Spaces:
Build error
Build error
updated app.py
Browse files
app.py
CHANGED
|
@@ -1,88 +1,23 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
import pickle
|
| 3 |
-
import whisper
|
| 4 |
import streamlit as st
|
| 5 |
-
import
|
| 6 |
-
import numpy as np
|
| 7 |
-
|
| 8 |
from io import BytesIO
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
SAMPLING_RATE = 16000
|
| 16 |
-
CHUNK_LENGTH_S = 20 # 30 seconds per chunk
|
| 17 |
|
| 18 |
-
# Load
|
| 19 |
-
|
| 20 |
-
model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small").to(device)
|
| 21 |
|
| 22 |
# Title of the app
|
| 23 |
-
st.title("Audio Player with Live Transcription")
|
| 24 |
-
|
| 25 |
-
# Sidebar for file uploader and submit button
|
| 26 |
-
st.sidebar.header("Upload Audio Files")
|
| 27 |
-
uploaded_files = st.sidebar.file_uploader("Choose audio files", type=["mp3", "wav"], accept_multiple_files=True)
|
| 28 |
-
submit_button = st.sidebar.button("Submit")
|
| 29 |
-
|
| 30 |
-
# Session state to hold data
|
| 31 |
-
if 'audio_files' not in st.session_state:
|
| 32 |
-
st.session_state.audio_files = []
|
| 33 |
-
st.session_state.transcriptions = {}
|
| 34 |
-
st.session_state.translations = {}
|
| 35 |
-
st.session_state.detected_languages = []
|
| 36 |
-
st.session_state.waveforms = []
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
def detect_language(audio_file):
|
| 40 |
-
whisper_model = whisper.load_model("small")
|
| 41 |
-
trimmed_audio = whisper.pad_or_trim(audio_file.squeeze())
|
| 42 |
-
mel = whisper.log_mel_spectrogram(trimmed_audio).to(whisper_model.device)
|
| 43 |
-
_, probs = whisper_model.detect_language(mel)
|
| 44 |
-
detected_lang = max(probs[0], key=probs[0].get)
|
| 45 |
-
print(f"Detected language: {detected_lang}")
|
| 46 |
-
return detected_lang
|
| 47 |
|
|
|
|
| 48 |
|
| 49 |
-
def
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
chunks = [waveform[:, i:i + chunk_length] for i in range(0, input_length, chunk_length)]
|
| 53 |
-
|
| 54 |
-
results = []
|
| 55 |
-
for chunk in chunks:
|
| 56 |
-
# import pdb;pdb.set_trace()
|
| 57 |
-
input_features = processor(chunk[0], sampling_rate=sampling_rate, return_tensors="pt").input_features.to(device)
|
| 58 |
-
|
| 59 |
-
with torch.no_grad():
|
| 60 |
-
if task == "translate":
|
| 61 |
-
forced_decoder_ids = processor.get_decoder_prompt_ids(language=language, task="translate")
|
| 62 |
-
generated_ids = model.generate(input_features, forced_decoder_ids=forced_decoder_ids)
|
| 63 |
-
else:
|
| 64 |
-
generated_ids = model.generate(input_features)
|
| 65 |
-
|
| 66 |
-
transcription = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
| 67 |
-
results.extend(transcription)
|
| 68 |
-
|
| 69 |
-
return " ".join(results)
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
# Process uploaded files
|
| 73 |
-
if submit_button and uploaded_files is not None:
|
| 74 |
-
st.session_state.audio_files = uploaded_files
|
| 75 |
-
st.session_state.detected_languages = []
|
| 76 |
-
st.session_state.waveforms = []
|
| 77 |
-
|
| 78 |
-
for uploaded_file in uploaded_files:
|
| 79 |
-
waveform, sampling_rate = ta.load(BytesIO(uploaded_file.read()))
|
| 80 |
-
if sampling_rate != SAMPLING_RATE:
|
| 81 |
-
waveform = ta.functional.resample(waveform, orig_freq=sampling_rate, new_freq=SAMPLING_RATE)
|
| 82 |
-
|
| 83 |
-
st.session_state.waveforms.append(waveform)
|
| 84 |
-
detected_language = detect_language(waveform)
|
| 85 |
-
st.session_state.detected_languages.append(detected_language)
|
| 86 |
|
| 87 |
# Display uploaded files and options
|
| 88 |
if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
@@ -91,7 +26,7 @@ if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
| 91 |
|
| 92 |
with col1:
|
| 93 |
st.write(f"**File name**: {uploaded_file.name}")
|
| 94 |
-
st.audio(
|
| 95 |
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
|
| 96 |
|
| 97 |
with col2:
|
|
@@ -103,6 +38,10 @@ if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
| 103 |
if st.session_state.transcriptions.get(i):
|
| 104 |
st.write("**Transcription**:")
|
| 105 |
st.write(st.session_state.transcriptions[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
if st.button(f"Translate {uploaded_file.name}"):
|
| 108 |
with st.spinner("Translating..."):
|
|
@@ -116,4 +55,6 @@ if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
| 116 |
|
| 117 |
if st.session_state.translations.get(i):
|
| 118 |
st.write("**Translation**:")
|
| 119 |
-
st.write(st.session_state.translations[i])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import pickle
|
|
|
|
|
|
|
| 3 |
from io import BytesIO
|
| 4 |
+
import pyperclip
|
| 5 |
+
from audio_processing import detect_language, process_long_audio, load_and_resample_audio
|
| 6 |
+
from model_utils import load_models
|
| 7 |
+
from config import SAMPLING_RATE
|
| 8 |
+
from llm_utils import generate_answer, summarize_transcript
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
+
# Load models at startup
|
| 11 |
+
load_models()
|
|
|
|
| 12 |
|
| 13 |
# Title of the app
|
| 14 |
+
st.title("Audio Player with Live Transcription and Q&A")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
+
# ... (previous code remains the same)
|
| 17 |
|
| 18 |
+
def copy_to_clipboard(text):
|
| 19 |
+
pyperclip.copy(text)
|
| 20 |
+
st.success("Copied to clipboard!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Display uploaded files and options
|
| 23 |
if 'audio_files' in st.session_state and st.session_state.audio_files:
|
|
|
|
| 26 |
|
| 27 |
with col1:
|
| 28 |
st.write(f"**File name**: {uploaded_file.name}")
|
| 29 |
+
st.audio(uploaded_file, format=uploaded_file.type)
|
| 30 |
st.write(f"**Detected Language**: {st.session_state.detected_languages[i]}")
|
| 31 |
|
| 32 |
with col2:
|
|
|
|
| 38 |
if st.session_state.transcriptions.get(i):
|
| 39 |
st.write("**Transcription**:")
|
| 40 |
st.write(st.session_state.transcriptions[i])
|
| 41 |
+
if st.button("Copy Transcription", key=f"copy_transcription_{i}"):
|
| 42 |
+
copy_to_clipboard(st.session_state.transcriptions[i])
|
| 43 |
+
|
| 44 |
+
# ... (summarization and Q&A code remains the same)
|
| 45 |
|
| 46 |
if st.button(f"Translate {uploaded_file.name}"):
|
| 47 |
with st.spinner("Translating..."):
|
|
|
|
| 55 |
|
| 56 |
if st.session_state.translations.get(i):
|
| 57 |
st.write("**Translation**:")
|
| 58 |
+
st.write(st.session_state.translations[i])
|
| 59 |
+
if st.button("Copy Translation", key=f"copy_translation_{i}"):
|
| 60 |
+
copy_to_clipboard(st.session_state.translations[i])
|