Spaces:
Runtime error
Runtime error
| # Open Source Model Licensed under the Apache License Version 2.0 | |
| # and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited | |
| # ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import spaces | |
| import os | |
| os.environ['CUDA_HOME'] = '/usr/local/cuda-11*' | |
| import warnings | |
| import argparse | |
| import gradio as gr | |
| from glob import glob | |
| import shutil | |
| import torch | |
| import numpy as np | |
| from PIL import Image | |
| from einops import rearrange | |
| from huggingface_hub import snapshot_download | |
| from infer import seed_everything, save_gif | |
| from infer import Text2Image, Removebg, Image2Views, Views2Mesh, GifRenderer | |
| warnings.simplefilter('ignore', category=UserWarning) | |
| warnings.simplefilter('ignore', category=FutureWarning) | |
| warnings.simplefilter('ignore', category=DeprecationWarning) | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument("--use_lite", default=False, action="store_true") | |
| parser.add_argument("--mv23d_cfg_path", default="./svrm/configs/svrm.yaml", type=str) | |
| parser.add_argument("--mv23d_ckt_path", default="weights/svrm/svrm.safetensors", type=str) | |
| parser.add_argument("--text2image_path", default="weights/hunyuanDiT", type=str) | |
| parser.add_argument("--save_memory", default=False) # , action="store_true") | |
| parser.add_argument("--device", default="cuda:0", type=str) | |
| args = parser.parse_args() | |
| def find_cuda(): | |
| # Check if CUDA_HOME or CUDA_PATH environment variables are set | |
| cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
| if cuda_home and os.path.exists(cuda_home): | |
| return cuda_home | |
| # Search for the nvcc executable in the system's PATH | |
| nvcc_path = shutil.which('nvcc') | |
| if nvcc_path: | |
| # Remove the 'bin/nvcc' part to get the CUDA installation path | |
| cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
| return cuda_path | |
| return None | |
| cuda_path = find_cuda() | |
| if cuda_path: | |
| print(f"CUDA installation found at: {cuda_path}") | |
| else: | |
| print("CUDA installation not found") | |
| def download_models(): | |
| # Create weights directory if it doesn't exist | |
| os.makedirs("weights", exist_ok=True) | |
| os.makedirs("weights/hunyuanDiT", exist_ok=True) | |
| # Download Hunyuan3D-1 model | |
| try: | |
| snapshot_download( | |
| repo_id="tencent/Hunyuan3D-1", | |
| local_dir="./weights", | |
| resume_download=True | |
| ) | |
| print("Successfully downloaded Hunyuan3D-1 model") | |
| except Exception as e: | |
| print(f"Error downloading Hunyuan3D-1: {e}") | |
| # Download HunyuanDiT model | |
| try: | |
| snapshot_download( | |
| repo_id="Tencent-Hunyuan/HunyuanDiT-v1.1-Diffusers-Distilled", | |
| local_dir="./weights/hunyuanDiT", | |
| resume_download=True | |
| ) | |
| print("Successfully downloaded HunyuanDiT model") | |
| except Exception as e: | |
| print(f"Error downloading HunyuanDiT: {e}") | |
| # Download models before starting the app | |
| download_models() | |
| ################################################################ | |
| CONST_PORT = 8080 | |
| CONST_MAX_QUEUE = 1 | |
| CONST_SERVER = '0.0.0.0' | |
| CONST_HEADER = ''' | |
| <h2><a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'><b>Tencent Hunyuan3D-1.0: A Unified Framework for Text-to-3D and Image-to-3D Generation</b></a></h2> | |
| Techenical report: <a href='https://arxiv.org/pdf/2411.02293' target='_blank'>ArXiv</a>.Code: <a href='https://github.com/tencent/Hunyuan3D-1' target='_blank'>GitHub</a>. | |
| βοΈβοΈβοΈ**Important Notes:** | |
| - By default, our demo can export a .obj mesh with vertex colors or a .glb mesh. | |
| - If the result is unsatisfactory, please try a different seed value (Default: 0). | |
| ''' | |
| ################################################################ | |
| def get_example_img_list(): | |
| print('Loading example img list ...') | |
| return sorted(glob('./demos/example_*.png')) | |
| def get_example_txt_list(): | |
| print('Loading example txt list ...') | |
| txt_list = list() | |
| for line in open('./demos/example_list.txt'): | |
| txt_list.append(line.strip()) | |
| return txt_list | |
| example_is = get_example_img_list() | |
