Spaces:
Runtime error
Runtime error
| # This code is based on https://github.com/openai/guided-diffusion | |
| """ | |
| This code started out as a PyTorch port of Ho et al's diffusion models: | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py | |
| Docstrings have been added, as well as DDIM sampling and a new collection of beta schedules. | |
| """ | |
| import enum | |
| import math | |
| import numpy as np | |
| import torch | |
| import torch as th | |
| from copy import deepcopy | |
| from motion.diffusion.nn import sum_flat | |
| from motion.dataset.recover_smr import * | |
| from SMPLX.rotation_conversions import rotation_6d_to_matrix, matrix_to_axis_angle | |
| # os.environ['CUDA_LAUNCH_BLOCKING'] = '1' | |
| def get_named_beta_schedule(schedule_name, num_diffusion_timesteps, scale_betas=1.): | |
| """ | |
| Get a pre-defined beta schedule for the given name. | |
| The beta schedule library consists of beta schedules which remain similar | |
| in the limit of num_diffusion_timesteps. | |
| Beta schedules may be added, but should not be removed or changed once | |
| they are committed to maintain backwards compatibility. | |
| """ | |
| if schedule_name == "linear": | |
| # Linear schedule from Ho et al, extended to work for any number of | |
| # diffusion steps. | |
| scale = scale_betas * 1000 / num_diffusion_timesteps | |
| beta_start = scale * 0.0001 | |
| beta_end = scale * 0.02 | |
| return np.linspace( | |
| beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64 | |
| ) | |
| elif schedule_name == "cosine": | |
| return betas_for_alpha_bar( | |
| num_diffusion_timesteps, | |
| lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2, ### t=0->1, t=1->0, t=2->1, t=3->0, 近似于 0,1 交替输入 | |
| ) | |
| else: | |
| raise NotImplementedError(f"unknown beta schedule: {schedule_name}") | |
| def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999): | |
| """ | |
| Create a beta schedule that discretizes the given alpha_t_bar function, | |
| which defines the cumulative product of (1-beta) over time from t = [0,1]. | |
| :param num_diffusion_timesteps: the number of betas to produce. | |
| :param alpha_bar: a lambda that takes an argument t from 0 to 1 and | |
| produces the cumulative product of (1-beta) up to that | |
| part of the diffusion process. | |
| :param max_beta: the maximum beta to use; use values lower than 1 to | |
| prevent singularities. | |
| """ | |
| betas = [] | |
| for i in range(num_diffusion_timesteps): | |
| t1 = i / num_diffusion_timesteps | |
| t2 = (i + 1) / num_diffusion_timesteps | |
| betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
| return np.array(betas) | |
| class ModelMeanType(enum.Enum): | |
| """ | |
| Which type of output the model predicts. | |
| """ | |
| PREVIOUS_X = enum.auto() # the model predicts x_{t-1} | |
| START_X = enum.auto() # the model predicts x_0 | |
| EPSILON = enum.auto() # the model predicts epsilon | |
| class ModelVarType(enum.Enum): | |
| """ | |
| What is used as the model's output variance. | |
| The LEARNED_RANGE option has been added to allow the model to predict | |
| values between FIXED_SMALL and FIXED_LARGE, making its job easier. | |
| """ | |
| LEARNED = enum.auto() | |
| FIXED_SMALL = enum.auto() | |
| FIXED_LARGE = enum.auto() | |
| LEARNED_RANGE = enum.auto() | |
| class LossType(enum.Enum): | |
| MSE = enum.auto() # use raw MSE loss (and KL when learning variances) | |
| RESCALED_MSE = ( | |
| enum.auto() | |
| ) # use raw MSE loss (with RESCALED_KL when learning variances) | |
| KL = enum.auto() # use the variational lower-bound | |
| RESCALED_KL = enum.auto() # like KL, but rescale to estimate the full VLB | |
| def is_vb(self): | |
| return self == LossType.KL or self == LossType.RESCALED_KL | |
| class GaussianDiffusion: | |
| """ | |
| Utilities for training and sampling diffusion models. | |
| Ported directly from here, and then adapted over time to further experimentation. | |
