|
| 316 |
+
p = Profiler()
|
| 317 |
+
loss_info = {}
|
| 318 |
+
if not self.pre_encoded:
|
| 319 |
+
loss_info["audio_reals"] = diffusion_input
|
| 320 |
+
|
| 321 |
+
p.tick("setup")
|
| 322 |
+
|
| 323 |
+
conditioning = {}
|
| 324 |
+
|
| 325 |
+
p.tick("conditioning")
|
| 326 |
+
if self.diffusion.pretransform is not None:
|
| 327 |
+
if not self.pre_encoded:
|
| 328 |
+
with torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
| 329 |
+
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
| 330 |
+
else:
|
| 331 |
+
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
| 332 |
+
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
| 333 |
+
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
| 334 |
+
|
| 335 |
+
loss_info["reals"] = diffusion_input
|
| 336 |
+
|
| 337 |
+
if self.timestep_sampler == "uniform":
|
| 338 |
+
# Draw uniformly distributed continuous timesteps
|
| 339 |
+
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
| 340 |
+
elif self.timestep_sampler == "logit_normal":
|
| 341 |
+
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
|
| 342 |
+
|
| 343 |
+
# # Calculate the noise schedule parameters for those timesteps
|
| 344 |
+
# alphas, sigmas = get_alphas_sigmas(t)
|
| 345 |
+
# Calculate the noise schedule parameters for those timesteps
|
| 346 |
+
if self.diffusion_objective == "v":
|
| 347 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
| 348 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 349 |
+
alphas, sigmas = 1-t, t
|
| 350 |
+
|
| 351 |
+
# Combine the ground truth data and the noise
|
| 352 |
+
alphas = alphas[:, None, None]
|
| 353 |
+
sigmas = sigmas[:, None, None]
|
| 354 |
+
noise = torch.randn_like(diffusion_input)
|
| 355 |
+
noised_inputs = diffusion_input * alphas + noise * sigmas
|
| 356 |
+
# x_ctx = diffusion_input.detach().clone().transpose(1,2)
|
| 357 |
+
bsz, dim, seq_len = diffusion_input.shape
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
if p_drop < self.ctx_drop:
|
| 361 |
+
ctx_mask = torch.ones((bsz, seq_len), device = diffusion_input.device, dtype = torch.bool)
|
| 362 |
+
# elif self.r_drop > 0.0 and r_drop < self.r_drop:
|
| 363 |
+
# ctx_mask = torch.zeros((bsz, seq_len), device=diffusion_input.device, dtype=torch.bool)
|
| 364 |
+
else:
|
| 365 |
+
# 计算 frac_lengths 提前使用
|
| 366 |
+
frac_lengths = torch.zeros((bsz,), device=diffusion_input.device).uniform_(*self.frac_lengths_mask)
|
| 367 |
+
# if self.r_drop > 0.0 and r_drop < self.r_drop:
|
| 368 |
+
# import ipdb
|
| 369 |
+
# ipdb.set_trace()
|
| 370 |
+
|
| 371 |
+
# ctx_mask = torch.zeros((bsz, seq_len), device=diffusion_input.device, dtype=torch.bool)
|
| 372 |
+
# else:
|
| 373 |
+
ctx_mask = generate_mask(bsz, seq_len, frac_lengths, self.min_span_len)
|
| 374 |
+
|
| 375 |
+
if ctx_mask.dim() == 2:
|
| 376 |
+
ctx_mask = ctx_mask.unsqueeze(1)
|
| 377 |
+
masked_sequence = diffusion_input * ~ctx_mask
|
| 378 |
+
conditioning['x_ctx'] = [masked_sequence]
|
| 379 |
+
if self.diffusion_objective == "v":
|
| 380 |
+
targets = noise * alphas - diffusion_input * sigmas
|
| 381 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 382 |
+
targets = noise - diffusion_input
|
| 383 |
+
with torch.amp.autocast('cuda'):
|
| 384 |
+
p.tick("amp")
|
| 385 |
+
v = self.diffusion(noised_inputs, t, cond=conditioning)
|
| 386 |
+
p.tick("diffusion")
|
| 387 |
+
loss_info.update({
|
| 388 |
+
"v": v,
|
| 389 |
+
"targets": targets,
|
| 390 |
+
"mask": ctx_mask.squeeze(-1)
|
| 391 |
+
})
|
| 392 |
+
# import ipdb
|
| 393 |
+
# ipdb.set_trace()
|
| 394 |
+
loss, losses = self.losses(loss_info)
|
| 395 |
+
|
| 396 |
+
log_dict = {
|
| 397 |
+
'train/loss': loss.detach(),
|
| 398 |
+
'train/std_data': diffusion_input.std(),
|
| 399 |
+
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
|
| 400 |
+
}
|
| 401 |
+
|
| 402 |
+
for loss_name, loss_value in losses.items():
|
| 403 |
+
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
| 404 |
+
|
| 405 |
+
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
| 406 |
+
p.tick("log")
|
| 407 |
+
return loss
|
| 408 |
+
|
| 409 |
+
def on_before_zero_grad(self, *args, **kwargs):
|
| 410 |
+
self.diffusion_ema.update()
|
| 411 |
+
|
| 412 |
+
def export_model(self, path, use_safetensors=False):
|
| 413 |
+
|
| 414 |
+
self.diffusion.model = self.diffusion_ema.ema_model
|
| 415 |
+
|
| 416 |
+
if use_safetensors:
|
| 417 |
+
save_file(self.diffusion.state_dict(), path)
|
| 418 |
+
else:
|
| 419 |
+
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
| 420 |
+
|
| 421 |
+
class DiffusionInfillDemoCallback(Callback):
|
| 422 |
+
def __init__(self,
|
| 423 |
+
demo_dl,
|
| 424 |
+
demo_every=2000,
|
| 425 |
+
num_demos=8,
|
| 426 |
+
demo_steps=250,
|
| 427 |
+
sample_rate=48000
|
| 428 |
+
):
|
| 429 |
+
super().__init__()
|
| 430 |
+
self.demo_dl = iter(demo_dl)
|
| 431 |
+
self.demo_every = demo_every
|
| 432 |
+
self.num_demos = num_demos
|
| 433 |
+
self.demo_steps = demo_steps
|
| 434 |
+
self.sample_rate = sample_rate
|
| 435 |
+
self.last_demo_step = -1
|
| 436 |
+
|
| 437 |
+
@rank_zero_only
|
| 438 |
+
@torch.no_grad()
|
| 439 |
+
def on_train_batch_end(self, trainer, module, outputs, batch, batch_idx):
|
| 440 |
+
|
| 441 |
+
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
| 442 |
+
return
|
| 443 |
+
|
| 444 |
+
self.last_demo_step = trainer.global_step
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
try:
|
| 448 |
+
demo_reals, _ = next(self.demo_dl)
|
| 449 |
+
# Remove extra dimension added by WebDataset
|
| 450 |
+
if demo_reals.ndim == 4 and demo_reals.shape[0] == 1:
|
| 451 |
+
demo_reals = demo_reals[0]
|
| 452 |
+
|
| 453 |
+
demo_reals = demo_reals.to(module.device)
|
| 454 |
+
reals = demo_reals
|
| 455 |
+
log_dict = {}
|
| 456 |
+
|
| 457 |
+
if not module.pre_encoded:
|
| 458 |
+
# Log the real audio
|
| 459 |
+
log_dict[f'demo_reals_melspec_left'] = wandb.Image(audio_spectrogram_image(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu()))
|
| 460 |
+
# log_dict[f'demo_reals'] = wandb.Audio(rearrange(demo_reals, "b d n -> d (b n)").mul(32767).to(torch.int16).cpu(), sample_rate=self.sample_rate, caption="demo reals")
|
| 461 |
+
|
| 462 |
+
if module.diffusion.pretransform is not None:
|
| 463 |
+
module.diffusion.pretransform.to(module.device)
|
| 464 |
+
with torch.amp.autocast('cuda'):
|
| 465 |
+
demo_reals = module.diffusion.pretransform.encode(demo_reals)
|
| 466 |
+
|
| 467 |
+
demo_samples = demo_reals.shape[2]
|
| 468 |
+
|
| 469 |
+
# Get conditioning
|
| 470 |
+
conditioning = {}
|
| 471 |
+
|
| 472 |
+
noise = torch.randn([demo_reals.shape[0], module.diffusion.io_channels, demo_samples]).to(module.device)
|
| 473 |
+
frac_lengths = torch.zeros((demo_reals.shape[0],), device = module.device).uniform_(*(0.3,0.5))
|
| 474 |
+
ctx_mask = generate_mask(demo_reals.shape[0],demo_reals.shape[2], frac_lengths, module.min_span_len)
|
| 475 |
+
# x_ctx = (demo_reals * ~ctx_mask.unsqueeze(1)).transpose(1,2)
|
| 476 |
+
x_ctx = demo_reals * ~ctx_mask.unsqueeze(1)
|
| 477 |
+
|
| 478 |
+
conditioning['x_ctx'] = [x_ctx]
|
| 479 |
+
# x_ctx_mask = x_ctx * ~ctx_mask.unsqueeze(-1)
|
| 480 |
+
if module.diffusion.pretransform is not None:
|
| 481 |
+
log_dict[f'demo_masked_input'] = wandb.Image(tokens_spectrogram_image(x_ctx.cpu()))
|
| 482 |
+
else:
|
| 483 |
+
log_dict[f'demo_masked_input'] = wandb.Image(audio_spectrogram_image(rearrange(x_ctx, "b c t -> c (b t)").mul(32767).to(torch.int16).cpu()))
|
| 484 |
+
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
|
| 485 |
+
with torch.amp.autocast('cuda'):
|
| 486 |
+
if module.diffusion_objective == "v":
|
| 487 |
+
fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
|
| 488 |
+
elif module.diffusion_objective == "rectified_flow":
|
| 489 |
+
fakes = sample_discrete_euler(module.diffusion_ema, noise, self.demo_steps, **cond_inputs)
|
| 490 |
+
# fakes = sample(module.diffusion_ema, noise, self.demo_steps, 0)
|
| 491 |
+
|
| 492 |
+
if module.diffusion.pretransform is not None:
|
| 493 |
+
fakes = module.diffusion.pretransform.decode(fakes)
|
| 494 |
+
|
| 495 |
+
# #Interleave reals and fakes
|
| 496 |
+
# reals_fakes = rearrange([reals, fakes], 'i b d n -> (b i) d n')
|
| 497 |
+
# Put the demos together
|
| 498 |
+
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
filename = f'results/audio_ssl/demo_ssl_{trainer.global_step:08}.wav'
|
| 502 |
+
os.makedirs(Path(filename).parent,exist_ok=True)
|
| 503 |
+
fakes = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
| 504 |
+
torchaudio.save(filename, fakes, self.sample_rate)
|
| 505 |
+
|
| 506 |
+
log_dict[f'demo'] = wandb.Audio(filename,
|
| 507 |
+
sample_rate=self.sample_rate,
|
| 508 |
+
caption=f'Reconstructed')
|
| 509 |
+
|
| 510 |
+
log_dict[f'demo_melspec_left'] = wandb.Image(audio_spectrogram_image(fakes))
|
| 511 |
+
|
| 512 |
+
trainer.logger.experiment.log(log_dict)
|
| 513 |
+
|
| 514 |
+
del fakes
|
| 515 |
+
|
| 516 |
+
except Exception as e:
|
| 517 |
+
print(f'{type(e).__name__}: {e}')
|
| 518 |
+
finally:
|
| 519 |
+
gc.collect()
|
| 520 |
+
torch.cuda.empty_cache()
|
| 521 |
+
|
| 522 |
+
class DiffusionCondTrainingWrapper(L.LightningModule):
|
| 523 |
+
'''
|
| 524 |
+
Wrapper for training a conditional audio diffusion model.
|
| 525 |
+
'''
|
| 526 |
+
def __init__(
|
| 527 |
+
self,
|
| 528 |
+
model: ConditionedDiffusionModelWrapper,
|
| 529 |
+
lr: float = None,
|
| 530 |
+
mask_padding: bool = False,
|
| 531 |
+
mask_padding_dropout: float = 0.0,
|
| 532 |
+
use_ema: bool = True,
|
| 533 |
+
log_loss_info: bool = False,
|
| 534 |
+
optimizer_configs: dict = None,
|
| 535 |
+
diffusion_objective: tp.Literal["rectified_flow", "v"] = "v",
|
| 536 |
+
pre_encoded: bool = False,
|
| 537 |
+
cfg_dropout_prob = 0.1,
|
| 538 |
+
timestep_sampler: tp.Literal["uniform", "logit_normal"] = "uniform",
|
| 539 |
+
max_mask_segments = 0,
|
| 540 |
+
):
|
| 541 |
+
super().__init__()
|
| 542 |
+
|
| 543 |
+
self.diffusion = model
|
| 544 |
+
|
| 545 |
+
if use_ema:
|
| 546 |
+
self.diffusion_ema = EMA(
|
| 547 |
+
self.diffusion.model,
|
| 548 |
+
beta=0.9999,
|
| 549 |
+
power=3/4,
|
| 550 |
+
update_every=1,
|
| 551 |
+
update_after_step=1,
|
| 552 |
+
include_online_model=False
|
| 553 |
+
)
|
| 554 |
+
else:
|
| 555 |
+
self.diffusion_ema = None
|
| 556 |
+
|
| 557 |
+
self.mask_padding = mask_padding
|
| 558 |
+
self.mask_padding_dropout = mask_padding_dropout
|
| 559 |
+
|
| 560 |
+
self.cfg_dropout_prob = cfg_dropout_prob
|
| 561 |
+
|
| 562 |
+
self.rng = torch.quasirandom.SobolEngine(1, scramble=True)
|
| 563 |
+
|
| 564 |
+
self.timestep_sampler = timestep_sampler
|
| 565 |
+
|
| 566 |
+
self.diffusion_objective = model.diffusion_objective
|
| 567 |
+
print(f'Training in the {self.diffusion_objective} formulation with timestep sampler: {timestep_sampler}')
|
| 568 |
+
|
| 569 |
+
self.max_mask_segments = max_mask_segments
|
| 570 |
+
|
| 571 |
+
self.loss_modules = [
|
| 572 |
+
MSELoss("output",
|
| 573 |
+
"targets",
|
| 574 |
+
weight=1.0,
|
| 575 |
+
mask_key="padding_mask" if self.mask_padding else None,
|
| 576 |
+
name="mse_loss"
|
| 577 |
+
)
|
| 578 |
+
]
|
| 579 |
+
|
| 580 |
+
self.losses = MultiLoss(self.loss_modules)
|
| 581 |
+
|
| 582 |
+
self.log_loss_info = log_loss_info
|
| 583 |
+
|
| 584 |
+
assert lr is not None or optimizer_configs is not None, "Must specify either lr or optimizer_configs in training config"
|
| 585 |
+
|
| 586 |
+
if optimizer_configs is None:
|
| 587 |
+
optimizer_configs = {
|
| 588 |
+
"diffusion": {
|
| 589 |
+
"optimizer": {
|
| 590 |
+
"type": "Adam",
|
| 591 |
+
"config": {
|
| 592 |
+
"lr": lr
|
| 593 |
+
}
|
| 594 |
+
}
|
| 595 |
+
}
|
| 596 |
+
}
|
| 597 |
+
else:
|
| 598 |
+
if lr is not None:
|
| 599 |
+
print(f"WARNING: learning_rate and optimizer_configs both specified in config. Ignoring learning_rate and using optimizer_configs.")
