Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,79 +1,69 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
-
import spaces
|
| 5 |
|
| 6 |
-
|
| 7 |
-
description = """Yi-Coder-9B-Chat is a 9B parameter model fine-tuned for coding tasks. This demo showcases its ability to generate code based on your prompts. Yi-Coder is a series of open-source code language models that delivers state-of-the-art coding performance with fewer than 10 billion parameters. Excelling in long-context understanding with a maximum context length of 128K tokens. - Supporting 52 major programming languages:
|
| 8 |
-
```bash
|
| 9 |
-
'java', 'markdown', 'python', 'php', 'javascript', 'c++', 'c#', 'c', 'typescript', 'html', 'go', 'java_server_pages', 'dart', 'objective-c', 'kotlin', 'tex', 'swift', 'ruby', 'sql', 'rust', 'css', 'yaml', 'matlab', 'lua', 'json', 'shell', 'visual_basic', 'scala', 'rmarkdown', 'pascal', 'fortran', 'haskell', 'assembly', 'perl', 'julia', 'cmake', 'groovy', 'ocaml', 'powershell', 'elixir', 'clojure', 'makefile', 'coffeescript', 'erlang', 'lisp', 'toml', 'batchfile', 'cobol', 'dockerfile', 'r', 'prolog', 'verilog'
|
| 10 |
-
```
|
| 11 |
-
### Join us :
|
| 12 |
-
🌟TeamTonic🌟 is always making cool demos! Join our active builder's 🛠️community 👻 [](https://discord.gg/qdfnvSPcqP) On 🤗Huggingface:[MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to🌟 [Build Tonic](https://git.tonic-ai.com/contribute)🤗Big thanks to Yuvi Sharma and all the folks at huggingface for the community grant 🤗
|
| 13 |
-
"""
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
model_path = "01-ai/Yi-Coder-9B-Chat"
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
|
|
|
|
|
|
| 28 |
]
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
tokenize=False,
|
| 32 |
add_generation_prompt=True
|
| 33 |
)
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
max_new_tokens=
|
| 39 |
-
eos_token_id=
|
| 40 |
)
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
gr.
|
| 51 |
-
gr.
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
value="Write a quick sort algorithm in Python.",
|
| 61 |
-
language="python",
|
| 62 |
-
lines=15
|
| 63 |
-
)
|
| 64 |
-
code_output = gr.Code(label="☯️Yi-Coder-7B", language='python', lines=20, interactive=True)
|
| 65 |
-
max_length_slider = gr.Slider(minimum=1, maximum=1800, value=650, label="Max Token Length")
|
| 66 |
-
|
| 67 |
-
generate_button = gr.Button("Generate Code")
|
| 68 |
-
generate_button.click(
|
| 69 |
-
generate_code,
|
| 70 |
-
inputs=[system_prompt_input, user_prompt_input, max_length_slider],
|
| 71 |
-
outputs=code_output
|
| 72 |
-
)
|
| 73 |
-
|
| 74 |
-
return interface
|
| 75 |
|
| 76 |
if __name__ == "__main__":
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
| 4 |
|
| 5 |
+
titulo = """# 🤖 Bienvenido al Chatbot con Yi-9B"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
+
descripcion = """Este chatbot utiliza el modelo Yi de 9B parámetros para generar respuestas.
|
| 8 |
+
Puedes mantener una conversación fluida y realizar preguntas sobre diversos temas."""
|
|
|
|
| 9 |
|
| 10 |
+
# Definir el dispositivo y la ruta del modelo
|
| 11 |
+
dispositivo = "cuda" if torch.cuda.is_available() else "cpu"
|
| 12 |
+
ruta_modelo = "01-ai/Yi-9B-Chat"
|
| 13 |
|
| 14 |
+
# Cargar el tokenizador y el modelo
|
| 15 |
+
tokenizador = AutoTokenizer.from_pretrained(ruta_modelo)
|
| 16 |
+
modelo = AutoModelForCausalLM.from_pretrained(ruta_modelo, device_map="auto").eval()
|
| 17 |
+
|
| 18 |
+
def generar_respuesta(historial, usuario_input, max_longitud):
|
| 19 |
+
mensajes = [
|
| 20 |
+
{"role": "system", "content": "Eres un asistente útil y amigable. Proporciona respuestas claras y concisas."}
|
| 21 |
]
|
| 22 |
+
|
| 23 |
+
for entrada in historial:
|
| 24 |
+
mensajes.append({"role": "user", "content": entrada[0]})
|
| 25 |
+
mensajes.append({"role": "assistant", "content": entrada[1]})
|
| 26 |
+
|
| 27 |
+
mensajes.append({"role": "user", "content": usuario_input})
|
| 28 |
+
|
| 29 |
+
texto = tokenizador.apply_chat_template(
|
| 30 |
+
mensajes,
|
| 31 |
tokenize=False,
|
| 32 |
add_generation_prompt=True
|
| 33 |
)
|
| 34 |
+
|
| 35 |
+
entradas_modelo = tokenizador([texto], return_tensors="pt").to(dispositivo)
|
| 36 |
+
ids_generados = modelo.generate(
|
| 37 |
+
entradas_modelo.input_ids,
|
| 38 |
+
max_new_tokens=max_longitud,
|
| 39 |
+
eos_token_id=tokenizador.eos_token_id
|
| 40 |
)
|
| 41 |
+
|
| 42 |
+
ids_generados = [
|
| 43 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(entradas_modelo.input_ids, ids_generados)
|
| 44 |
]
|
| 45 |
+
|
| 46 |
+
respuesta = tokenizador.batch_decode(ids_generados, skip_special_tokens=True)[0]
|
| 47 |
+
historial.append((usuario_input, respuesta))
|
| 48 |
+
return historial, ""
|
| 49 |
|
| 50 |
+
def interfaz_gradio():
|
| 51 |
+
with gr.Blocks() as interfaz:
|
| 52 |
+
gr.Markdown(titulo)
|
| 53 |
+
gr.Markdown(descripcion)
|
| 54 |
+
|
| 55 |
+
chatbot = gr.Chatbot(label="Historial de chat")
|
| 56 |
+
msg = gr.Textbox(label="Tu mensaje")
|
| 57 |
+
clear = gr.Button("Limpiar")
|
| 58 |
+
|
| 59 |
+
max_longitud_slider = gr.Slider(minimum=1, maximum=1000, value=500, label="Longitud máxima de la respuesta")
|
| 60 |
+
|
| 61 |
+
msg.submit(generar_respuesta, [chatbot, msg, max_longitud_slider], [chatbot, msg])
|
| 62 |
+
clear.click(lambda: None, None, chatbot, queue=False)
|
| 63 |
+
|
| 64 |
+
return interfaz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
+
interfaz = interfaz_gradio()
|
| 68 |
+
interfaz.queue()
|
| 69 |
+
interfaz.launch()
|