| https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/diffusion_utils_2.py#L42 | |
| :param betas: a 1-D numpy array of betas for each diffusion timestep, | |
| starting at T and going to 1. | |
| :param model_mean_type: a ModelMeanType determining what the model outputs. | |
| :param model_var_type: a ModelVarType determining how variance is output. | |
| :param loss_type: a LossType determining the loss function to use. | |
| :param rescale_timesteps: if True, pass floating point timesteps into the | |
| model so that they are always scaled like in the | |
| original paper (0 to 1000). | |
| """ | |
| def __init__( | |
| self, | |
| *, | |
| betas, | |
| model_mean_type, | |
| model_var_type, | |
| loss_type, | |
| rescale_timesteps=False, | |
| rep="t2m" | |
| ): | |
| self.model_mean_type = model_mean_type | |
| self.model_var_type = model_var_type | |
| self.loss_type = loss_type | |
| self.rescale_timesteps = rescale_timesteps | |
| self.rep = rep | |
| # Use float64 for accuracy. | |
| betas = np.array(betas, dtype=np.float64) | |
| self.betas = betas | |
| assert len(betas.shape) == 1, "betas must be 1-D" | |
| assert (betas > 0).all() and (betas <= 1).all() | |
| self.num_timesteps = int(betas.shape[0]) | |
| alphas = 1.0 - betas | |
| self.alphas_cumprod = np.cumprod(alphas, axis=0) #### 累乘变成 alpha_bar | |
| self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1]) ### append 是合并, 意思是倒序排列,但是去掉把第一个换成 1 | |
| self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0) #### 正序排列,但是把第一个换成 0 并插到最后 | |
| assert self.alphas_cumprod_prev.shape == (self.num_timesteps,) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod) | |
| self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod) | |
| self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod) | |
| self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod) | |
| self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| self.posterior_variance = ( ###### 计算 \mu(xt, x0) 的一部分 | |
| betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| # log calculation clipped because the posterior variance is 0 at the | |
| # beginning of the diffusion chain. | |
| self.posterior_log_variance_clipped = np.log( | |
| np.append(self.posterior_variance[1], self.posterior_variance[1:]) | |
| ) | |
| self.posterior_mean_coef1 = ( | |
| betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.posterior_mean_coef2 = ( | |
| (1.0 - self.alphas_cumprod_prev) | |
| * np.sqrt(alphas) | |
| / (1.0 - self.alphas_cumprod) | |
| ) | |
| self.l2_loss = lambda a, b: (a - b) ** 2 # th.nn.MSELoss(reduction='none') # must be None for handling mask later on. | |
| def masked_l2(self, a, b, mask, addition_rotate_mask): | |
| loss = self.l2_loss(a, b) #### [bs, 263, 1, num_frames] | |
| loss = sum_flat(loss * mask.float() * addition_rotate_mask.float()) # gives \sigma_euclidean over unmasked elements ### [Batch] | |
| n_entries = a.shape[1] * a.shape[2] ##### BS * 263 * 1 * num_frame -> 263 | |
| non_zero_elements = sum_flat(mask) * n_entries | |
| mse_loss_val = loss / non_zero_elements | |
| return mse_loss_val | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = ( | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| ) | |
| variance = _extract_into_tensor(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = _extract_into_tensor( | |
| self.log_one_minus_alphas_cumprod, t, x_start.shape | |
| ) | |
| return mean, variance, log_variance | |
| def q_sample(self, x_start, t, noise=None, model_kwargs=None): | |
| """ | |
| Diffuse the dataset for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial dataset batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| assert noise.shape == x_start.shape | |
| return ( ######### 前向传播 xt = self.sqrt_alphas_cumprod[t] * x0 + self.sqrt_one_minus_alphas_cumprod[t] * \epsilon | |
| _extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| + _extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) | |