|
| 600 |
+
|
| 601 |
+
self.optimizer_configs = optimizer_configs
|
| 602 |
+
|
| 603 |
+
self.pre_encoded = pre_encoded
|
| 604 |
+
|
| 605 |
+
def configure_optimizers(self):
|
| 606 |
+
diffusion_opt_config = self.optimizer_configs['diffusion']
|
| 607 |
+
opt_diff = create_optimizer_from_config(diffusion_opt_config['optimizer'], self.diffusion.parameters())
|
| 608 |
+
|
| 609 |
+
if "scheduler" in diffusion_opt_config:
|
| 610 |
+
sched_diff = create_scheduler_from_config(diffusion_opt_config['scheduler'], opt_diff)
|
| 611 |
+
sched_diff_config = {
|
| 612 |
+
"scheduler": sched_diff,
|
| 613 |
+
"interval": "step"
|
| 614 |
+
}
|
| 615 |
+
return [opt_diff], [sched_diff_config]
|
| 616 |
+
|
| 617 |
+
return [opt_diff]
|
| 618 |
+
|
| 619 |
+
def training_step(self, batch, batch_idx):
|
| 620 |
+
reals, metadata = batch
|
| 621 |
+
# import ipdb
|
| 622 |
+
# ipdb.set_trace()
|
| 623 |
+
p = Profiler()
|
| 624 |
+
if reals.ndim == 4 and reals.shape[0] == 1:
|
| 625 |
+
reals = reals[0]
|
| 626 |
+
|
| 627 |
+
loss_info = {}
|
| 628 |
+
|
| 629 |
+
diffusion_input = reals
|
| 630 |
+
if not self.pre_encoded:
|
| 631 |
+
loss_info["audio_reals"] = diffusion_input
|
| 632 |
+
|
| 633 |
+
p.tick("setup")
|
| 634 |
+
|
| 635 |
+
with torch.amp.autocast('cuda'):
|
| 636 |
+
|
| 637 |
+
conditioning = self.diffusion.conditioner(metadata, self.device)
|
| 638 |
+
|
| 639 |
+
|
| 640 |
+
video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
|
| 641 |
+
conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
|
| 642 |
+
conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat
|
| 643 |
+
# If mask_padding is on, randomly drop the padding masks to allow for learning silence padding
|
| 644 |
+
use_padding_mask = self.mask_padding and random.random() > self.mask_padding_dropout
|
| 645 |
+
|
| 646 |
+
# Create batch tensor of attention masks from the "mask" field of the metadata array
|
| 647 |
+
if use_padding_mask:
|
| 648 |
+
padding_masks = torch.stack([md["padding_mask"][0] for md in metadata], dim=0).to(self.device) # Shape (batch_size, sequence_length)
|
| 649 |
+
|
| 650 |
+
p.tick("conditioning")
|
| 651 |
+
|
| 652 |
+
if self.diffusion.pretransform is not None:
|
| 653 |
+
self.diffusion.pretransform.to(self.device)
|
| 654 |
+
|
| 655 |
+
if not self.pre_encoded:
|
| 656 |
+
with torch.amp.autocast('cuda') and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
| 657 |
+
self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad)
|
| 658 |
+
|
| 659 |
+
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
| 660 |
+
p.tick("pretransform")
|
| 661 |
+
|
| 662 |
+
# If mask_padding is on, interpolate the padding masks to the size of the pretransformed input
|
| 663 |
+
if use_padding_mask:
|
| 664 |
+
padding_masks = F.interpolate(padding_masks.unsqueeze(1).float(), size=diffusion_input.shape[2], mode="nearest").squeeze(1).bool()
|
| 665 |
+
else:
|
| 666 |
+
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
| 667 |
+
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
| 668 |
+
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
| 669 |
+
|
| 670 |
+
if self.max_mask_segments > 0:
|
| 671 |
+
# Max mask size is the full sequence length
|
| 672 |
+
max_mask_length = diffusion_input.shape[2]
|
| 673 |
+
|
| 674 |
+
# Create a mask of random length for a random slice of the input
|
| 675 |
+
masked_input, mask = self.random_mask(diffusion_input, max_mask_length)
|
| 676 |
+
|
| 677 |
+
conditioning['inpaint_mask'] = [mask]
|
| 678 |
+
conditioning['inpaint_masked_input'] = masked_input
|
| 679 |
+
|
| 680 |
+
if self.timestep_sampler == "uniform":
|
| 681 |
+
# Draw uniformly distributed continuous timesteps
|
| 682 |
+
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
| 683 |
+
elif self.timestep_sampler == "logit_normal":
|
| 684 |
+
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
|
| 685 |
+
# import ipdb
|
| 686 |
+
# ipdb.set_trace()
|
| 687 |
+
# Calculate the noise schedule parameters for those timesteps
|
| 688 |
+
if self.diffusion_objective == "v":
|
| 689 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
| 690 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 691 |
+
alphas, sigmas = 1-t, t
|
| 692 |
+
|
| 693 |
+
# Combine the ground truth data and the noise
|
| 694 |
+
alphas = alphas[:, None, None]
|
| 695 |
+
sigmas = sigmas[:, None, None]
|
| 696 |
+
noise = torch.randn_like(diffusion_input)
|
| 697 |
+
noised_inputs = diffusion_input * alphas + noise * sigmas
|
| 698 |
+
|
| 699 |
+
if self.diffusion_objective == "v":
|
| 700 |
+
targets = noise * alphas - diffusion_input * sigmas
|
| 701 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 702 |
+
targets = noise - diffusion_input
|
| 703 |
+
|
| 704 |
+
p.tick("noise")
|
| 705 |
+
|
| 706 |
+
extra_args = {}
|
| 707 |
+
|
| 708 |
+
if use_padding_mask:
|
| 709 |
+
extra_args["mask"] = padding_masks
|
| 710 |
+
|
| 711 |
+
with torch.amp.autocast('cuda'):
|
| 712 |
+
p.tick("amp")
|
| 713 |
+
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = self.cfg_dropout_prob, **extra_args)
|
| 714 |
+
p.tick("diffusion")
|
| 715 |
+
|
| 716 |
+
loss_info.update({
|
| 717 |
+
"output": output,
|
| 718 |
+
"targets": targets,
|
| 719 |
+
"padding_mask": padding_masks if use_padding_mask else None,
|
| 720 |
+
})
|
| 721 |
+
|
| 722 |
+
loss, losses = self.losses(loss_info)
|
| 723 |
+
|
| 724 |
+
p.tick("loss")
|
| 725 |
+
|
| 726 |
+
if self.log_loss_info:
|
| 727 |
+
# Loss debugging logs
|
| 728 |
+
num_loss_buckets = 10
|
| 729 |
+
bucket_size = 1 / num_loss_buckets
|
| 730 |
+
loss_all = F.mse_loss(output, targets, reduction="none")
|
| 731 |
+
|
| 732 |
+
sigmas = rearrange(self.all_gather(sigmas), "w b c n -> (w b) c n").squeeze()
|
| 733 |
+
|
| 734 |
+
# gather loss_all across all GPUs
|
| 735 |
+
loss_all = rearrange(self.all_gather(loss_all), "w b c n -> (w b) c n")
|
| 736 |
+
|
| 737 |
+
# Bucket loss values based on corresponding sigma values, bucketing sigma values by bucket_size
|
| 738 |
+
loss_all = torch.stack([loss_all[(sigmas >= i) & (sigmas < i + bucket_size)].mean() for i in torch.arange(0, 1, bucket_size).to(self.device)])
|
| 739 |
+
|
| 740 |
+
# Log bucketed losses with corresponding sigma bucket values, if it's not NaN
|
| 741 |
+
debug_log_dict = {
|
| 742 |
+
f"model/loss_all_{i/num_loss_buckets:.1f}": loss_all[i].detach() for i in range(num_loss_buckets) if not torch.isnan(loss_all[i])
|
| 743 |
+
}
|
| 744 |
+
|
| 745 |
+
self.log_dict(debug_log_dict)
|
| 746 |
+
|
| 747 |
+
|
| 748 |
+
log_dict = {
|
| 749 |
+
'train/loss': loss.detach(),
|
| 750 |
+
'train/std_data': diffusion_input.std(),
|
| 751 |
+
'train/lr': self.trainer.optimizers[0].param_groups[0]['lr']
|
| 752 |
+
}
|
| 753 |
+
|
| 754 |
+
for loss_name, loss_value in losses.items():
|
| 755 |
+
log_dict[f"train/{loss_name}"] = loss_value.detach()
|
| 756 |
+
|
| 757 |
+
self.log_dict(log_dict, prog_bar=True, on_step=True)
|
| 758 |
+
p.tick("log")
|
| 759 |
+
#print(f"Profiler: {p}")
|
| 760 |
+
return loss
|
| 761 |
+
|
| 762 |
+
def validation_step(self, batch, batch_idx):
|
| 763 |
+
reals, metadata = batch
|
| 764 |
+
# breakpoint()
|
| 765 |
+
if reals.ndim == 4 and reals.shape[0] == 1:
|
| 766 |
+
reals = reals[0]
|
| 767 |
+
|
| 768 |
+
loss_info = {}
|
| 769 |
+
|
| 770 |
+
diffusion_input = reals
|
| 771 |
+
|
| 772 |
+
if not self.pre_encoded:
|
| 773 |
+
loss_info["audio_reals"] = diffusion_input
|
| 774 |
+
|
| 775 |
+
|
| 776 |
+
with torch.amp.autocast('cuda'):
|
| 777 |
+
|
| 778 |
+
conditioning = self.diffusion.conditioner(metadata, self.device)
|
| 779 |
+
|
| 780 |
+
video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
|
| 781 |
+
conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
|
| 782 |
+
conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat
|
| 783 |
+
|
| 784 |
+
if self.diffusion.pretransform is not None:
|
| 785 |
+
|
| 786 |
+
if not self.pre_encoded:
|
| 787 |
+
self.diffusion.pretransform.to(self.device)
|
| 788 |
+
with torch.amp.autocast('cuda') and torch.set_grad_enabled(self.diffusion.pretransform.enable_grad):
|
| 789 |
+
self.diffusion.pretransform.train(self.diffusion.pretransform.enable_grad)
|
| 790 |
+
|
| 791 |
+
diffusion_input = self.diffusion.pretransform.encode(diffusion_input)
|
| 792 |
+
else:
|
| 793 |
+
# Apply scale to pre-encoded latents if needed, as the pretransform encode function will not be run
|
| 794 |
+
if hasattr(self.diffusion.pretransform, "scale") and self.diffusion.pretransform.scale != 1.0:
|
| 795 |
+
diffusion_input = diffusion_input / self.diffusion.pretransform.scale
|
| 796 |
+
if self.max_mask_segments > 0:
|
| 797 |
+
# Max mask size is the full sequence length
|
| 798 |
+
max_mask_length = diffusion_input.shape[2]
|
| 799 |
+
|
| 800 |
+
# Create a mask of random length for a random slice of the input
|
| 801 |
+
masked_input, mask = self.random_mask(diffusion_input, max_mask_length)
|
| 802 |
+
|
| 803 |
+
conditioning['inpaint_mask'] = [mask]
|
| 804 |
+
conditioning['inpaint_masked_input'] = masked_input
|
| 805 |
+
if self.timestep_sampler == "uniform":
|
| 806 |
+
# Draw uniformly distributed continuous timesteps
|
| 807 |
+
t = self.rng.draw(reals.shape[0])[:, 0].to(self.device)
|
| 808 |
+
elif self.timestep_sampler == "logit_normal":
|
| 809 |
+
t = torch.sigmoid(torch.randn(reals.shape[0], device=self.device))
|
| 810 |
+
|
| 811 |
+
# Calculate the noise schedule parameters for those timesteps
|
| 812 |
+
if self.diffusion_objective == "v":
|
| 813 |
+
alphas, sigmas = get_alphas_sigmas(t)
|
| 814 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 815 |
+
alphas, sigmas = 1-t, t
|
| 816 |
+
|
| 817 |
+
# Combine the ground truth data and the noise
|
| 818 |
+
alphas = alphas[:, None, None]
|
| 819 |
+
sigmas = sigmas[:, None, None]
|
| 820 |
+
noise = torch.randn_like(diffusion_input)
|
| 821 |
+
noised_inputs = diffusion_input * alphas + noise * sigmas
|
| 822 |
+
|
| 823 |
+
if self.diffusion_objective == "v":
|
| 824 |
+
targets = noise * alphas - diffusion_input * sigmas
|
| 825 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 826 |
+
targets = noise - diffusion_input
|
| 827 |
+
|
| 828 |
+
|
| 829 |
+
with torch.amp.autocast('cuda'):
|
| 830 |
+
output = self.diffusion(noised_inputs, t, cond=conditioning, cfg_dropout_prob = 0.0)
|
| 831 |
+
|
| 832 |
+
loss_info.update({
|
| 833 |
+
"output": output,
|
| 834 |
+
"targets": targets,
|
| 835 |
+
})
|
| 836 |
+
|
| 837 |
+
loss, losses = self.losses(loss_info)
|
| 838 |
+
|
| 839 |
+
|
| 840 |
+
log_dict = {
|
| 841 |
+
'val_loss': loss.detach(),
|
| 842 |
+
}
|
| 843 |
+
|
| 844 |
+
self.log_dict(log_dict, prog_bar=True, batch_size=diffusion_input.size(0))
|
| 845 |
+
|
| 846 |
+
def predict_step(self, batch, batch_idx):
|
| 847 |
+
reals, metadata = batch
|
| 848 |
+
ids = [item['id'] for item in metadata]
|
| 849 |
+
batch_size, length = reals.shape[0], reals.shape[2]
|
| 850 |
+
print(f"Predicting {batch_size} samples with length {length} for ids: {ids}")
|
| 851 |
+
with torch.amp.autocast('cuda'):
|
| 852 |
+
conditioning = self.diffusion.conditioner(metadata, self.device)
|
| 853 |
+
|
| 854 |
+
video_exist = torch.stack([item['video_exist'] for item in metadata],dim=0)
|
| 855 |
+
conditioning['metaclip_features'][~video_exist] = self.diffusion.model.model.empty_clip_feat
|
| 856 |
+
conditioning['sync_features'][~video_exist] = self.diffusion.model.model.empty_sync_feat
|
| 857 |
+
|
| 858 |
+
cond_inputs = self.diffusion.get_conditioning_inputs(conditioning)
|
| 859 |
+
if batch_size > 1:
|
| 860 |
+