| example_ts = get_example_txt_list() | |
| ################################################################ | |
| worker_xbg = Removebg() | |
| print(f"loading {args.text2image_path}") | |
| worker_t2i = Text2Image( | |
| pretrain = args.text2image_path, | |
| device = args.device, | |
| save_memory = args.save_memory | |
| ) | |
| worker_i2v = Image2Views( | |
| use_lite = args.use_lite, | |
| device = args.device, | |
| save_memory = args.save_memory | |
| ) | |
| worker_v23 = Views2Mesh( | |
| args.mv23d_cfg_path, | |
| args.mv23d_ckt_path, | |
| use_lite = args.use_lite, | |
| device = args.device, | |
| save_memory = args.save_memory | |
| ) | |
| worker_gif = GifRenderer(args.device) | |
| def stage_0_t2i(text, image, seed, step): | |
| os.makedirs('./outputs/app_output', exist_ok=True) | |
| exists = set(int(_) for _ in os.listdir('./outputs/app_output') if not _.startswith(".")) | |
| if len(exists) == 30: shutil.rmtree(f"./outputs/app_output/0");cur_id = 0 | |
| else: cur_id = min(set(range(30)) - exists) | |
| if os.path.exists(f"./outputs/app_output/{(cur_id + 1) % 30}"): | |
| shutil.rmtree(f"./outputs/app_output/{(cur_id + 1) % 30}") | |
| save_folder = f'./outputs/app_output/{cur_id}' | |
| os.makedirs(save_folder, exist_ok=True) | |
| dst = os.path.join(save_folder, 'img.png') | |
| if not text: | |
| if image is None: | |
| return dst, save_folder | |
| raise gr.Error("Upload image or provide text ...") | |
| image.save(dst) | |
| return dst, save_folder | |
| image = worker_t2i(text, seed, step) | |
| image.save(dst) | |
| dst = worker_xbg(image, save_folder) | |
| return dst, save_folder | |
| def stage_1_xbg(image, save_folder): | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| dst = save_folder + '/img_nobg.png' | |
| rgba = worker_xbg(image) | |
| rgba.save(dst) | |
| return dst | |
| def stage_2_i2v(image, seed, step, save_folder): | |
| if isinstance(image, str): | |
| image = Image.open(image) | |
| gif_dst = save_folder + '/views.gif' | |
| res_img, pils = worker_i2v(image, seed, step) | |
| save_gif(pils, gif_dst) | |
| views_img, cond_img = res_img[0], res_img[1] | |
| img_array = np.asarray(views_img, dtype=np.uint8) | |
| show_img = rearrange(img_array, '(n h) (m w) c -> (n m) h w c', n=3, m=2) | |
| show_img = show_img[worker_i2v.order, ...] | |
| show_img = rearrange(show_img, '(n m) h w c -> (n h) (m w) c', n=2, m=3) | |
| show_img = Image.fromarray(show_img) | |
| return views_img, cond_img, show_img | |
| def stage_3_v23( | |
| views_pil, | |
| cond_pil, | |
| seed, | |
| save_folder, | |
| target_face_count = 30000, | |
| do_texture_mapping = True, | |
| do_render =True | |
| ): | |
| do_texture_mapping = do_texture_mapping or do_render | |
| obj_dst = save_folder + '/mesh_with_colors.obj' | |
| glb_dst = save_folder + '/mesh.glb' | |
| worker_v23( | |
| views_pil, | |
| cond_pil, | |
| seed = seed, | |
| save_folder = save_folder, | |
| target_face_count = target_face_count, | |
| do_texture_mapping = do_texture_mapping | |
| ) | |
| return obj_dst, glb_dst | |
| def stage_4_gif(obj_dst, save_folder, do_render_gif=True): | |
| if not do_render_gif: return None | |
| gif_dst = save_folder + '/output.gif' | |
| worker_gif( | |
| save_folder + '/mesh.obj', | |
| gif_dst_path = gif_dst | |
| ) | |
| return gif_dst | |
| #=============================================================== | |
| with gr.Blocks() as demo: | |
| gr.Markdown(CONST_HEADER) | |
| with gr.Row(variant="panel"): | |
| with gr.Column(scale=2): | |
| with gr.Tab("Text to 3D"): | |
| with gr.Column(): | |
| text = gr.TextArea('δΈεͺι»η½ηΈι΄ηηη«ε¨η½θ²θζ―δΈε± δΈεηοΌεη°εΊε‘ιι£ζ Όεε―η±ζ°ε΄γ', lines=1, max_lines=10, label='Input text') | |
| with gr.Row(): | |
| textgen_seed = gr.Number(value=0, label="T2I seed", precision=0) | |
| textgen_step = gr.Number(value=25, label="T2I step", precision=0) | |
| textgen_SEED = gr.Number(value=0, label="Gen seed", precision=0) | |
| textgen_STEP = gr.Number(value=50, label="Gen step", precision=0) | |
| textgen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0) | |
| with gr.Row(): | |
| # textgen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True) | |
| # textgen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True) | |