| * noise | |
| ) | |
| def q_posterior_mean_variance(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| assert x_start.shape == x_t.shape | |
| posterior_mean = ( | |
| _extract_into_tensor(self.posterior_mean_coef1, t, x_t.shape) * x_start | |
| + _extract_into_tensor(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = _extract_into_tensor(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x_t.shape | |
| ) | |
| assert ( | |
| posterior_mean.shape[0] | |
| == posterior_variance.shape[0] | |
| == posterior_log_variance_clipped.shape[0] | |
| == x_start.shape[0] | |
| ) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance( | |
| self, model, x, t, clip_denoised=True, denoised_fn=None, model_kwargs=None | |
| ): | |
| if model_kwargs is None: | |
| model_kwargs = {} | |
| B, C = x.shape[:2] | |
| assert t.shape == (B,) | |
| model_output = model(x, self._scale_timesteps(t), **model_kwargs) | |
| model_output = model_output["output"] | |
| x_t = x | |
| if 'inpainting_mask' in model_kwargs['y'].keys() and 'inpainted_motion' in model_kwargs['y'].keys(): | |
| inpainting_mask, inpainted_motion = model_kwargs['y']['inpainting_mask'], model_kwargs['y']['inpainted_motion'] | |
| assert self.model_mean_type == ModelMeanType.START_X, 'This feature supports only X_start pred for mow!' | |
| assert model_output.shape == inpainting_mask.shape == inpainted_motion.shape | |
| ones = torch.ones_like(inpainting_mask, dtype=torch.float, device=inpainting_mask.device) | |
| inpainting_mask = ones * inpainting_mask | |
| model_output = (model_output * (1 - inpainting_mask)) + (inpainted_motion * inpainting_mask) | |
| if self.model_var_type in [ModelVarType.LEARNED, ModelVarType.LEARNED_RANGE]: | |
| assert model_output.shape == (B, C * 2, *x.shape[2:]) | |
| model_output, model_var_values = th.split(model_output, C, dim=1) | |
| if self.model_var_type == ModelVarType.LEARNED: | |
| model_log_variance = model_var_values | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| min_log = _extract_into_tensor( | |
| self.posterior_log_variance_clipped, t, x.shape | |
| ) | |
| max_log = _extract_into_tensor(np.log(self.betas), t, x.shape) | |
| # The model_var_values is [-1, 1] for [min_var, max_var]. | |
| frac = (model_var_values + 1) / 2 | |
| model_log_variance = frac * max_log + (1 - frac) * min_log | |
| model_variance = th.exp(model_log_variance) | |
| else: | |
| model_variance, model_log_variance = { | |
| ModelVarType.FIXED_LARGE: ( | |
| np.append(self.posterior_variance[1], self.betas[1:]), | |
| np.log(np.append(self.posterior_variance[1], self.betas[1:])), | |
| ), | |
| ModelVarType.FIXED_SMALL: ( ############ USE IT | |
| self.posterior_variance, | |
| self.posterior_log_variance_clipped, | |
| ), | |
| }[self.model_var_type] | |
| model_variance = _extract_into_tensor(model_variance, t, x_t.shape) | |
| model_log_variance = _extract_into_tensor(model_log_variance, t, x_t.shape) | |
| def process_xstart(x): | |
| if denoised_fn is not None: | |
| x = denoised_fn(x) | |
| if clip_denoised: | |
| # print('clip_denoised', clip_denoised) | |
| return x.clamp(-1, 1) | |
| return x | |
| if self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| pred_xstart = process_xstart( | |
| self._predict_xstart_from_xprev(x_t=x_t, t=t, xprev=model_output) | |
| ) | |
| model_mean = model_output | |
| elif self.model_mean_type in [ModelMeanType.START_X, ModelMeanType.EPSILON]: # THIS IS US! | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| pred_xstart = process_xstart(model_output) | |
| else: | |
| pred_xstart = process_xstart(self._predict_xstart_from_eps(x_t=x_t, t=t, eps=model_output)) | |
| model_mean, _, _ = self.q_posterior_mean_variance(x_start=pred_xstart, x_t=x_t, t=t) | |
| else: | |
| raise NotImplementedError(self.model_mean_type) | |
| assert (model_mean.shape == model_log_variance.shape == pred_xstart.shape == x_t.shape) | |