noise_list = []
|
| 861 |
+
for _ in range(batch_size):
|
| 862 |
+
noise_1 = torch.randn([1, self.diffusion.io_channels, length]).to(self.device) # 每次生成推进RNG状态
|
| 863 |
+
noise_list.append(noise_1)
|
| 864 |
+
noise = torch.cat(noise_list, dim=0)
|
| 865 |
+
else:
|
| 866 |
+
noise = torch.randn([batch_size, self.diffusion.io_channels, length]).to(self.device)
|
| 867 |
+
with torch.amp.autocast('cuda'):
|
| 868 |
+
|
| 869 |
+
model = self.diffusion.model
|
| 870 |
+
if self.diffusion_objective == "v":
|
| 871 |
+
fakes = sample(model, noise, 24, 0, **cond_inputs, cfg_scale=5, batch_cfg=True)
|
| 872 |
+
elif self.diffusion_objective == "rectified_flow":
|
| 873 |
+
import time
|
| 874 |
+
start_time = time.time()
|
| 875 |
+
fakes = sample_discrete_euler(model, noise, 24, **cond_inputs, cfg_scale=5, batch_cfg=True)
|
| 876 |
+
end_time = time.time()
|
| 877 |
+
execution_time = end_time - start_time
|
| 878 |
+
print(f"执行时间: {execution_time:.2f} 秒")
|
| 879 |
+
if self.diffusion.pretransform is not None:
|
| 880 |
+
fakes = self.diffusion.pretransform.decode(fakes)
|
| 881 |
+
|
| 882 |
+
audios = fakes.to(torch.float32).div(torch.max(torch.abs(fakes))).clamp(-1, 1).mul(32767).to(torch.int16).cpu()
|
| 883 |
+
return audios
|
| 884 |
+
# # Put the demos together
|
| 885 |
+
# fakes = rearrange(fakes, 'b d n -> d (b n)')
|
| 886 |
+
|
| 887 |
+
def random_mask(self, sequence, max_mask_length):
|
| 888 |
+
b, _, sequence_length = sequence.size()
|
| 889 |
+
|
| 890 |
+
# Create a mask tensor for each batch element
|
| 891 |
+
masks = []
|
| 892 |
+
|
| 893 |
+
for i in range(b):
|
| 894 |
+
mask_type = random.randint(0, 2)
|
| 895 |
+
|
| 896 |
+
if mask_type == 0: # Random mask with multiple segments
|
| 897 |
+
num_segments = random.randint(1, self.max_mask_segments)
|
| 898 |
+
max_segment_length = max_mask_length // num_segments
|
| 899 |
+
|
| 900 |
+
segment_lengths = random.sample(range(1, max_segment_length + 1), num_segments)
|
| 901 |
+
|
| 902 |
+
mask = torch.ones((1, 1, sequence_length))
|
| 903 |
+
for length in segment_lengths:
|
| 904 |
+
mask_start = random.randint(0, sequence_length - length)
|
| 905 |
+
mask[:, :, mask_start:mask_start + length] = 0
|
| 906 |
+
|
| 907 |
+
elif mask_type == 1: # Full mask
|
| 908 |
+
mask = torch.zeros((1, 1, sequence_length))
|
| 909 |
+
|
| 910 |
+
elif mask_type == 2: # Causal mask
|
| 911 |
+
mask = torch.ones((1, 1, sequence_length))
|
| 912 |
+
mask_length = random.randint(1, max_mask_length)
|
| 913 |
+
mask[:, :, -mask_length:] = 0
|
| 914 |
+
|
| 915 |
+
mask = mask.to(sequence.device)
|
| 916 |
+
masks.append(mask)
|
| 917 |
+
|
| 918 |
+
# Concatenate the mask tensors into a single tensor
|
| 919 |
+
mask = torch.cat(masks, dim=0).to(sequence.device)
|
| 920 |
+
|
| 921 |
+
# Apply the mask to the sequence tensor for each batch element
|
| 922 |
+
masked_sequence = sequence * mask
|
| 923 |
+
|
| 924 |
+
return masked_sequence, mask
|
| 925 |
+
|
| 926 |
+
def on_before_zero_grad(self, *args, **kwargs):
|
| 927 |
+
if self.diffusion_ema is not None:
|
| 928 |
+
self.diffusion_ema.update()
|
| 929 |
+
|
| 930 |
+
def export_model(self, path, use_safetensors=False):
|
| 931 |
+
if self.diffusion_ema is not None:
|
| 932 |
+
self.diffusion.model = self.diffusion_ema.ema_model
|
| 933 |
+
|
| 934 |
+
if use_safetensors:
|
| 935 |
+
save_file(self.diffusion.state_dict(), path)
|
| 936 |
+
else:
|
| 937 |
+
torch.save({"state_dict": self.diffusion.state_dict()}, path)
|
| 938 |
+
|
| 939 |
+
class DiffusionCondDemoCallback(Callback):
|
| 940 |
+
def __init__(self,
|
| 941 |
+
demo_every=2000,
|
| 942 |
+
num_demos=8,
|
| 943 |
+
sample_size=65536,
|
| 944 |
+
demo_steps=250,
|
| 945 |
+
sample_rate=48000,
|
| 946 |
+
demo_conditioning: tp.Optional[tp.Dict[str, tp.Any]] = {},
|
| 947 |
+
demo_cfg_scales: tp.Optional[tp.List[int]] = [3, 5, 7],
|
| 948 |
+
demo_cond_from_batch: bool = False,
|
| 949 |
+
display_audio_cond: bool = False
|
| 950 |
+
):
|
| 951 |
+
super().__init__()
|
| 952 |
+
|
| 953 |
+
self.demo_every = demo_every
|
| 954 |
+
self.num_demos = num_demos
|
| 955 |
+
self.demo_samples = sample_size
|
| 956 |
+
self.demo_steps = demo_steps
|
| 957 |
+
self.sample_rate = sample_rate
|
| 958 |
+
self.last_demo_step = -1
|
| 959 |
+
self.demo_conditioning = demo_conditioning
|
| 960 |
+
self.demo_cfg_scales = demo_cfg_scales
|
| 961 |
+
|
| 962 |
+
# If true, the callback will use the metadata from the batch to generate the demo conditioning
|
| 963 |
+
self.demo_cond_from_batch = demo_cond_from_batch
|
| 964 |
+
|
| 965 |
+
# If true, the callback will display the audio conditioning
|
| 966 |
+
self.display_audio_cond = display_audio_cond
|
| 967 |
+
|
| 968 |
+
@rank_zero_only
|
| 969 |
+
@torch.no_grad()
|
| 970 |
+
def on_train_batch_end(self, trainer, module: DiffusionCondTrainingWrapper, outputs, batch, batch_idx):
|
| 971 |
+
|
| 972 |
+
if (trainer.global_step - 1) % self.demo_every != 0 or self.last_demo_step == trainer.global_step:
|
| 973 |
+
return
|
| 974 |
+
|
| 975 |
+
module.eval()
|
| 976 |
+
|
| 977 |
+
print(f"Generating demo")
|
| 978 |
+
self.last_demo_step = trainer.global_step
|
| 979 |
+
|
| 980 |
+
demo_samples = self.demo_samples
|
| 981 |
+
|
| 982 |
+
demo_cond = self.demo_conditioning
|
| 983 |
+
|
| 984 |
+
if self.demo_cond_from_batch:
|
| 985 |
+
# Get metadata from the batch
|
| 986 |
+
demo_cond = batch[1][:self.num_demos]
|
| 987 |
+
|
| 988 |
+
if '.pth' in demo_cond[0]:
|
| 989 |
+
demo_cond_data = []
|
| 990 |
+
for path in demo_cond:
|
| 991 |
+
# info = {}
|
| 992 |
+
data = torch.load(path, weights_only=True)
|
| 993 |
+
if 'caption_t5' not in data.keys():
|
| 994 |
+
data['caption_t5'] = data['caption']
|
| 995 |
+
data['seconds_start'] = 0
|
| 996 |
+
data['seconds_total'] = 10
|
| 997 |
+
demo_cond_data.append(data)
|
| 998 |
+
demo_cond = demo_cond_data
|
| 999 |
+
elif '.npz' in demo_cond[0]:
|
| 1000 |
+
demo_cond_data = []
|
| 1001 |
+
for path in demo_cond:
|
| 1002 |
+
# info = {}
|
| 1003 |
+
npz_data = np.load(path,allow_pickle=True)
|
| 1004 |
+
data = {key: npz_data[key] for key in npz_data.files}
|
| 1005 |
+
for key in data.keys():
|
| 1006 |
+
# print(key)
|
| 1007 |
+
if isinstance(data[key], np.ndarray) and np.issubdtype(data[key].dtype, np.number):
|
| 1008 |
+
data[key] = torch.from_numpy(data[key])
|
| 1009 |
+
|
| 1010 |
+
demo_cond_data.append(data)
|
| 1011 |
+
demo_cond = demo_cond_data
|
| 1012 |
+
if module.diffusion.pretransform is not None:
|
| 1013 |
+
demo_samples = demo_samples // module.diffusion.pretransform.downsampling_ratio
|
| 1014 |
+
|
| 1015 |
+
noise = torch.randn([self.num_demos, module.diffusion.io_channels, demo_samples]).to(module.device)
|
| 1016 |
+
|
| 1017 |
+
try:
|
| 1018 |
+
print("Getting conditioning")
|
| 1019 |
+
with torch.amp.autocast('cuda'):
|
| 1020 |
+
conditioning = module.diffusion.conditioner(demo_cond, module.device)
|
| 1021 |
+
|
| 1022 |
+
cond_inputs = module.diffusion.get_conditioning_inputs(conditioning)
|
| 1023 |
+
|
| 1024 |
+
log_dict = {}
|
| 1025 |
+
|
| 1026 |
+
if self.display_audio_cond:
|
| 1027 |
+
audio_inputs = torch.cat([cond["audio"] for cond in demo_cond], dim=0)
|
| 1028 |
+
audio_inputs = rearrange(audio_inputs, 'b d n -> d (b n)')
|
| 1029 |
+
|
| 1030 |
+
filename = f'demo_audio_cond_{trainer.global_step:08}.wav'
|
| 1031 |
+
audio_inputs = audio_inputs.to(torch.float32).mul(32767).to(torch.int16).cpu()
|
| 1032 |
+
torchaudio.save(filename, audio_inputs, self.sample_rate)
|
| 1033 |
+
log_dict[f'demo_audio_cond'] = wandb.Audio(filename, sample_rate=self.sample_rate, caption="Audio conditioning")
|
| 1034 |
+
log_dict[f"demo_audio_cond_melspec_left"] = wandb.Image(audio_spectrogram_image(audio_inputs))
|
| 1035 |
+
trainer.logger.experiment.log(log_dict)
|
| 1036 |
+
|
| 1037 |
+
for cfg_scale in self.demo_cfg_scales:
|
| 1038 |
+
|
| 1039 |
+
print(f"Generating demo for cfg scale {cfg_scale}")
|
| 1040 |
+
|
| 1041 |
+
with torch.amp.autocast('cuda'):
|
| 1042 |
+
# model = module.diffusion_ema.model if module.diffusion_ema is not None else module.diffusion.model
|
| 1043 |
+
model = module.diffusion.model
|
| 1044 |
+
|
| 1045 |
+
if module.diffusion_objective == "v":
|
| 1046 |
+
fakes = sample(model, noise, self.demo_steps, 0, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
| 1047 |
+
elif module.diffusion_objective == "rectified_flow":
|
| 1048 |
+
fakes = sample_discrete_euler(model, noise, self.demo_steps, **cond_inputs, cfg_scale=cfg_scale, batch_cfg=True)
|
| 1049 |
+
|
| 1050 |
+
if module.diffusion.pretransform is not None:
|
| 1051 |
+
fakes = module.diffusion.pretransform.decode(fakes)
|
| 1052 |
+
|
| 1053 |
+
# Put the demos together
|
| 1054 |
+
fakes = rearrange(fakes, 'b d n -> d (b n)')
|
| 1055 |
+
|
| 1056 |
+
log_dict = {}
|
| 1057 |
+
|
| 1058 |
+
filename = f'demos/demo_cfg_{cfg_scale}_{trainer.global_step:08}.wav'
|
| 1059 |
+
fakes = fakes.div(torch.max(torch.abs(fakes))).mul(32767).to(torch.int16).cpu()
|
| 1060 |
+
torchaudio.save(filename, fakes, self.sample_rate)
|
| 1061 |
+
|
| 1062 |
+
log_dict[f'demo_cfg_{cfg_scale}'] = wandb.Audio(filename,
|
| 1063 |
+
sample_rate=self.sample_rate,
|
| 1064 |
+
caption=f'Reconstructed')
|
| 1065 |
+
|
| 1066 |
+
log_dict[f'demo_melspec_left_cfg_{cfg_scale}'] = wandb.Image(audio_spectrogram_image(fakes))
|
| 1067 |
+
trainer.logger.experiment.log(log_dict)
|
| 1068 |
+
|
| 1069 |
+
del fakes
|
| 1070 |
+
|
| 1071 |
+
except Exception as e:
|
| 1072 |
+
raise e
|
| 1073 |
+
finally:
|
| 1074 |
+
gc.collect()
|
| 1075 |
+
torch.cuda.empty_cache()
|
| 1076 |
+
module.train()
|
ThinkSound/training/factory.py
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.nn import Parameter
|
| 3 |
+
from ..models.factory import create_model_from_config
|
| 4 |
+
|
| 5 |
+
def create_training_wrapper_from_config(model_config, model):
|
| 6 |
+
model_type = model_config.get('model_type', None)
|
| 7 |
+
assert model_type is not None, 'model_type must be specified in model config'
|
| 8 |
+
|
| 9 |
+
training_config = model_config.get('training', None)
|
| 10 |
+
assert training_config is not None, 'training config must be specified in model config'
|
| 11 |
+
if model_type == 'autoencoder':
|
| 12 |
+
from .autoencoders import AutoencoderTrainingWrapper
|
| 13 |
+
|
| 14 |
+
ema_copy = None
|
| 15 |
+
|
| 16 |
+
if training_config.get("use_ema", False):
|
| 17 |
+
ema_copy = create_model_from_config(model_config)
|
| 18 |
+
ema_copy = create_model_from_config(model_config) # I don't know why this needs to be called twice but it broke when I called it once
|
| 19 |
+
# Copy each weight to the ema copy
|
| 20 |
+
for name, param in model.state_dict().items():
|
| 21 |
+
if isinstance(param, Parameter):
|
| 22 |
+
# backwards compatibility for serialized parameters
|
| 23 |
+
param = param.data
|
| 24 |
+
ema_copy.state_dict()[name].copy_(param)
|
| 25 |
+
|
| 26 |
+
use_ema = training_config.get("use_ema", False)
|
| 27 |
+
|
| 28 |
+
latent_mask_ratio = training_config.get("latent_mask_ratio", 0.0)
|
| 29 |
+
|
| 30 |
+
teacher_model = training_config.get("teacher_model", None)
|
| 31 |
+
if teacher_model is not None:
|
| 32 |
+
teacher_model = create_model_from_config(teacher_model)
|
| 33 |
+
teacher_model = teacher_model.eval().requires_grad_(False)
|
| 34 |
+
|
| 35 |
+
teacher_model_ckpt = training_config.get("teacher_model_ckpt", None)
|
| 36 |
+
if teacher_model_ckpt is not None:
|
| 37 |
+
teacher_model.load_state_dict(torch.load(teacher_model_ckpt)["state_dict"])
|
| 38 |
+
else:
|
| 39 |
+