| textgen_submit = gr.Button("Generate", variant="primary") | |
| with gr.Row(): | |
| gr.Examples(examples=example_ts, inputs=[text], label="Txt examples", examples_per_page=10) | |
| with gr.Tab("Image to 3D"): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Input image", | |
| width=256, height=256, type="pil", | |
| image_mode="RGBA", sources="upload", | |
| interactive=True) | |
| with gr.Row(): | |
| imggen_SEED = gr.Number(value=0, label="Gen seed", precision=0) | |
| imggen_STEP = gr.Number(value=50, label="Gen step", precision=0) | |
| imggen_max_faces = gr.Number(value=90000, label="max number of faces", precision=0) | |
| with gr.Row(): | |
| # imggen_do_texture_mapping = gr.Checkbox(label="texture mapping", value=False, interactive=True) | |
| # imggen_do_render_gif = gr.Checkbox(label="Render gif", value=False, interactive=True) | |
| imggen_submit = gr.Button("Generate", variant="primary") | |
| with gr.Row(): | |
| gr.Examples(examples=example_is, inputs=[input_image], label="Img examples", examples_per_page=10) | |
| with gr.Column(scale=3): | |
| with gr.Row(): | |
| with gr.Column(scale=2): | |
| rem_bg_image = gr.Image(label="No backgraound image", type="pil", | |
| image_mode="RGBA", interactive=False) | |
| with gr.Column(scale=3): | |
| result_image = gr.Image(label="Multi views", type="pil", interactive=False) | |
| with gr.Row(): | |
| result_3dobj = gr.Model3D( | |
| clear_color=[0.0, 0.0, 0.0, 0.0], | |
| label="Output Obj", | |
| show_label=True, | |
| visible=True, | |
| camera_position=[90, 90, None], | |
| interactive=False | |
| ) | |
| result_3dglb = gr.Model3D( | |
| clear_color=[0.0, 0.0, 0.0, 0.0], | |
| label="Output Glb", | |
| show_label=True, | |
| visible=True, | |
| camera_position=[90, 90, None], | |
| interactive=False | |
| ) | |
| # result_gif = gr.Image(label="Rendered GIF", interactive=False) | |
| with gr.Row(): | |
| gr.Markdown(""" | |
| We recommend download and open Glb using 3D software, such as Blender, MeshLab, etc. | |
| Limited by gradio, Obj file here only be shown as vertex shading, but Glb can be texture shading. | |
| """) | |
| #=============================================================== | |
| textgen_do_texture_mapping = gr.State(False) | |
| textgen_do_render_gif = gr.State(False) | |
| imggen_do_texture_mapping = gr.State(False) | |
| imggen_do_render_gif = gr.State(False) | |
| none = gr.State(None) | |
| save_folder = gr.State() | |
| cond_image = gr.State() | |
| views_image = gr.State() | |
| text_image = gr.State() | |
| textgen_submit.click( | |
| fn=stage_0_t2i, inputs=[text, none, textgen_seed, textgen_step], | |
| outputs=[rem_bg_image, save_folder], | |
| ).success( | |
| fn=stage_2_i2v, inputs=[rem_bg_image, textgen_SEED, textgen_STEP, save_folder], | |
| outputs=[views_image, cond_image, result_image], | |
| ).success( | |
| fn=stage_3_v23, inputs=[views_image, cond_image, textgen_SEED, save_folder, textgen_max_faces, textgen_do_texture_mapping, textgen_do_render_gif], | |
| outputs=[result_3dobj, result_3dglb], | |
| ).success(lambda: print('Text_to_3D Done ...')) | |
| # .success( | |
| # fn=stage_4_gif, inputs=[result_3dglb, save_folder, textgen_do_render_gif], | |
| # outputs=[result_gif], | |
| # ).success(lambda: print('Text_to_3D Done ...')) | |
| imggen_submit.click( | |
| fn=stage_0_t2i, inputs=[none, input_image, textgen_seed, textgen_step], | |
| outputs=[text_image, save_folder], | |
| ).success( | |
| fn=stage_1_xbg, inputs=[text_image, save_folder], | |
| outputs=[rem_bg_image], | |
| ).success( | |
| fn=stage_2_i2v, inputs=[rem_bg_image, imggen_SEED, imggen_STEP, save_folder], | |
| outputs=[views_image, cond_image, result_image], | |
| ).success( | |
| fn=stage_3_v23, inputs=[views_image, cond_image, imggen_SEED, save_folder, imggen_max_faces, imggen_do_texture_mapping, imggen_do_render_gif], | |
| outputs=[result_3dobj, result_3dglb], | |
| ).success(lambda: print('Image_to_3D Done ...')) | |
| # success( | |
| # fn=stage_4_gif, inputs=[result_3dglb, save_folder, imggen_do_render_gif], | |
| # outputs=[result_gif], | |
| # ).success(lambda: print('Image_to_3D Done ...')) | |
| #=============================================================== | |
| demo.queue() | |
| demo.launch() | |