Spaces:
Build error
Build error
Implemented Chunking
Browse files
app.py
CHANGED
|
@@ -3,6 +3,7 @@ import pickle
|
|
| 3 |
import whisper
|
| 4 |
import streamlit as st
|
| 5 |
import torchaudio as ta
|
|
|
|
| 6 |
|
| 7 |
from io import BytesIO
|
| 8 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
@@ -12,10 +13,11 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
| 12 |
torch_dtype = torch.float16 if device == "cuda:0" else torch.float32
|
| 13 |
|
| 14 |
SAMPLING_RATE = 16000
|
|
|
|
| 15 |
|
| 16 |
# Load Whisper model and processor
|
| 17 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 18 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small")
|
| 19 |
|
| 20 |
# Title of the app
|
| 21 |
st.title("Audio Player with Live Transcription")
|
|
@@ -36,18 +38,42 @@ if 'audio_files' not in st.session_state:
|
|
| 36 |
|
| 37 |
def detect_language(audio_file):
|
| 38 |
whisper_model = whisper.load_model("small")
|
| 39 |
-
trimmed_audio = whisper.pad_or_trim(audio_file)
|
| 40 |
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
|
| 41 |
-
_, probs = whisper_model.detect_language(mel
|
| 42 |
-
detected_lang = max(probs, key=probs.get)
|
| 43 |
print(f"Detected language: {detected_lang}")
|
| 44 |
return detected_lang
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
# Process uploaded files
|
| 48 |
if submit_button and uploaded_files is not None:
|
| 49 |
st.session_state.audio_files = uploaded_files
|
| 50 |
st.session_state.detected_languages = []
|
|
|
|
| 51 |
|
| 52 |
for uploaded_file in uploaded_files:
|
| 53 |
waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
|
|
@@ -69,30 +95,25 @@ if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
| 69 |
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
|
| 70 |
|
| 71 |
with col2:
|
| 72 |
-
# import pdb;pdb.set_trace()
|
| 73 |
-
input_features = processor(st.session_state.waveforms[i][0], sampling_rate=SAMPLING_RATE, return_tensors='pt').input_features
|
| 74 |
-
|
| 75 |
if st.button(f"Transcribe {uploaded_file.name}"):
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
|
| 80 |
if st.session_state.transcriptions.get(i):
|
| 81 |
st.write("**Transcription**:")
|
| 82 |
-
|
| 83 |
-
st.write(line)
|
| 84 |
|
| 85 |
if st.button(f"Translate {uploaded_file.name}"):
|
| 86 |
-
with
|
| 87 |
-
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
st.session_state.translations[i] = translation
|
| 94 |
|
| 95 |
if st.session_state.translations.get(i):
|
| 96 |
st.write("**Translation**:")
|
| 97 |
-
|
| 98 |
-
st.write(line)
|
|
|
|
| 3 |
import whisper
|
| 4 |
import streamlit as st
|
| 5 |
import torchaudio as ta
|
| 6 |
+
import numpy as np
|
| 7 |
|
| 8 |
from io import BytesIO
|
| 9 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
|
| 13 |
torch_dtype = torch.float16 if device == "cuda:0" else torch.float32
|
| 14 |
|
| 15 |
SAMPLING_RATE = 16000
|
| 16 |
+
CHUNK_LENGTH_S = 20 # 30 seconds per chunk
|
| 17 |
|
| 18 |
# Load Whisper model and processor
|
| 19 |
processor = WhisperProcessor.from_pretrained("openai/whisper-small")
|
| 20 |
+
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
| 21 |
|
| 22 |
# Title of the app
|
| 23 |
st.title("Audio Player with Live Transcription")
|
|
|
|
| 38 |
|
| 39 |
def detect_language(audio_file):
|
| 40 |
whisper_model = whisper.load_model("small")
|
| 41 |
+
trimmed_audio = whisper.pad_or_trim(audio_file.squeeze())
|
| 42 |
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
|
| 43 |
+
_, probs = whisper_model.detect_language(mel)
|
| 44 |
+
detected_lang = max(probs[0], key=probs[0].get)
|
| 45 |
print(f"Detected language: {detected_lang}")
|
| 46 |
return detected_lang
|
| 47 |
|
| 48 |
|
| 49 |
+
def process_long_audio(waveform, sampling_rate, task="transcribe", language=None):
|
| 50 |
+
input_length = waveform.shape[1]
|
| 51 |
+
chunk_length = int(CHUNK_LENGTH_S * sampling_rate)
|
| 52 |
+
chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
| 53 |
+
|
| 54 |
+
results = []
|
| 55 |
+
for chunk in chunks:
|
| 56 |
+
# import pdb;pdb.set_trace()
|
| 57 |
+
input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
| 58 |
+
|
| 59 |
+
with torch.no_grad():
|
| 60 |
+
if task == "translate":
|
| 61 |
+
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
|
| 62 |
+
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 63 |
+
else:
|
| 64 |
+
generated_ids = model.generate(input_features)
|
| 65 |
+
|
| 66 |
+
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 67 |
+
results.extend(transcription)
|
| 68 |
+
|
| 69 |
+
return " ".join(results)
|
| 70 |
+
|
| 71 |
+
|
| 72 |
# Process uploaded files
|
| 73 |
if submit_button and uploaded_files is not None:
|
| 74 |
st.session_state.audio_files = uploaded_files
|
| 75 |
st.session_state.detected_languages = []
|
| 76 |
+
st.session_state.waveforms = []
|
| 77 |
|
| 78 |
for uploaded_file in uploaded_files:
|
| 79 |
waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
|
|
|
|
| 95 |
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
|
| 96 |
|
| 97 |
with col2:
|
|
|
|
|
|
|
|
|
|
| 98 |
if st.button(f"Transcribe {uploaded_file.name}"):
|
| 99 |
+
with st.spinner("Transcribing..."):
|
| 100 |
+
transcription = process_long_audio(st.session_state.waveforms[i], SAMPLING_RATE)
|
| 101 |
+
st.session_state.transcriptions[i] = transcription
|
| 102 |
|
| 103 |
if st.session_state.transcriptions.get(i):
|
| 104 |
st.write("**Transcription**:")
|
| 105 |
+
st.write(st.session_state.transcriptions[i])
|
|
|
|
| 106 |
|
| 107 |
if st.button(f"Translate {uploaded_file.name}"):
|
| 108 |
+
with st.spinner("Translating..."):
|
| 109 |
+
with open('languages.pkl', 'rb') as f:
|
| 110 |
+
lang_dict = pickle.load(f)
|
| 111 |
+
detected_language_name = lang_dict[st.session_state.detected_languages[i]]
|
| 112 |
|
| 113 |
+
translation = process_long_audio(st.session_state.waveforms[i], SAMPLING_RATE, task="translate",
|
| 114 |
+
language=detected_language_name)
|
| 115 |
+
st.session_state.translations[i] = translation
|
|
|
|
| 116 |
|
| 117 |
if st.session_state.translations.get(i):
|
| 118 |
st.write("**Translation**:")
|
| 119 |
+
st.write(st.session_state.translations[i])
|
|
|