raise ValueError("teacher_model_ckpt must be specified if teacher_model is specified")
|
| 40 |
+
|
| 41 |
+
return AutoencoderTrainingWrapper(
|
| 42 |
+
model,
|
| 43 |
+
lr=training_config["learning_rate"],
|
| 44 |
+
warmup_steps=training_config.get("warmup_steps", 0),
|
| 45 |
+
encoder_freeze_on_warmup=training_config.get("encoder_freeze_on_warmup", False),
|
| 46 |
+
sample_rate=model_config["sample_rate"],
|
| 47 |
+
loss_config=training_config.get("loss_configs", None),
|
| 48 |
+
optimizer_configs=training_config.get("optimizer_configs", None),
|
| 49 |
+
use_ema=use_ema,
|
| 50 |
+
ema_copy=ema_copy if use_ema else None,
|
| 51 |
+
force_input_mono=training_config.get("force_input_mono", False),
|
| 52 |
+
latent_mask_ratio=latent_mask_ratio,
|
| 53 |
+
teacher_model=teacher_model
|
| 54 |
+
)
|
| 55 |
+
elif model_type == 'diffusion_uncond':
|
| 56 |
+
from .diffusion import DiffusionUncondTrainingWrapper
|
| 57 |
+
return DiffusionUncondTrainingWrapper(
|
| 58 |
+
model,
|
| 59 |
+
lr=training_config["learning_rate"],
|
| 60 |
+
pre_encoded=training_config.get("pre_encoded", False),
|
| 61 |
+
)
|
| 62 |
+
elif model_type == 'diffusion_infill':
|
| 63 |
+
from .diffusion import DiffusionInfillTrainingWrapper
|
| 64 |
+
return DiffusionInfillTrainingWrapper(
|
| 65 |
+
model,
|
| 66 |
+
lr=training_config.get("learning_rate", None),
|
| 67 |
+
optimizer_configs=training_config.get("optimizer_configs", None),
|
| 68 |
+
pre_encoded=training_config.get("pre_encoded", False),
|
| 69 |
+
frac_lengths_mask=training_config.get("frac_lengths_mask", (0.7, 1.)),
|
| 70 |
+
min_span_len=training_config.get("min_span_len", 10),
|
| 71 |
+
timestep_sampler = training_config.get("timestep_sampler", "uniform"),
|
| 72 |
+
ctx_drop = training_config.get("ctx_drop", 0.1),
|
| 73 |
+
r_drop = training_config.get("r_drop", 0.0)
|
| 74 |
+
)
|
| 75 |
+
elif model_type == 'diffusion_cond' or model_type == 'mm_diffusion_cond':
|
| 76 |
+
from .diffusion import DiffusionCondTrainingWrapper
|
| 77 |
+
return DiffusionCondTrainingWrapper(
|
| 78 |
+
model,
|
| 79 |
+
lr=training_config.get("learning_rate", None),
|
| 80 |
+
mask_padding=training_config.get("mask_padding", False),
|
| 81 |
+
mask_padding_dropout=training_config.get("mask_padding_dropout", 0.0),
|
| 82 |
+
use_ema = training_config.get("use_ema", True),
|
| 83 |
+
log_loss_info=training_config.get("log_loss_info", False),
|
| 84 |
+
optimizer_configs=training_config.get("optimizer_configs", None),
|
| 85 |
+
pre_encoded=training_config.get("pre_encoded", False),
|
| 86 |
+
diffusion_objective=training_config.get("diffusion_objective","v"),
|
| 87 |
+
cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
|
| 88 |
+
timestep_sampler = training_config.get("timestep_sampler", "uniform"),
|
| 89 |
+
max_mask_segments = training_config.get("max_mask_segments", 0)
|
| 90 |
+
)
|
| 91 |
+
elif model_type == 'diffusion_prior':
|
| 92 |
+
from .diffusion import DiffusionPriorTrainingWrapper
|
| 93 |
+
from ..models.diffusion_prior import PriorType
|
| 94 |
+
|
| 95 |
+
ema_copy = create_model_from_config(model_config)
|
| 96 |
+
|
| 97 |
+
# Copy each weight to the ema copy
|
| 98 |
+
for name, param in model.state_dict().items():
|
| 99 |
+
if isinstance(param, Parameter):
|
| 100 |
+
# backwards compatibility for serialized parameters
|
| 101 |
+
param = param.data
|
| 102 |
+
ema_copy.state_dict()[name].copy_(param)
|
| 103 |
+
|
| 104 |
+
prior_type = training_config.get("prior_type", "mono_stereo")
|
| 105 |
+
|
| 106 |
+
if prior_type == "mono_stereo":
|
| 107 |
+
prior_type_enum = PriorType.MonoToStereo
|
| 108 |
+
else:
|
| 109 |
+
raise ValueError(f"Unknown prior type: {prior_type}")
|
| 110 |
+
|
| 111 |
+
return DiffusionPriorTrainingWrapper(
|
| 112 |
+
model,
|
| 113 |
+
lr=training_config["learning_rate"],
|
| 114 |
+
ema_copy=ema_copy,
|
| 115 |
+
prior_type=prior_type_enum,
|
| 116 |
+
log_loss_info=training_config.get("log_loss_info", False),
|
| 117 |
+
use_reconstruction_loss=training_config.get("use_reconstruction_loss", False),
|
| 118 |
+
)
|
| 119 |
+
elif model_type == 'diffusion_cond_inpaint':
|
| 120 |
+
from .diffusion import DiffusionCondInpaintTrainingWrapper
|
| 121 |
+
return DiffusionCondInpaintTrainingWrapper(
|
| 122 |
+
model,
|
| 123 |
+
lr=training_config.get("learning_rate", None),
|
| 124 |
+
max_mask_segments = training_config.get("max_mask_segments", 10),
|
| 125 |
+
log_loss_info=training_config.get("log_loss_info", False),
|
| 126 |
+
optimizer_configs=training_config.get("optimizer_configs", None),
|
| 127 |
+
use_ema=training_config.get("use_ema", True),
|
| 128 |
+
pre_encoded=training_config.get("pre_encoded", False),
|
| 129 |
+
cfg_dropout_prob = training_config.get("cfg_dropout_prob", 0.1),
|
| 130 |
+
timestep_sampler = training_config.get("timestep_sampler", "uniform")
|
| 131 |
+
)
|
| 132 |
+
elif model_type == 'diffusion_autoencoder' :
|
| 133 |
+
from .diffusion import DiffusionAutoencoderTrainingWrapper
|
| 134 |
+
|
| 135 |
+
ema_copy = create_model_from_config(model_config)
|
| 136 |
+
|
| 137 |
+
# Copy each weight to the ema copy
|
| 138 |
+
for name, param in model.state_dict().items():
|
| 139 |
+
if isinstance(param, Parameter):
|
| 140 |
+
# backwards compatibility for serialized parameters
|
| 141 |
+
param = param.data
|
| 142 |
+
ema_copy.state_dict()[name].copy_(param)
|
| 143 |
+
|
| 144 |
+
return DiffusionAutoencoderTrainingWrapper(
|
| 145 |
+
model,
|
| 146 |
+
ema_copy=ema_copy,
|
| 147 |
+
lr=training_config["learning_rate"],
|
| 148 |
+
use_reconstruction_loss=training_config.get("use_reconstruction_loss", False)
|
| 149 |
+
)
|
| 150 |
+
elif model_type == 'lm':
|
| 151 |
+
from .lm import AudioLanguageModelTrainingWrapper
|
| 152 |
+
|
| 153 |
+
ema_copy = create_model_from_config(model_config)
|
| 154 |
+
|
| 155 |
+
for name, param in model.state_dict().items():
|
| 156 |
+
if isinstance(param, Parameter):
|
| 157 |
+
# backwards compatibility for serialized parameters
|
| 158 |
+
param = param.data
|
| 159 |
+
ema_copy.state_dict()[name].copy_(param)
|
| 160 |
+
|
| 161 |
+
return AudioLanguageModelTrainingWrapper(
|
| 162 |
+
model,
|
| 163 |
+
ema_copy=ema_copy,
|
| 164 |
+
lr=training_config.get("learning_rate", None),
|
| 165 |
+
use_ema=training_config.get("use_ema", False),
|
| 166 |
+
optimizer_configs=training_config.get("optimizer_configs", None),
|
| 167 |
+
pre_encoded=training_config.get("pre_encoded", False),
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
else:
|
| 171 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
| 172 |
+
|
| 173 |
+
def create_demo_callback_from_config(model_config, **kwargs):
|
| 174 |
+
model_type = model_config.get('model_type', None)
|
| 175 |
+
assert model_type is not None, 'model_type must be specified in model config'
|
| 176 |
+
|
| 177 |
+
training_config = model_config.get('training', None)
|
| 178 |
+
assert training_config is not None, 'training config must be specified in model config'
|
| 179 |
+
|
| 180 |
+
demo_config = training_config.get("demo", {})
|
| 181 |
+
|
| 182 |
+
if model_type == 'autoencoder':
|
| 183 |
+
from .autoencoders import AutoencoderDemoCallback
|
| 184 |
+
return AutoencoderDemoCallback(
|
| 185 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 186 |
+
sample_size=model_config["sample_size"],
|
| 187 |
+
sample_rate=model_config["sample_rate"],
|
| 188 |
+
**kwargs
|
| 189 |
+
)
|
| 190 |
+
elif model_type == 'diffusion_uncond':
|
| 191 |
+
from .diffusion import DiffusionUncondDemoCallback
|
| 192 |
+
return DiffusionUncondDemoCallback(
|
| 193 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 194 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 195 |
+
sample_rate=model_config["sample_rate"]
|
| 196 |
+
)
|
| 197 |
+
elif model_type == 'diffusion_infill':
|
| 198 |
+
from .diffusion import DiffusionInfillDemoCallback
|
| 199 |
+
return DiffusionInfillDemoCallback(
|
| 200 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 201 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 202 |
+
sample_rate=model_config["sample_rate"],
|
| 203 |
+
**kwargs
|
| 204 |
+
)
|
| 205 |
+
elif model_type == "diffusion_autoencoder":
|
| 206 |
+
from .diffusion import DiffusionAutoencoderDemoCallback
|
| 207 |
+
return DiffusionAutoencoderDemoCallback(
|
| 208 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 209 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 210 |
+
sample_size=model_config["sample_size"],
|
| 211 |
+
sample_rate=model_config["sample_rate"],
|
| 212 |
+
**kwargs
|
| 213 |
+
)
|
| 214 |
+
elif model_type == "diffusion_prior":
|
| 215 |
+
from .diffusion import DiffusionPriorDemoCallback
|
| 216 |
+
return DiffusionPriorDemoCallback(
|
| 217 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 218 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 219 |
+
sample_size=model_config["sample_size"],
|
| 220 |
+
sample_rate=model_config["sample_rate"],
|
| 221 |
+
**kwargs
|
| 222 |
+
)
|
| 223 |
+
elif model_type == "diffusion_cond" or model_type == 'mm_diffusion_cond':
|
| 224 |
+
from .diffusion import DiffusionCondDemoCallback
|
| 225 |
+
|
| 226 |
+
return DiffusionCondDemoCallback(
|
| 227 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 228 |
+
sample_size=model_config["sample_size"],
|
| 229 |
+
sample_rate=model_config["sample_rate"],
|
| 230 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 231 |
+
num_demos=demo_config["num_demos"],
|
| 232 |
+
demo_cfg_scales=demo_config["demo_cfg_scales"],
|
| 233 |
+
demo_conditioning=demo_config.get("demo_cond", {}),
|
| 234 |
+
demo_cond_from_batch=demo_config.get("demo_cond_from_batch", False),
|
| 235 |
+
display_audio_cond=demo_config.get("display_audio_cond", False),
|
| 236 |
+
)
|
| 237 |
+
elif model_type == "diffusion_cond_inpaint":
|
| 238 |
+
from .diffusion import DiffusionCondInpaintDemoCallback
|
| 239 |
+
|
| 240 |
+
return DiffusionCondInpaintDemoCallback(
|
| 241 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 242 |
+
sample_size=model_config["sample_size"],
|
| 243 |
+
sample_rate=model_config["sample_rate"],
|
| 244 |
+
demo_steps=demo_config.get("demo_steps", 250),
|
| 245 |
+
demo_cfg_scales=demo_config["demo_cfg_scales"],
|
| 246 |
+
**kwargs
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
elif model_type == "lm":
|
| 250 |
+
from .lm import AudioLanguageModelDemoCallback
|
| 251 |
+
|
| 252 |
+
return AudioLanguageModelDemoCallback(
|
| 253 |
+
demo_every=demo_config.get("demo_every", 2000),
|
| 254 |
+
sample_size=model_config["sample_size"],
|
| 255 |
+
sample_rate=model_config["sample_rate"],
|
| 256 |
+
demo_cfg_scales=demo_config.get("demo_cfg_scales", [1]),
|
| 257 |
+
demo_conditioning=demo_config.get("demo_cond", None),
|
| 258 |
+
num_demos=demo_config.get("num_demos", 8),
|
| 259 |
+
**kwargs
|
| 260 |
+
)
|
| 261 |
+
else:
|
| 262 |
+
raise NotImplementedError(f'Unknown model type: {model_type}')
|
ThinkSound/training/losses/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
from .losses import *
|
ThinkSound/training/losses/auraloss.py
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copied and modified from https://github.com/csteinmetz1/auraloss/blob/main/auraloss/freq.py under Apache License 2.0
|
| 2 |
+
# You can find the license at LICENSES/LICENSE_AURALOSS.txt
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import numpy as np
|
| 6 |
+
from typing import List, Any
|
| 7 |
+
import scipy.signal
|
| 8 |
+
|
| 9 |
+
def apply_reduction(losses, reduction="none"):
|
| 10 |
+
"""Apply reduction to collection of losses."""
