Spaces:
Build error
Build error
| # Data loading based on https://github.com/NVIDIA/flownet2-pytorch | |
| import numpy as np | |
| import torch | |
| import torch.utils.data as data | |
| import os | |
| import random | |
| from glob import glob | |
| import os.path as osp | |
| from utils import frame_utils | |
| from data.transforms import FlowAugmentor, SparseFlowAugmentor | |
| class FlowDataset(data.Dataset): | |
| def __init__(self, aug_params=None, sparse=False, | |
| load_occlusion=False, | |
| ): | |
| self.augmentor = None | |
| self.sparse = sparse | |
| if aug_params is not None: | |
| if sparse: | |
| self.augmentor = SparseFlowAugmentor(**aug_params) | |
| else: | |
| self.augmentor = FlowAugmentor(**aug_params) | |
| self.is_test = False | |
| self.init_seed = False | |
| self.flow_list = [] | |
| self.image_list = [] | |
| self.extra_info = [] | |
| self.load_occlusion = load_occlusion | |
| self.occ_list = [] | |
| def __getitem__(self, index): | |
| if self.is_test: | |
| img1 = frame_utils.read_gen(self.image_list[index][0]) | |
| img2 = frame_utils.read_gen(self.image_list[index][1]) | |
| img1 = np.array(img1).astype(np.uint8)[..., :3] | |
| img2 = np.array(img2).astype(np.uint8)[..., :3] | |
| img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | |
| img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | |
| return img1, img2, self.extra_info[index] | |
| if not self.init_seed: | |
| worker_info = torch.utils.data.get_worker_info() | |
| if worker_info is not None: | |
| torch.manual_seed(worker_info.id) | |
| np.random.seed(worker_info.id) | |
| random.seed(worker_info.id) | |
| self.init_seed = True | |
| index = index % len(self.image_list) | |
| valid = None | |
| if self.sparse: | |
| flow, valid = frame_utils.readFlowKITTI(self.flow_list[index]) # [H, W, 2], [H, W] | |
| else: | |
| flow = frame_utils.read_gen(self.flow_list[index]) | |
| if self.load_occlusion: | |
| occlusion = frame_utils.read_gen(self.occ_list[index]) # [H, W], 0 or 255 (occluded) | |
| img1 = frame_utils.read_gen(self.image_list[index][0]) | |
| img2 = frame_utils.read_gen(self.image_list[index][1]) | |
| flow = np.array(flow).astype(np.float32) | |
| img1 = np.array(img1).astype(np.uint8) | |
| img2 = np.array(img2).astype(np.uint8) | |
| if self.load_occlusion: | |
| occlusion = np.array(occlusion).astype(np.float32) | |
| # grayscale images | |
| if len(img1.shape) == 2: | |
| img1 = np.tile(img1[..., None], (1, 1, 3)) | |
| img2 = np.tile(img2[..., None], (1, 1, 3)) | |
| else: | |
| img1 = img1[..., :3] | |
| img2 = img2[..., :3] | |
| if self.augmentor is not None: | |
| if self.sparse: | |
| img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid) | |
| else: | |
| if self.load_occlusion: | |
| img1, img2, flow, occlusion = self.augmentor(img1, img2, flow, occlusion=occlusion) | |
| else: | |
| img1, img2, flow = self.augmentor(img1, img2, flow) | |
| img1 = torch.from_numpy(img1).permute(2, 0, 1).float() | |
| img2 = torch.from_numpy(img2).permute(2, 0, 1).float() | |
| flow = torch.from_numpy(flow).permute(2, 0, 1).float() | |
| if self.load_occlusion: | |
| occlusion = torch.from_numpy(occlusion) # [H, W] | |
| if valid is not None: | |
| valid = torch.from_numpy(valid) | |
| else: | |
| valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000) | |
| # mask out occluded pixels | |
| if self.load_occlusion: | |
| # non-occlusion: 0, occlusion: 255 | |
| noc_valid = 1 - occlusion / 255. # 0 or 1 | |
| return img1, img2, flow, valid.float(), noc_valid.float() | |
| return img1, img2, flow, valid.float() | |
| def __rmul__(self, v): | |
| self.flow_list = v * self.flow_list | |
| self.image_list = v * self.image_list | |
| return self | |
| def __len__(self): | |
| return len(self.image_list) | |
| class MpiSintel(FlowDataset): | |
| def __init__(self, aug_params=None, split='training', | |
| root='datasets/Sintel', | |
| dstype='clean', | |
| load_occlusion=False, | |
| ): | |
| super(MpiSintel, self).__init__(aug_params, | |
| load_occlusion=load_occlusion, | |
| ) | |
| flow_root = osp.join(root, split, 'flow') | |
| image_root = osp.join(root, split, dstype) | |
| if load_occlusion: | |
| occlusion_root = osp.join(root, split, 'occlusions') | |
| if split == 'test': | |
| self.is_test = True | |
| for scene in os.listdir(image_root): | |
| image_list = sorted(glob(osp.join(image_root, scene, '*.png'))) | |
| for i in range(len(image_list) - 1): | |
| self.image_list += [[image_list[i], image_list[i + 1]]] | |
| self.extra_info += [(scene, i)] # scene and frame_id | |
| if split != 'test': | |
| self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo'))) | |
| if load_occlusion: | |
| self.occ_list += sorted(glob(osp.join(occlusion_root, scene, '*.png'))) | |
| class FlyingChairs(FlowDataset): | |
| def __init__(self, aug_params=None, split='train', | |
| root='datasets/FlyingChairs_release/data', | |
| ): | |
| super(FlyingChairs, self).__init__(aug_params) | |
