Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -19,21 +19,58 @@ logging.basicConfig(
|
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
def load_qa_model():
|
| 22 |
-
"""Load question-answering model"""
|
| 23 |
try:
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
device_map="auto",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
use_auth_token=os.getenv("HF_TOKEN")
|
| 31 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return qa_pipeline
|
|
|
|
| 33 |
except Exception as e:
|
| 34 |
logger.error(f"Failed to load Q&A model: {str(e)}")
|
| 35 |
return None
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
def load_summarization_model():
|
| 38 |
"""Load summarization model"""
|
| 39 |
try:
|
|
|
|
| 19 |
logger = logging.getLogger(__name__)
|
| 20 |
|
| 21 |
def load_qa_model():
|
| 22 |
+
"""Load question-answering model with support for long input contexts."""
|
| 23 |
try:
|
| 24 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 25 |
+
|
| 26 |
+
model_id = "hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4"
|
| 27 |
+
|
| 28 |
+
# Load tokenizer
|
| 29 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=os.getenv("HF_TOKEN"))
|
| 30 |
+
tokenizer.model_max_length = 8192 # Ensure the tokenizer can handle 8192 tokens
|
| 31 |
+
|
| 32 |
+
# Load the model
|
| 33 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 34 |
+
model_id,
|
| 35 |
+
torch_dtype=torch.bfloat16,
|
| 36 |
device_map="auto",
|
| 37 |
+
rope_scaling={
|
| 38 |
+
"type": "dynamic", # Ensure compatibility with long contexts
|
| 39 |
+
"factor": 8.0
|
| 40 |
+
},
|
| 41 |
use_auth_token=os.getenv("HF_TOKEN")
|
| 42 |
)
|
| 43 |
+
|
| 44 |
+
# Load the pipeline
|
| 45 |
+
qa_pipeline = pipeline(
|
| 46 |
+
"text-generation",
|
| 47 |
+
model=model,
|
| 48 |
+
tokenizer=tokenizer,
|
| 49 |
+
max_new_tokens=4096, # Adjust as needed for your use case
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
return qa_pipeline
|
| 53 |
+
|
| 54 |
except Exception as e:
|
| 55 |
logger.error(f"Failed to load Q&A model: {str(e)}")
|
| 56 |
return None
|
| 57 |
|
| 58 |
+
# def load_qa_model():
|
| 59 |
+
# """Load question-answering model"""
|
| 60 |
+
# try:
|
| 61 |
+
# model_id = "meta-llama/Meta-Llama-3-8B-Instruct"
|
| 62 |
+
# qa_pipeline = pipeline(
|
| 63 |
+
# "text-generation",
|
| 64 |
+
# model="hugging-quants/Meta-Llama-3.1-8B-Instruct-AWQ-INT4",
|
| 65 |
+
# model_kwargs={"torch_dtype": torch.bfloat16},
|
| 66 |
+
# device_map="auto",
|
| 67 |
+
# use_auth_token=os.getenv("HF_TOKEN")
|
| 68 |
+
# )
|
| 69 |
+
# return qa_pipeline
|
| 70 |
+
# except Exception as e:
|
| 71 |
+
# logger.error(f"Failed to load Q&A model: {str(e)}")
|
| 72 |
+
# return None
|
| 73 |
+
|
| 74 |
def load_summarization_model():
|
| 75 |
"""Load summarization model"""
|
| 76 |
try:
|