|
| 11 |
+
if reduction == "mean":
|
| 12 |
+
losses = losses.mean()
|
| 13 |
+
elif reduction == "sum":
|
| 14 |
+
losses = losses.sum()
|
| 15 |
+
return losses
|
| 16 |
+
|
| 17 |
+
def compute_direction(w, x, y, z):
|
| 18 |
+
# 计算各个声道的权重
|
| 19 |
+
phi = torch.atan2(y, x)
|
| 20 |
+
theta = torch.atan2(torch.sqrt(x**2 + y**2), z)
|
| 21 |
+
return phi.unsqueeze(1), theta.unsqueeze(1)
|
| 22 |
+
|
| 23 |
+
def get_window(win_type: str, win_length: int):
|
| 24 |
+
"""Return a window function.
|
| 25 |
+
|
| 26 |
+
Args:
|
| 27 |
+
win_type (str): Window type. Can either be one of the window function provided in PyTorch
|
| 28 |
+
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
| 29 |
+
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html).
|
| 30 |
+
win_length (int): Window length
|
| 31 |
+
|
| 32 |
+
Returns:
|
| 33 |
+
win: The window as a 1D torch tensor
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
try:
|
| 37 |
+
win = getattr(torch, win_type)(win_length)
|
| 38 |
+
except:
|
| 39 |
+
win = torch.from_numpy(scipy.signal.windows.get_window(win_type, win_length))
|
| 40 |
+
|
| 41 |
+
return win
|
| 42 |
+
|
| 43 |
+
class SumAndDifference(torch.nn.Module):
|
| 44 |
+
"""Sum and difference signal extraction module."""
|
| 45 |
+
|
| 46 |
+
def __init__(self):
|
| 47 |
+
"""Initialize sum and difference extraction module."""
|
| 48 |
+
super(SumAndDifference, self).__init__()
|
| 49 |
+
|
| 50 |
+
def forward(self, x):
|
| 51 |
+
"""Calculate forward propagation.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
x (Tensor): Predicted signal (B, #channels, #samples).
|
| 55 |
+
Returns:
|
| 56 |
+
Tensor: Sum signal.
|
| 57 |
+
Tensor: Difference signal.
|
| 58 |
+
"""
|
| 59 |
+
if not (x.size(1) == 2): # inputs must be stereo
|
| 60 |
+
raise ValueError(f"Input must be stereo: {x.size(1)} channel(s).")
|
| 61 |
+
|
| 62 |
+
sum_sig = self.sum(x).unsqueeze(1)
|
| 63 |
+
diff_sig = self.diff(x).unsqueeze(1)
|
| 64 |
+
|
| 65 |
+
return sum_sig, diff_sig
|
| 66 |
+
|
| 67 |
+
@staticmethod
|
| 68 |
+
def sum(x):
|
| 69 |
+
return x[:, 0, :] + x[:, 1, :]
|
| 70 |
+
|
| 71 |
+
@staticmethod
|
| 72 |
+
def diff(x):
|
| 73 |
+
return x[:, 0, :] - x[:, 1, :]
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class FIRFilter(torch.nn.Module):
|
| 77 |
+
"""FIR pre-emphasis filtering module.
|
| 78 |
+
|
| 79 |
+
Args:
|
| 80 |
+
filter_type (str): Shape of the desired FIR filter ("hp", "fd", "aw"). Default: "hp"
|
| 81 |
+
coef (float): Coefficient value for the filter tap (only applicable for "hp" and "fd"). Default: 0.85
|
| 82 |
+
ntaps (int): Number of FIR filter taps for constructing A-weighting filters. Default: 101
|
| 83 |
+
plot (bool): Plot the magnitude respond of the filter. Default: False
|
| 84 |
+
|
| 85 |
+
Based upon the perceptual loss pre-empahsis filters proposed by
|
| 86 |
+
[Wright & Välimäki, 2019](https://arxiv.org/abs/1911.08922).
|
| 87 |
+
|
| 88 |
+
A-weighting filter - "aw"
|
| 89 |
+
First-order highpass - "hp"
|
| 90 |
+
Folded differentiator - "fd"
|
| 91 |
+
|
| 92 |
+
Note that the default coefficeint value of 0.85 is optimized for
|
| 93 |
+
a sampling rate of 44.1 kHz, considering adjusting this value at differnt sampling rates.
|
| 94 |
+
"""
|
| 95 |
+
|
| 96 |
+
def __init__(self, filter_type="hp", coef=0.85, fs=44100, ntaps=101, plot=False):
|
| 97 |
+
"""Initilize FIR pre-emphasis filtering module."""
|
| 98 |
+
super(FIRFilter, self).__init__()
|
| 99 |
+
self.filter_type = filter_type
|
| 100 |
+
self.coef = coef
|
| 101 |
+
self.fs = fs
|
| 102 |
+
self.ntaps = ntaps
|
| 103 |
+
self.plot = plot
|
| 104 |
+
|
| 105 |
+
import scipy.signal
|
| 106 |
+
|
| 107 |
+
if ntaps % 2 == 0:
|
| 108 |
+
raise ValueError(f"ntaps must be odd (ntaps={ntaps}).")
|
| 109 |
+
|
| 110 |
+
if filter_type == "hp":
|
| 111 |
+
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1)
|
| 112 |
+
self.fir.weight.requires_grad = False
|
| 113 |
+
self.fir.weight.data = torch.tensor([1, -coef, 0]).view(1, 1, -1)
|
| 114 |
+
elif filter_type == "fd":
|
| 115 |
+
self.fir = torch.nn.Conv1d(1, 1, kernel_size=3, bias=False, padding=1)
|
| 116 |
+
self.fir.weight.requires_grad = False
|
| 117 |
+
self.fir.weight.data = torch.tensor([1, 0, -coef]).view(1, 1, -1)
|
| 118 |
+
elif filter_type == "aw":
|
| 119 |
+
# Definition of analog A-weighting filter according to IEC/CD 1672.
|
| 120 |
+
f1 = 20.598997
|
| 121 |
+
f2 = 107.65265
|
| 122 |
+
f3 = 737.86223
|
| 123 |
+
f4 = 12194.217
|
| 124 |
+
A1000 = 1.9997
|
| 125 |
+
|
| 126 |
+
NUMs = [(2 * np.pi * f4) ** 2 * (10 ** (A1000 / 20)), 0, 0, 0, 0]
|
| 127 |
+
DENs = np.polymul(
|
| 128 |
+
[1, 4 * np.pi * f4, (2 * np.pi * f4) ** 2],
|
| 129 |
+
[1, 4 * np.pi * f1, (2 * np.pi * f1) ** 2],
|
| 130 |
+
)
|
| 131 |
+
DENs = np.polymul(
|
| 132 |
+
np.polymul(DENs, [1, 2 * np.pi * f3]), [1, 2 * np.pi * f2]
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# convert analog filter to digital filter
|
| 136 |
+
b, a = scipy.signal.bilinear(NUMs, DENs, fs=fs)
|
| 137 |
+
|
| 138 |
+
# compute the digital filter frequency response
|
| 139 |
+
w_iir, h_iir = scipy.signal.freqz(b, a, worN=512, fs=fs)
|
| 140 |
+
|
| 141 |
+
# then we fit to 101 tap FIR filter with least squares
|
| 142 |
+
taps = scipy.signal.firls(ntaps, w_iir, abs(h_iir), fs=fs)
|
| 143 |
+
|
| 144 |
+
# now implement this digital FIR filter as a Conv1d layer
|
| 145 |
+
self.fir = torch.nn.Conv1d(
|
| 146 |
+
1, 1, kernel_size=ntaps, bias=False, padding=ntaps // 2
|
| 147 |
+
)
|
| 148 |
+
self.fir.weight.requires_grad = False
|
| 149 |
+
self.fir.weight.data = torch.tensor(taps.astype("float32")).view(1, 1, -1)
|
| 150 |
+
|
| 151 |
+
if plot:
|
| 152 |
+
from .plotting import compare_filters
|
| 153 |
+
compare_filters(b, a, taps, fs=fs)
|
| 154 |
+
|
| 155 |
+
def forward(self, input, target):
|
| 156 |
+
"""Calculate forward propagation.
|
| 157 |
+
Args:
|
| 158 |
+
input (Tensor): Predicted signal (B, #channels, #samples).
|
| 159 |
+
target (Tensor): Groundtruth signal (B, #channels, #samples).
|
| 160 |
+
Returns:
|
| 161 |
+
Tensor: Filtered signal.
|
| 162 |
+
"""
|
| 163 |
+
input = torch.nn.functional.conv1d(
|
| 164 |
+
input, self.fir.weight.data, padding=self.ntaps // 2
|
| 165 |
+
)
|
| 166 |
+
target = torch.nn.functional.conv1d(
|
| 167 |
+
target, self.fir.weight.data, padding=self.ntaps // 2
|
| 168 |
+
)
|
| 169 |
+
return input, target
|
| 170 |
+
|
| 171 |
+
class SpectralConvergenceLoss(torch.nn.Module):
|
| 172 |
+
"""Spectral convergence loss module.
|
| 173 |
+
|
| 174 |
+
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719).
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
def __init__(self):
|
| 178 |
+
super(SpectralConvergenceLoss, self).__init__()
|
| 179 |
+
|
| 180 |
+
def forward(self, x_mag, y_mag):
|
| 181 |
+
return (torch.norm(y_mag - x_mag, p="fro", dim=[-1, -2]) / torch.norm(y_mag, p="fro", dim=[-1, -2])).mean()
|
| 182 |
+
|
| 183 |
+
class STFTMagnitudeLoss(torch.nn.Module):
|
| 184 |
+
"""STFT magnitude loss module.
|
| 185 |
+
|
| 186 |
+
See [Arik et al., 2018](https://arxiv.org/abs/1808.06719)
|
| 187 |
+
and [Engel et al., 2020](https://arxiv.org/abs/2001.04643v1)
|
| 188 |
+
|
| 189 |
+
Log-magnitudes are calculated with `log(log_fac*x + log_eps)`, where `log_fac` controls the
|
| 190 |
+
compression strength (larger value results in more compression), and `log_eps` can be used
|
| 191 |
+
to control the range of the compressed output values (e.g., `log_eps>=1` ensures positive
|
| 192 |
+
output values). The default values `log_fac=1` and `log_eps=0` correspond to plain log-compression.