| images = sorted(glob(osp.join(root, '*.ppm'))) | |
| flows = sorted(glob(osp.join(root, '*.flo'))) | |
| assert (len(images) // 2 == len(flows)) | |
| split_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'chairs_split.txt') | |
| split_list = np.loadtxt(split_file, dtype=np.int32) | |
| for i in range(len(flows)): | |
| xid = split_list[i] | |
| if (split == 'training' and xid == 1) or (split == 'validation' and xid == 2): | |
| self.flow_list += [flows[i]] | |
| self.image_list += [[images[2 * i], images[2 * i + 1]]] | |
| class FlyingThings3D(FlowDataset): | |
| def __init__(self, aug_params=None, | |
| root='datasets/FlyingThings3D', | |
| dstype='frames_cleanpass', | |
| test_set=False, | |
| validate_subset=True, | |
| ): | |
| super(FlyingThings3D, self).__init__(aug_params) | |
| img_dir = root | |
| flow_dir = root | |
| for cam in ['left']: | |
| for direction in ['into_future', 'into_past']: | |
| if test_set: | |
| image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TEST/*/*'))) | |
| else: | |
| image_dirs = sorted(glob(osp.join(img_dir, dstype, 'TRAIN/*/*'))) | |
| image_dirs = sorted([osp.join(f, cam) for f in image_dirs]) | |
| if test_set: | |
| flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TEST/*/*'))) | |
| else: | |
| flow_dirs = sorted(glob(osp.join(flow_dir, 'optical_flow/TRAIN/*/*'))) | |
| flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs]) | |
| for idir, fdir in zip(image_dirs, flow_dirs): | |
| images = sorted(glob(osp.join(idir, '*.png'))) | |
| flows = sorted(glob(osp.join(fdir, '*.pfm'))) | |
| for i in range(len(flows) - 1): | |
| if direction == 'into_future': | |
| self.image_list += [[images[i], images[i + 1]]] | |
| self.flow_list += [flows[i]] | |
| elif direction == 'into_past': | |
| self.image_list += [[images[i + 1], images[i]]] | |
| self.flow_list += [flows[i + 1]] | |
| # validate on 1024 subset of test set for fast speed | |
| if test_set and validate_subset: | |
| num_val_samples = 1024 | |
| all_test_samples = len(self.image_list) # 7866 | |
| stride = all_test_samples // num_val_samples | |
| remove = all_test_samples % num_val_samples | |
| # uniformly sample a subset | |
| self.image_list = self.image_list[:-remove][::stride] | |
| self.flow_list = self.flow_list[:-remove][::stride] | |
| class KITTI(FlowDataset): | |
| def __init__(self, aug_params=None, split='training', | |
| root='datasets/KITTI', | |
| ): | |
| super(KITTI, self).__init__(aug_params, sparse=True, | |
| ) | |
| if split == 'testing': | |
| self.is_test = True | |
| root = osp.join(root, split) | |
| images1 = sorted(glob(osp.join(root, 'image_2/*_10.png'))) | |
| images2 = sorted(glob(osp.join(root, 'image_2/*_11.png'))) | |
| for img1, img2 in zip(images1, images2): | |
| frame_id = img1.split('/')[-1] | |
| self.extra_info += [[frame_id]] | |
| self.image_list += [[img1, img2]] | |
| if split == 'training': | |
| self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png'))) | |
| class HD1K(FlowDataset): | |
| def __init__(self, aug_params=None, root='datasets/HD1K'): | |
| super(HD1K, self).__init__(aug_params, sparse=True) | |
| seq_ix = 0 | |
| while 1: | |
| flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix))) | |
| images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix))) | |
| if len(flows) == 0: | |
| break | |
| for i in range(len(flows) - 1): | |
| self.flow_list += [flows[i]] | |
| self.image_list += [[images[i], images[i + 1]]] | |
| seq_ix += 1 | |
| def build_train_dataset(args): | |
| """ Create the data loader for the corresponding training set """ | |
| if args.stage == 'chairs': | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True} | |
| train_dataset = FlyingChairs(aug_params, split='training') | |
| elif args.stage == 'things': | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True} | |
| clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass') | |
| final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass') | |
| train_dataset = clean_dataset + final_dataset | |
| elif args.stage == 'sintel': | |
| # 1041 pairs for clean and final each | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True} | |
| things = FlyingThings3D(aug_params, dstype='frames_cleanpass') # 40302 | |
| sintel_clean = MpiSintel(aug_params, split='training', dstype='clean') | |
| sintel_final = MpiSintel(aug_params, split='training', dstype='final') | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True} | |
| kitti = KITTI(aug_params=aug_params) # 200 | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True} | |
| hd1k = HD1K(aug_params=aug_params) # 1047 | |
| train_dataset = 100 * sintel_clean + 100 * sintel_final + 200 * kitti + 5 * hd1k + things | |
| elif args.stage == 'kitti': | |
| aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False} | |
| train_dataset = KITTI(aug_params, split='training', | |
| ) | |
| else: | |
| raise ValueError(f'stage {args.stage} is not supported') | |
| return train_dataset | |