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
log (bool, optional): Log-scale the STFT magnitudes,
|
| 196 |
+
or use linear scale. Default: True
|
| 197 |
+
log_eps (float, optional): Constant value added to the magnitudes before evaluating the logarithm.
|
| 198 |
+
Default: 0.0
|
| 199 |
+
log_fac (float, optional): Constant multiplication factor for the magnitudes before evaluating the logarithm.
|
| 200 |
+
Default: 1.0
|
| 201 |
+
distance (str, optional): Distance function ["L1", "L2"]. Default: "L1"
|
| 202 |
+
reduction (str, optional): Reduction of the loss elements. Default: "mean"
|
| 203 |
+
"""
|
| 204 |
+
|
| 205 |
+
def __init__(self, log=True, log_eps=0.0, log_fac=1.0, distance="L1", reduction="mean"):
|
| 206 |
+
super(STFTMagnitudeLoss, self).__init__()
|
| 207 |
+
|
| 208 |
+
self.log = log
|
| 209 |
+
self.log_eps = log_eps
|
| 210 |
+
self.log_fac = log_fac
|
| 211 |
+
|
| 212 |
+
if distance == "L1":
|
| 213 |
+
self.distance = torch.nn.L1Loss(reduction=reduction)
|
| 214 |
+
elif distance == "L2":
|
| 215 |
+
self.distance = torch.nn.MSELoss(reduction=reduction)
|
| 216 |
+
else:
|
| 217 |
+
raise ValueError(f"Invalid distance: '{distance}'.")
|
| 218 |
+
|
| 219 |
+
def forward(self, x_mag, y_mag):
|
| 220 |
+
if self.log:
|
| 221 |
+
x_mag = torch.log(self.log_fac * x_mag + self.log_eps)
|
| 222 |
+
y_mag = torch.log(self.log_fac * y_mag + self.log_eps)
|
| 223 |
+
return self.distance(x_mag, y_mag)
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
class STFTLoss(torch.nn.Module):
|
| 227 |
+
"""STFT loss module.
|
| 228 |
+
|
| 229 |
+
See [Yamamoto et al. 2019](https://arxiv.org/abs/1904.04472).
|
| 230 |
+
|
| 231 |
+
Args:
|
| 232 |
+
fft_size (int, optional): FFT size in samples. Default: 1024
|
| 233 |
+
hop_size (int, optional): Hop size of the FFT in samples. Default: 256
|
| 234 |
+
win_length (int, optional): Length of the FFT analysis window. Default: 1024
|
| 235 |
+
window (str, optional): Window to apply before FFT, can either be one of the window function provided in PyTorch
|
| 236 |
+
['hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
| 237 |
+
or any of the windows provided by [SciPy](https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.windows.get_window.html).
|
| 238 |
+
Default: 'hann_window'
|
| 239 |
+
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0
|
| 240 |
+
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0
|
| 241 |
+
w_lin_mag_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0
|
| 242 |
+
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0
|
| 243 |
+
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None
|
| 244 |
+
scale (str, optional): Optional frequency scaling method, options include:
|
| 245 |
+
['mel', 'chroma']
|
| 246 |
+
Default: None
|
| 247 |
+
n_bins (int, optional): Number of scaling frequency bins. Default: None.
|
| 248 |
+
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False
|
| 249 |
+
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False
|
| 250 |
+
eps (float, optional): Small epsilon value for stablity. Default: 1e-8
|
| 251 |
+
output (str, optional): Format of the loss returned.
|
| 252 |
+
'loss' : Return only the raw, aggregate loss term.
|
| 253 |
+
'full' : Return the raw loss, plus intermediate loss terms.
|
| 254 |
+
Default: 'loss'
|
| 255 |
+
reduction (str, optional): Specifies the reduction to apply to the output:
|
| 256 |
+
'none': no reduction will be applied,
|
| 257 |
+
'mean': the sum of the output will be divided by the number of elements in the output,
|
| 258 |
+
'sum': the output will be summed.
|
| 259 |
+
Default: 'mean'
|
| 260 |
+
mag_distance (str, optional): Distance function ["L1", "L2"] for the magnitude loss terms.
|
| 261 |
+
device (str, optional): Place the filterbanks on specified device. Default: None
|
| 262 |
+
|
| 263 |
+
Returns:
|
| 264 |
+
loss:
|
| 265 |
+
Aggreate loss term. Only returned if output='loss'. By default.
|
| 266 |
+
loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss:
|
| 267 |
+
Aggregate and intermediate loss terms. Only returned if output='full'.
|
| 268 |
+
"""
|
| 269 |
+
|
| 270 |
+
def __init__(
|
| 271 |
+
self,
|
| 272 |
+
fft_size: int = 1024,
|
| 273 |
+
hop_size: int = 256,
|
| 274 |
+
win_length: int = 1024,
|
| 275 |
+
window: str = "hann_window",
|
| 276 |
+
w_sc: float = 1.0,
|
| 277 |
+
w_log_mag: float = 1.0,
|
| 278 |
+
w_lin_mag: float = 0.0,
|
| 279 |
+
w_phs: float = 0.0,
|
| 280 |
+
sample_rate: float = None,
|
| 281 |
+
scale: str = None,
|
| 282 |
+
n_bins: int = None,
|
| 283 |
+
perceptual_weighting: bool = False,
|
| 284 |
+
scale_invariance: bool = False,
|
| 285 |
+
eps: float = 1e-8,
|
| 286 |
+
output: str = "loss",
|
| 287 |
+
reduction: str = "mean",
|
| 288 |
+
mag_distance: str = "L1",
|
| 289 |
+
device: Any = None,
|
| 290 |
+
**kwargs
|
| 291 |
+
):
|
| 292 |
+
super().__init__()
|
| 293 |
+
self.fft_size = fft_size
|
| 294 |
+
self.hop_size = hop_size
|
| 295 |
+
self.win_length = win_length
|
| 296 |
+
self.window = get_window(window, win_length)
|
| 297 |
+
self.w_sc = w_sc
|
| 298 |
+
self.w_log_mag = w_log_mag
|
| 299 |
+
self.w_lin_mag = w_lin_mag
|
| 300 |
+
self.w_phs = w_phs
|
| 301 |
+
self.sample_rate = sample_rate
|
| 302 |
+
self.scale = scale
|
| 303 |
+
self.n_bins = n_bins
|
| 304 |
+
self.perceptual_weighting = perceptual_weighting
|
| 305 |
+
self.scale_invariance = scale_invariance
|
| 306 |
+
self.eps = eps
|
| 307 |
+
self.output = output
|
| 308 |
+
self.reduction = reduction
|
| 309 |
+
self.mag_distance = mag_distance
|
| 310 |
+
self.device = device
|
| 311 |
+
|
| 312 |
+
self.phs_used = bool(self.w_phs)
|
| 313 |
+
|
| 314 |
+
self.spectralconv = SpectralConvergenceLoss()
|
| 315 |
+
self.logstft = STFTMagnitudeLoss(
|
| 316 |
+
log=True,
|
| 317 |
+
reduction=reduction,
|
| 318 |
+
distance=mag_distance,
|
| 319 |
+
**kwargs
|
| 320 |
+
)
|
| 321 |
+
self.linstft = STFTMagnitudeLoss(
|
| 322 |
+
log=False,
|
| 323 |
+
reduction=reduction,
|
| 324 |
+
distance=mag_distance,
|
| 325 |
+
**kwargs
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
# setup mel filterbank
|
| 329 |
+
if scale is not None:
|
| 330 |
+
try:
|
| 331 |
+
import librosa.filters
|
| 332 |
+
except Exception as e:
|
| 333 |
+
print(e)
|
| 334 |
+
print("Try `pip install auraloss[all]`.")
|
| 335 |
+
|
| 336 |
+
if self.scale == "mel":
|
| 337 |
+
assert sample_rate != None # Must set sample rate to use mel scale
|
| 338 |
+
assert n_bins <= fft_size # Must be more FFT bins than Mel bins
|
| 339 |
+
fb = librosa.filters.mel(sr=sample_rate, n_fft=fft_size, n_mels=n_bins)
|
| 340 |
+
fb = torch.tensor(fb).unsqueeze(0)
|
| 341 |
+
|
| 342 |
+
elif self.scale == "chroma":
|
| 343 |
+
assert sample_rate != None # Must set sample rate to use chroma scale
|
| 344 |
+
assert n_bins <= fft_size # Must be more FFT bins than chroma bins
|
| 345 |
+
fb = librosa.filters.chroma(
|
| 346 |
+
sr=sample_rate, n_fft=fft_size, n_chroma=n_bins
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
else:
|
| 350 |
+
raise ValueError(
|
| 351 |
+
f"Invalid scale: {self.scale}. Must be 'mel' or 'chroma'."
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
self.register_buffer("fb", fb)
|
| 355 |
+
|
| 356 |
+
if scale is not None and device is not None:
|
| 357 |
+
self.fb = self.fb.to(self.device) # move filterbank to device
|
| 358 |
+
|
| 359 |
+
if self.perceptual_weighting:
|
| 360 |
+
if sample_rate is None:
|
| 361 |
+
raise ValueError(
|
| 362 |
+
f"`sample_rate` must be supplied when `perceptual_weighting = True`."
|
| 363 |
+
)
|
| 364 |
+
self.prefilter = FIRFilter(filter_type="aw", fs=sample_rate)
|
| 365 |
+
|
| 366 |
+
def stft(self, x):
|
| 367 |
+
"""Perform STFT.
|
| 368 |
+
Args:
|
| 369 |
+
x (Tensor): Input signal tensor (B, T).
|
| 370 |
+
|
| 371 |
+
Returns:
|
| 372 |
+
Tensor: x_mag, x_phs
|
| 373 |
+
Magnitude and phase spectra (B, fft_size // 2 + 1, frames).
|
| 374 |
+
"""
|
| 375 |
+
x_stft = torch.stft(
|
| 376 |
+
x,
|
| 377 |
+
self.fft_size,
|
| 378 |
+
self.hop_size,
|
| 379 |
+
self.win_length,
|
| 380 |
+
self.window,
|
| 381 |
+
return_complex=True,
|
| 382 |
+
)
|
| 383 |
+
x_mag = torch.sqrt(
|
| 384 |
+
torch.clamp((x_stft.real**2) + (x_stft.imag**2), min=self.eps)
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
# torch.angle is expensive, so it is only evaluated if the values are used in the loss
|
| 388 |
+
if self.phs_used:
|
| 389 |
+
x_phs = torch.angle(x_stft)
|
| 390 |
+
else:
|
| 391 |
+
x_phs = None
|
| 392 |
+
|
| 393 |
+
return x_mag, x_phs
|
| 394 |
+
|
| 395 |
+
def forward(self, input: torch.Tensor, target: torch.Tensor):
|
| 396 |
+
bs, chs, seq_len = input.size()
|
| 397 |
+
|
| 398 |
+
if self.perceptual_weighting: # apply optional A-weighting via FIR filter
|
| 399 |
+
# since FIRFilter only support mono audio we will move channels to batch dim
|
| 400 |
+
input = input.view(bs * chs, 1, -1)
|
| 401 |
+
target = target.view(bs * chs, 1, -1)
|
| 402 |
+
|
| 403 |
+
# now apply the filter to both
|
| 404 |
+
self.prefilter.to(input.device)
|
| 405 |
+
input, target = self.prefilter(input, target)
|
| 406 |
+
|
| 407 |
+
# now move the channels back
|
| 408 |
+
input = input.view(bs, chs, -1)
|
| 409 |
+
target = target.view(bs, chs, -1)
|
| 410 |
+
|
| 411 |
+
# compute the magnitude and phase spectra of input and target
|
| 412 |
+
self.window = self.window.to(input.device)
|
| 413 |
+
|
| 414 |
+
x_mag, x_phs = self.stft(input.view(-1, input.size(-1)))
|
| 415 |
+
y_mag, y_phs = self.stft(target.view(-1, target.size(-1)))
|
| 416 |
+
|
| 417 |
+
# apply relevant transforms
|
| 418 |
+
if self.scale is not None:
|
| 419 |
+
self.fb = self.fb.to(input.device)
|
| 420 |
+
x_mag = torch.matmul(self.fb, x_mag)
|
| 421 |
+
y_mag = torch.matmul(self.fb, y_mag)
|
| 422 |
+
|
| 423 |
+
# normalize scales
|
| 424 |
+
if self.scale_invariance:
|
| 425 |
+
alpha = (x_mag * y_mag).sum([-2, -1]) / ((y_mag**2).sum([-2, -1]))
|
| 426 |
+
y_mag = y_mag * alpha.unsqueeze(-1)
|
| 427 |
+
|
| 428 |
+
# compute loss terms
|
| 429 |
+
sc_mag_loss = self.spectralconv(x_mag, y_mag) if self.w_sc else 0.0
|
| 430 |
+
log_mag_loss = self.logstft(x_mag, y_mag) if self.w_log_mag else 0.0
|
| 431 |
+
lin_mag_loss = self.linstft(x_mag, y_mag) if self.w_lin_mag else 0.0
|
| 432 |
+
phs_loss = torch.nn.functional.mse_loss(x_phs, y_phs) if self.phs_used else 0.0
|
| 433 |
+
|
| 434 |
+
# combine loss terms
|
| 435 |
+
loss = (
|
| 436 |
+
(self.w_sc * sc_mag_loss)
|
| 437 |
+
+ (self.w_log_mag * log_mag_loss)
|
| 438 |
+
+ (self.w_lin_mag * lin_mag_loss)
|
| 439 |
+
+ (self.w_phs * phs_loss)
|
| 440 |
+
)
|
| 441 |
+
|
| 442 |
+
loss = apply_reduction(loss, reduction=self.reduction)
|
| 443 |
+
|
| 444 |
+
if self.output == "loss":
|
| 445 |
+
return loss
|
| 446 |
+
elif self.output == "full":
|
| 447 |
+
return loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss
|
| 448 |
+
|
| 449 |
+
class MultiResolutionSTFTLoss(torch.nn.Module):
|
| 450 |
+
"""Multi resolution STFT loss module.
|
| 451 |
+
|
| 452 |
+
See [Yamamoto et al., 2019](https://arxiv.org/abs/1910.11480)
|
| 453 |
+
|
| 454 |
+
Args:
|
| 455 |
+
fft_sizes (list): List of FFT sizes.
|
| 456 |
+
hop_sizes (list): List of hop sizes.
|
| 457 |
+
win_lengths (list): List of window lengths.
|
| 458 |
+
window (str, optional): Window to apply before FFT, options include:
|
| 459 |
+
'hann_window', 'bartlett_window', 'blackman_window', 'hamming_window', 'kaiser_window']
|
| 460 |
+
Default: 'hann_window'
|
| 461 |
+
w_sc (float, optional): Weight of the spectral convergence loss term. Default: 1.0
|
| 462 |
+
w_log_mag (float, optional): Weight of the log magnitude loss term. Default: 1.0
|
| 463 |
+
w_lin_mag (float, optional): Weight of the linear magnitude loss term. Default: 0.0
|
| 464 |
+
w_phs (float, optional): Weight of the spectral phase loss term. Default: 0.0
|
| 465 |
+
sample_rate (int, optional): Sample rate. Required when scale = 'mel'. Default: None
|
| 466 |
+
scale (str, optional): Optional frequency scaling method, options include:
|
| 467 |
+
['mel', 'chroma']
|
| 468 |
+
Default: None
|
| 469 |
+
n_bins (int, optional): Number of mel frequency bins. Required when scale = 'mel'. Default: None.
|
| 470 |
+
scale_invariance (bool, optional): Perform an optimal scaling of the target. Default: False
|
| 471 |
+
"""
|
| 472 |
+
|
| 473 |
+
def __init__(
|
| 474 |
+
self,
|
| 475 |
+
fft_sizes: List[int] = [1024, 2048, 512],
|
| 476 |
+
hop_sizes: List[int] = [120, 240, 50],
|
| 477 |
+
win_lengths: List[int] = [600, 1200, 240],
|
| 478 |
+
window: str = "hann_window",
|
| 479 |
+
w_sc: float = 1.0,
|
| 480 |
+
w_log_mag: float = 1.0,
|
| 481 |
+
w_lin_mag: float = 0.0,
|
| 482 |
+
w_phs: float = 0.0,
|
| 483 |
+
sample_rate: float = None,
|
| 484 |
+
scale: str = None,
|
| 485 |
+
n_bins: int = None,
|
| 486 |
+
perceptual_weighting: bool = False,
|
| 487 |
+
scale_invariance: bool = False,
|
| 488 |
+
**kwargs,
|
| 489 |
+
):
|
| 490 |
+
super().__init__()
|
| 491 |
+
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths) # must define all
|
| 492 |
+
self.fft_sizes = fft_sizes
|
| 493 |
+
self.hop_sizes = hop_sizes
|
| 494 |
+
self.win_lengths = win_lengths
|
| 495 |
+
|
| 496 |
+
self.stft_losses = torch.nn.ModuleList()
|
| 497 |
+
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
|
| 498 |
+
self.stft_losses += [
|
| 499 |
+
STFTLoss(
|
| 500 |
+
fs,
|
| 501 |
+
ss,
|
| 502 |
+
wl,
|
| 503 |
+
window,
|
| 504 |
+
w_sc,
|
| 505 |
+
w_log_mag,
|
| 506 |
+
w_lin_mag,
|
| 507 |
+
w_phs,
|
| 508 |
+
sample_rate,
|
| 509 |
+
scale,
|
| 510 |
+
n_bins,
|
| 511 |
+
perceptual_weighting,
|
| 512 |
+
scale_invariance,
|
| 513 |
+
**kwargs,
|
| 514 |
+
)
|
| 515 |
+
]
|
| 516 |
+
|
| 517 |
+
def forward(self, x, y):
|
| 518 |
+
mrstft_loss = 0.0
|
| 519 |
+
sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss = [], [], [], []
|
| 520 |
+
# import ipdb
|
| 521 |
+
# ipdb.set_trace()
|
| 522 |
+
for f in self.stft_losses:
|
| 523 |
+
if f.output == "full": # extract just first term
|
| 524 |
+
tmp_loss = f(x, y)
|
| 525 |
+
mrstft_loss += tmp_loss[0]
|
| 526 |
+
sc_mag_loss.append(tmp_loss[1])
|
| 527 |
+
log_mag_loss.append(tmp_loss[2])
|
| 528 |
+
lin_mag_loss.append(tmp_loss[3])
|
| 529 |
+
phs_loss.append(tmp_loss[4])
|
| 530 |
+
else:
|
| 531 |
+
mrstft_loss += f(x, y)
|
| 532 |
+
|
| 533 |
+
mrstft_loss /= len(self.stft_losses)
|
| 534 |
+
|
| 535 |
+
if f.output == "loss":
|
| 536 |
+
return mrstft_loss
|
| 537 |
+
else:
|
| 538 |
+
return mrstft_loss, sc_mag_loss, log_mag_loss, lin_mag_loss, phs_loss
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
class SumAndDifferenceSTFTLoss(torch.nn.Module):
|
| 542 |
+
"""Sum and difference sttereo STFT loss module.
|
| 543 |
+
|
| 544 |
+
See [Steinmetz et al., 2020](https://arxiv.org/abs/2010.10291)
|
| 545 |
+
|
| 546 |
+
Args:
|
| 547 |
+
fft_sizes (List[int]): List of FFT sizes.
|
| 548 |
+
hop_sizes (List[int]): List of hop sizes.
|
| 549 |
+
win_lengths (List[int]): List of window lengths.
|
| 550 |
+
window (str, optional): Window function type.
|
| 551 |
+
w_sum (float, optional): Weight of the sum loss component. Default: 1.0
|
| 552 |
+
w_diff (float, optional): Weight of the difference loss component. Default: 1.0
|
| 553 |
+
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False
|
| 554 |
+
mel_stft (bool, optional): Use Multi-resoltuion mel spectrograms. Default: False
|
| 555 |
+
n_mel_bins (int, optional): Number of mel bins to use when mel_stft = True. Default: 128
|
| 556 |
+
sample_rate (float, optional): Audio sample rate. Default: None
|
| 557 |
+
output (str, optional): Format of the loss returned.
|
| 558 |
+
'loss' : Return only the raw, aggregate loss term.
|
| 559 |
+
'full' : Return the raw loss, plus intermediate loss terms.
|
| 560 |
+
Default: 'loss'
|
| 561 |
+
"""
|
| 562 |
+
|
| 563 |
+
def __init__(
|
| 564 |
+
self,
|
| 565 |
+
fft_sizes: List[int],
|
| 566 |
+
hop_sizes: List[int],
|
| 567 |
+
win_lengths: List[int],
|
| 568 |
+
window: str = "hann_window",
|
| 569 |
+
w_sum: float = 1.0,
|
| 570 |
+
w_diff: float = 1.0,
|
| 571 |
+
output: str = "loss",
|
| 572 |
+
**kwargs,
|
| 573 |
+
):
|
| 574 |
+
super().__init__()
|
| 575 |
+
self.sd = SumAndDifference()
|
| 576 |
+
self.w_sum = w_sum
|
| 577 |
+
self.w_diff = w_diff
|
| 578 |
+
self.output = output
|
| 579 |
+
self.mrstft = MultiResolutionSTFTLoss(
|
| 580 |
+
fft_sizes,
|
| 581 |
+
hop_sizes,
|
| 582 |
+
win_lengths,
|
| 583 |
+
window,
|
| 584 |
+
**kwargs,
|
| 585 |
+
)
|
| 586 |
+
|
| 587 |
+
def forward(self, input: torch.Tensor, target: torch.Tensor):
|
| 588 |
+
"""This loss function assumes batched input of stereo audio in the time domain.
|
| 589 |
+
|
| 590 |
+
Args:
|
| 591 |
+
input (torch.Tensor): Input tensor with shape (batch size, 2, seq_len).
|
| 592 |
+
target (torch.Tensor): Target tensor with shape (batch size, 2, seq_len).
|
| 593 |
+
|
| 594 |
+
Returns:
|
| 595 |
+
loss (torch.Tensor): Aggreate loss term. Only returned if output='loss'.
|
| 596 |
+
loss (torch.Tensor), sum_loss (torch.Tensor), diff_loss (torch.Tensor):
|
| 597 |
+
Aggregate and intermediate loss terms. Only returned if output='full'.
|
| 598 |
+
"""
|
| 599 |
+
assert input.shape == target.shape # must have same shape
|
| 600 |
+
bs, chs, seq_len = input.size()
|
| 601 |
+
|
| 602 |
+
# compute sum and difference signals for both
|
| 603 |
+
input_sum, input_diff = self.sd(input)
|
| 604 |
+
target_sum, target_diff = self.sd(target)
|
| 605 |
+
|
| 606 |
+
# compute error in STFT domain
|
| 607 |
+
sum_loss = self.mrstft(input_sum, target_sum)
|
| 608 |
+
diff_loss = self.mrstft(input_diff, target_diff)
|
| 609 |
+
loss = ((self.w_sum * sum_loss) + (self.w_diff * diff_loss)) / 2
|
| 610 |
+
|
| 611 |
+
if self.output == "loss":
|
| 612 |
+
return loss
|
| 613 |
+
elif self.output == "full":
|
| 614 |
+
return loss, sum_loss, diff_loss
|
| 615 |
+
|
| 616 |
+
class SpatialSTFTLoss(torch.nn.Module):
|
| 617 |
+
"""Sum and difference sttereo STFT loss module.
|
| 618 |
+
|
| 619 |
+
See [Steinmetz et al., 2020](https://arxiv.org/abs/2010.10291)
|
| 620 |
+
|
| 621 |
+
Args:
|
| 622 |
+
fft_sizes (List[int]): List of FFT sizes.
|
| 623 |
+
hop_sizes (List[int]): List of hop sizes.
|
| 624 |
+
win_lengths (List[int]): List of window lengths.
|
| 625 |
+
window (str, optional): Window function type.
|
| 626 |
+
w_sum (float, optional): Weight of the sum loss component. Default: 1.0
|
| 627 |
+
w_diff (float, optional): Weight of the difference loss component. Default: 1.0
|
| 628 |
+
perceptual_weighting (bool, optional): Apply perceptual A-weighting (Sample rate must be supplied). Default: False
|
| 629 |
+
mel_stft (bool, optional): Use Multi-resoltuion mel spectrograms. Default: False
|
| 630 |
+
n_mel_bins (int, optional): Number of mel bins to use when mel_stft = True. Default: 128
|
| 631 |
+
sample_rate (float, optional): Audio sample rate. Default: None
|
| 632 |
+
output (str, optional): Format of the loss returned.
|
| 633 |
+
'loss' : Return only the raw, aggregate loss term.
|
| 634 |
+
'full' : Return the raw loss, plus intermediate loss terms.
|
| 635 |
+
Default: 'loss'
|
| 636 |
+
"""
|
| 637 |
+
|
| 638 |
+
def __init__(
|
| 639 |
+
self,
|
| 640 |
+
fft_sizes: List[int],
|
| 641 |
+
hop_sizes: List[int],
|
| 642 |
+
win_lengths: List[int],
|
| 643 |
+
window: str = "hann_window",
|
| 644 |
+
w_phi: float = 1.0,
|
| 645 |
+
w_theta: float = 1.0,
|
| 646 |
+
output: str = "loss",
|
| 647 |
+
**kwargs,
|
| 648 |
+
):
|
| 649 |
+
super().__init__()
|
| 650 |
+
self.w_phi = w_phi
|
| 651 |
+
self.w_theta = w_theta
|
| 652 |
+
self.output = output
|
| 653 |
+
self.mrstft = MultiResolutionSTFTLoss(
|
| 654 |
+
fft_sizes,
|
| 655 |
+
hop_sizes,
|
| 656 |
+
win_lengths,
|
| 657 |
+
window,
|
| 658 |
+
**kwargs,
|
| 659 |
+
)
|
| 660 |
+
|
| 661 |
+
|
| 662 |
+
def forward(self, input: torch.Tensor, target: torch.Tensor):
|
| 663 |
+
"""This loss function assumes batched input of stereo audio in the time domain.
|
| 664 |
+
|
| 665 |
+
Args:
|
| 666 |
+
input (torch.Tensor): Input tensor with shape (batch size, 2, seq_len).
|
| 667 |
+
target (torch.Tensor): Target tensor with shape (batch size, 2, seq_len).
|
| 668 |
+
|
| 669 |
+
Returns:
|
| 670 |
+
loss (torch.Tensor): Aggreate loss term. Only returned if output='loss'.
|
| 671 |
+
loss (torch.Tensor), sum_loss (torch.Tensor), diff_loss (torch.Tensor):
|
| 672 |
+
Aggregate and intermediate loss terms. Only returned if output='full'.
|
| 673 |
+
"""
|
| 674 |
+
assert input.shape == target.shape # must have same shape
|
| 675 |
+
bs, chs, seq_len = input.size()
|
| 676 |
+
|
| 677 |
+
w_o, x_o, y_o, z_o = input[:, 0], input[:, 1], input[:, 2], input[:, 3]
|
| 678 |
+
w_r, x_r, y_r, z_r = target[:, 0], target[:, 1], target[:, 2], target[:, 3]
|
| 679 |
+
|
| 680 |
+
phi_o, theta_o = compute_direction(w_o, x_o, y_o, z_o)
|
| 681 |
+
phi_r, theta_r = compute_direction(w_r, x_r, y_r, z_r)
|
| 682 |
+
|
| 683 |
+
# compute error in STFT domain
|
| 684 |
+
phi_loss = self.mrstft(phi_o, phi_r)
|
| 685 |
+
theta_loss = self.mrstft(theta_o, theta_r)
|
| 686 |
+
loss = ((self.w_phi * phi_loss) + (self.w_theta * theta_loss)) / 2
|
| 687 |
+
|
| 688 |
+
if self.output == "loss":
|
| 689 |
+
return loss
|
| 690 |
+
elif self.output == "full":
|
| 691 |
+
return loss, sum_loss, diff_loss
|
ThinkSound/training/losses/losses.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import typing as tp
|
| 2 |
+
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
from torch import nn
|
| 5 |
+
|
| 6 |
+
class LossModule(nn.Module):
|
| 7 |
+
def __init__(self, name: str, weight: float = 1.0):
|
| 8 |
+
super().__init__()
|
| 9 |
+
|
| 10 |
+
self.name = name
|
| 11 |
+
self.weight = weight
|
| 12 |
+
|
| 13 |
+
def forward(self, info, *args, **kwargs):
|
| 14 |
+
raise NotImplementedError
|
| 15 |
+
|
| 16 |
+
class ValueLoss(LossModule):
|
| 17 |
+
def __init__(self, key: str, name, weight: float = 1.0):
|
| 18 |
+
super().__init__(name=name, weight=weight)
|
| 19 |
+
|
| 20 |
+
self.key = key
|
| 21 |
+
|
| 22 |
+
def forward(self, info):
|
| 23 |
+
return self.weight * info[self.key]
|
| 24 |
+
|
| 25 |
+
class L1Loss(LossModule):
|
| 26 |
+
def __init__(self, key_a: str, key_b: str, weight: float = 1.0, mask_key: str = None, name: str = 'l1_loss'):
|
| 27 |
+
super().__init__(name=name, weight=weight)
|
| 28 |
+
|
| 29 |
+
self.key_a = key_a
|
| 30 |
+
self.key_b = key_b
|
| 31 |
+
|
| 32 |
+
self.mask_key = mask_key
|
| 33 |
+
|
| 34 |
+
def forward(self, info):
|
| 35 |
+
mse_loss = F.l1_loss(info[self.key_a], info[self.key_b], reduction='none')
|
| 36 |
+
|
| 37 |
+
if self.mask_key is not None and self.mask_key in info:
|
| 38 |
+
mse_loss = mse_loss[info[self.mask_key]]
|
| 39 |
+
|
| 40 |
+
mse_loss = mse_loss.mean()
|
| 41 |
+
|
| 42 |
+
return self.weight * mse_loss
|
| 43 |
+
|
| 44 |
+
class MSELoss(LossModule):
|
| 45 |
+
def __init__(self, key_a: str, key_b: str, weight: float = 1.0, mask_key: str = None, name: str = 'mse_loss'):
|
| 46 |
+
super().__init__(name=name, weight=weight)
|
| 47 |
+
|
| 48 |
+
self.key_a = key_a
|
| 49 |
+
self.key_b = key_b
|
| 50 |
+
|
| 51 |
+
self.mask_key = mask_key
|
| 52 |
+
|
| 53 |
+
def forward(self, info):
|
| 54 |
+
mse_loss = F.mse_loss(info[self.key_a], info[self.key_b], reduction='none')
|
| 55 |
+
if self.mask_key is not None and self.mask_key in info and info[self.mask_key] is not None:
|
| 56 |
+
mask = info[self.mask_key]
|
| 57 |
+
|
| 58 |
+
if mask.ndim == 2 and mse_loss.ndim == 3:
|
| 59 |
+
mask = mask.unsqueeze(1)
|
| 60 |
+
|
| 61 |
+
if mask.shape[1] != mse_loss.shape[1]:
|
| 62 |
+
mask = mask.repeat(1, mse_loss.shape[1], 1)
|
| 63 |
+
|
| 64 |
+
mse_loss = mse_loss[mask]
|
| 65 |
+
|
| 66 |
+
mse_loss = mse_loss.mean()
|
| 67 |
+
|
| 68 |
+
return self.weight * mse_loss
|
| 69 |
+
|
| 70 |
+
class AuralossLoss(LossModule):
|
| 71 |
+
def __init__(self, auraloss_module, input_key: str, target_key: str, name: str, weight: float = 1):
|
| 72 |
+
super().__init__(name, weight)
|
| 73 |
+
|
| 74 |
+
self.auraloss_module = auraloss_module
|
| 75 |
+
|
| 76 |
+
self.input_key = input_key
|
| 77 |
+
self.target_key = target_key
|
| 78 |
+
|
| 79 |
+
def forward(self, info):
|
| 80 |
+
loss = self.auraloss_module(info[self.input_key], info[self.target_key])
|
| 81 |
+
|
| 82 |
+
return self.weight * loss
|
| 83 |
+
|
| 84 |
+
class MultiLoss(nn.Module):
|
| 85 |
+
def __init__(self, losses: tp.List[LossModule]):
|
| 86 |
+
super().__init__()
|
| 87 |
+
|
| 88 |
+
self.losses = nn.ModuleList(losses)
|
| 89 |
+
|
| 90 |
+
def forward(self, info):
|
| 91 |
+
total_loss = 0
|
| 92 |
+
|
| 93 |
+
losses = {}
|
| 94 |
+
|
| 95 |
+
for loss_module in self.losses:
|
| 96 |
+
module_loss = loss_module(info)
|
| 97 |
+
total_loss += module_loss
|
| 98 |
+
losses[loss_module.name] = module_loss
|
| 99 |
+
|
| 100 |
+
return total_loss, losses
|
ThinkSound/training/utils.py
ADDED
|
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import os
|
| 3 |
+
from torch import nn, Tensor, einsum, IntTensor, FloatTensor, BoolTensor
|
| 4 |
+
import random
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def get_rank():
|
| 9 |
+
"""Get rank of current process."""
|
| 10 |
+
|
| 11 |
+
print(os.environ.keys())
|
| 12 |
+
|
| 13 |
+
if "SLURM_PROCID" in os.environ:
|
| 14 |
+
return int(os.environ["SLURM_PROCID"])
|
| 15 |
+
|
| 16 |
+
if not torch.distributed.is_available() or not torch.distributed.is_initialized():
|
| 17 |
+
return 0
|
| 18 |
+
|
| 19 |
+
return torch.distributed.get_rank()
|
| 20 |
+
|
| 21 |
+
class InverseLR(torch.optim.lr_scheduler._LRScheduler):
|
| 22 |
+
"""Implements an inverse decay learning rate schedule with an optional exponential
|
| 23 |
+
warmup. When last_epoch=-1, sets initial lr as lr.
|
| 24 |
+
inv_gamma is the number of steps/epochs required for the learning rate to decay to
|
| 25 |
+
(1 / 2)**power of its original value.
|
| 26 |
+
Args:
|
| 27 |
+
optimizer (Optimizer): Wrapped optimizer.
|
| 28 |
+
inv_gamma (float): Inverse multiplicative factor of learning rate decay. Default: 1.
|
| 29 |
+
power (float): Exponential factor of learning rate decay. Default: 1.
|
| 30 |
+
warmup (float): Exponential warmup factor (0 <= warmup < 1, 0 to disable)
|
| 31 |
+
Default: 0.
|
| 32 |
+
final_lr (float): The final learning rate. Default: 0.
|
| 33 |
+
last_epoch (int): The index of last epoch. Default: -1.
|
| 34 |
+
verbose (bool): If ``True``, prints a message to stdout for
|
| 35 |
+
each update. Default: ``False``.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
def __init__(self, optimizer, inv_gamma=1., power=1., warmup=0., final_lr=0.,
|
| 39 |
+
last_epoch=-1, verbose=False):
|
| 40 |
+
self.inv_gamma = inv_gamma
|
| 41 |
+
self.power = power
|
| 42 |
+
if not 0. <= warmup < 1:
|
| 43 |
+
raise ValueError('Invalid value for warmup')
|
| 44 |
+
self.warmup = warmup
|
| 45 |
+
self.final_lr = final_lr
|
| 46 |
+
super().__init__(optimizer, last_epoch, verbose)
|
| 47 |
+
|
| 48 |
+
def get_lr(self):
|
| 49 |
+
if not self._get_lr_called_within_step:
|
| 50 |
+
import warnings
|
| 51 |
+
warnings.warn("To get the last learning rate computed by the scheduler, "
|
| 52 |
+
"please use `get_last_lr()`.")
|
| 53 |
+
|
| 54 |
+
return self._get_closed_form_lr()
|
| 55 |
+
|
| 56 |
+
def _get_closed_form_lr(self):
|
| 57 |
+
warmup = 1 - self.warmup ** (self.last_epoch + 1)
|
| 58 |
+
lr_mult = (1 + self.last_epoch / self.inv_gamma) ** -self.power
|
| 59 |
+
return [warmup * max(self.final_lr, base_lr * lr_mult)
|
| 60 |
+
for base_lr in self.base_lrs]
|
| 61 |
+
|
| 62 |
+
def copy_state_dict(model, state_dict):
|
| 63 |
+
"""Load state_dict to model, but only for keys that match exactly.
|
| 64 |
+
|
| 65 |
+
Args:
|
| 66 |
+
model (nn.Module): model to load state_dict.
|
| 67 |
+
state_dict (OrderedDict): state_dict to load.
|
| 68 |
+
"""
|
| 69 |
+
model_state_dict = model.state_dict()
|
| 70 |
+
|
| 71 |
+
# 创建一个列表存储不匹配的参数
|
| 72 |
+
missing_keys = []
|
| 73 |
+
unexpected_keys = []
|
| 74 |
+
# 手动加载并检查不匹配的参数
|
| 75 |
+
for key in state_dict:
|
| 76 |
+
if key not in model_state_dict:
|
| 77 |
+
unexpected_keys.append(key)
|
| 78 |
+
elif state_dict[key].shape != model_state_dict[key].shape:
|
| 79 |
+
unexpected_keys.append(key)
|
| 80 |
+
|
| 81 |
+
for key in model_state_dict:
|
| 82 |
+
if key not in state_dict:
|
| 83 |
+
missing_keys.append(key)
|
| 84 |
+
|
| 85 |
+
# 打印不匹配的参数
|
| 86 |
+
print("Missing keys in state_dict:", missing_keys)
|
| 87 |
+
print("Unexpected keys in state_dict:", unexpected_keys)
|
| 88 |
+
for key in state_dict:
|
| 89 |
+
if key in model_state_dict and state_dict[key].shape == model_state_dict[key].shape:
|
| 90 |
+
if isinstance(state_dict[key], torch.nn.Parameter):
|
| 91 |
+
# backwards compatibility for serialized parameters
|
| 92 |
+
state_dict[key] = state_dict[key].data
|
| 93 |
+
model_state_dict[key] = state_dict[key]
|
| 94 |
+
|
| 95 |
+
model.load_state_dict(model_state_dict, strict=False)
|
| 96 |
+
|
| 97 |
+
def create_optimizer_from_config(optimizer_config, parameters):
|
| 98 |
+
"""Create optimizer from config.
|
| 99 |
+
|
| 100 |
+
Args:
|
| 101 |
+
parameters (iterable): parameters to optimize.
|
| 102 |
+
optimizer_config (dict): optimizer config.
|
| 103 |
+
|
| 104 |
+
Returns:
|
| 105 |
+
torch.optim.Optimizer: optimizer.
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
optimizer_type = optimizer_config["type"]
|
| 109 |
+
|
| 110 |
+
if optimizer_type == "FusedAdam":
|
| 111 |
+
from deepspeed.ops.adam import FusedAdam
|
| 112 |
+
optimizer = FusedAdam(parameters, **optimizer_config["config"])
|
| 113 |
+
else:
|
| 114 |
+
optimizer_fn = getattr(torch.optim, optimizer_type)
|
| 115 |
+
optimizer = optimizer_fn(parameters, **optimizer_config["config"])
|
| 116 |
+
return optimizer
|
| 117 |
+
|
| 118 |
+
def create_scheduler_from_config(scheduler_config, optimizer):
|
| 119 |
+
"""Create scheduler from config.
|
| 120 |
+
|
| 121 |
+
Args:
|
| 122 |
+
scheduler_config (dict): scheduler config.
|
| 123 |
+
optimizer (torch.optim.Optimizer): optimizer.
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
torch.optim.lr_scheduler._LRScheduler: scheduler.
|
| 127 |
+
"""
|
| 128 |
+
if scheduler_config["type"] == "InverseLR":
|
| 129 |
+
scheduler_fn = InverseLR
|
| 130 |
+
else:
|
| 131 |
+
scheduler_fn = getattr(torch.optim.lr_scheduler, scheduler_config["type"])
|
| 132 |
+
scheduler = scheduler_fn(optimizer, **scheduler_config["config"])
|
| 133 |
+
return scheduler
|
| 134 |
+
|
| 135 |
+
# mask construction helpers
|
| 136 |
+
|
| 137 |
+
def mask_from_start_end_indices(
|
| 138 |
+
seq_len: int,
|
| 139 |
+
start: Tensor,
|
| 140 |
+
end: Tensor
|
| 141 |
+
):
|
| 142 |
+
assert start.shape == end.shape
|
| 143 |
+
device = start.device
|
| 144 |
+
|
| 145 |
+
seq = torch.arange(seq_len, device = device, dtype = torch.long)
|
| 146 |
+
seq = seq.reshape(*((-1,) * start.ndim), seq_len)
|
| 147 |
+
seq = seq.expand(*start.shape, seq_len)
|
| 148 |
+
|
| 149 |
+
mask = seq >= start[..., None].long()
|
| 150 |
+
mask &= seq < end[..., None].long()
|
| 151 |
+
return mask
|
| 152 |
+
|
| 153 |
+
def mask_from_frac_lengths(
|
| 154 |
+
seq_len: int,
|
| 155 |
+
frac_lengths: Tensor
|
| 156 |
+
):
|
| 157 |
+
device = frac_lengths.device
|
| 158 |
+
|
| 159 |
+
lengths = (frac_lengths * seq_len).long()
|
| 160 |
+
max_start = seq_len - lengths
|
| 161 |
+
|
| 162 |
+
rand = torch.zeros_like(frac_lengths, device = device).float().uniform_(0, 1)
|
| 163 |
+
start = (max_start * rand).clamp(min = 0)
|
| 164 |
+
end = start + lengths
|
| 165 |
+
|
| 166 |
+
return mask_from_start_end_indices(seq_len, start, end)
|
| 167 |
+
|
| 168 |
+
def generate_mask(batch_size, seq_len, frac_lengths, min_span_len):
|
| 169 |
+
# 计算需要掩盖的起始数量
|
| 170 |
+
n_mask = (frac_lengths * seq_len // min_span_len).long() # 每个 span 为 10
|
| 171 |
+
# 初始化掩码张量,初始为全 0(未掩盖)
|
| 172 |
+
mask_tensor = torch.zeros((batch_size, seq_len), device=frac_lengths.device, dtype=torch.bool)
|
| 173 |
+
|
| 174 |
+
for b in range(batch_size):
|
| 175 |
+
# 随机挑选起始帧
|
| 176 |
+
start_frames = random.sample(range(0, seq_len - min_span_len + 1), n_mask[b]) # 0 到 seq_len-10 的范围
|
| 177 |
+
|
| 178 |
+
for start in start_frames:
|
| 179 |
+
# 将 span 为 10 的区域标记为 1(掩盖)
|
| 180 |
+
mask_tensor[b, start:start + 10] = 1.0
|
| 181 |
+
|
| 182 |
+
return mask_tensor
|
| 183 |
+
|
| 184 |
+
def generate_channel_mask(diffusion_input):
|
| 185 |
+
|
| 186 |
+
# 如果 r_drop 小于 threshold,则对每个样本选择一个随机声道进行完全 mask
|
| 187 |
+
batchsize, num_channels, dim = diffusion_input.shape
|
| 188 |
+
for i in range(batchsize):
|
| 189 |
+
channel_means = torch.mean(torch.abs(diffusion_input[i]), dim=1) # Mean of the absolute values for each channel
|
| 190 |
+
# Determine if any channel is 'small enough'
|
| 191 |
+
if torch.all(channel_means > 0.01):
|
| 192 |
+
# If all channels are not 'small enough', apply the mask
|
| 193 |
+
channel = torch.randint(num_channels, (1,)).item()
|
| 194 |
+
diffusion_input[i, channel, :] = 1e-8 # Mask the channel by setting its values
|
| 195 |
+
else:
|
| 196 |
+
# Optionally log that at least one channel is 'small enough' and no mask is applied
|
| 197 |
+
print(f"Sample {i}: At least one channel is 'small enough', skipping masking.")
|
| 198 |
+
|
| 199 |
+
return diffusion_input
|
| 200 |
+
|