| return { | |
| "mean": model_mean, | |
| "variance": model_variance, | |
| "log_variance": model_log_variance, | |
| "pred_xstart": pred_xstart, | |
| } | |
| def _predict_xstart_from_eps(self, x_t, t, eps): | |
| assert x_t.shape == eps.shape | |
| return ( | |
| _extract_into_tensor(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t | |
| - _extract_into_tensor(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * eps | |
| ) | |
| def _predict_xstart_from_xprev(self, x_t, t, xprev): | |
| assert x_t.shape == xprev.shape | |
| return ( # (xprev - coef2*x_t) / coef1 | |
| _extract_into_tensor(1.0 / self.posterior_mean_coef1, t, x_t.shape) * xprev | |
| - _extract_into_tensor( | |
| self.posterior_mean_coef2 / self.posterior_mean_coef1, t, x_t.shape | |
| ) | |
| * x_t | |
| ) | |
| def _scale_timesteps(self, t): | |
| if self.rescale_timesteps: | |
| return t.float() * (1000.0 / self.num_timesteps) | |
| return t | |
| def p_sample( | |
| self, | |
| model, | |
| x, | |
| t, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| const_noise=False, | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param model: the model to sample from. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :return: a dict containing the following keys: | |
| - 'sample': a random sample from the model. | |
| - 'pred_xstart': a prediction of x_0. | |
| """ | |
| out = self.p_mean_variance( | |
| model, | |
| x, #### x 列表 | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| model_kwargs=model_kwargs, | |
| ) | |
| noise = th.randn_like(out["mean"]) | |
| if const_noise: | |
| noise = noise[[0]].repeat(out["mean"].shape[0], 1, 1, 1) | |
| nonzero_mask = ((t != 0).float().view(-1, *([1] * (len(out["mean"].shape) - 1)))) # no noise when t == 0 | |
| sample = out["mean"] + nonzero_mask * th.exp(0.5 * out["log_variance"]) * noise ## \mu + nonzero_mask * \std * noise | |
| return {"sample": sample, "pred_xstart": out["pred_xstart"]} | |
| def p_sample_loop( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| dump_steps=None, | |
| const_noise=False, | |
| unfolding_handshake=0, # 0 means no unfolding | |
| eval_mask=None | |
| ): | |
| """ | |
| Generate samples from the model. | |
| :param model: the model module. | |
| :param shape: the shape of the samples, (N, C, H, W). | |
| :param noise: if specified, the noise from the encoder to sample. | |
| Should be of the same shape as `shape`. | |
| :param clip_denoised: if True, clip x_start predictions to [-1, 1]. | |
| :param denoised_fn: if not None, a function which applies to the | |
| x_start prediction before it is used to sample. | |
| :param cond_fn: if not None, this is a gradient function that acts | |
| similarly to the model. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param device: if specified, the device to create the samples on. | |
| If not specified, use a model parameter's device. | |
| :param progress: if True, show a tqdm progress bar. | |
| :param const_noise: If True, will noise all samples with the same noise throughout sampling | |
| :return: a non-differentiable batch of samples. | |
| """ | |
| final = None | |
| if dump_steps is not None: | |
| dump = [] | |
| for i, sample in enumerate(self.p_sample_loop_progressive( | |
| model, | |
| shape, | |
| noise=noise, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=model_kwargs, | |
| device=device, | |
| progress=progress, | |
| skip_timesteps=skip_timesteps, | |
| init_image=init_image, | |
| randomize_class=randomize_class, | |
| cond_fn_with_grad=cond_fn_with_grad, | |
| const_noise=const_noise, | |
| eval_mask=eval_mask | |
| )): | |
| # unfolding | |
| if unfolding_handshake > 0: | |
| ''' | |
| first take 点这里 | |
| ''' | |
| alpha = torch.arange(0, unfolding_handshake, 1, device=sample['sample'].device) / unfolding_handshake | |
| for sample_i, len in zip(range(1, sample['sample'].shape[0]), model_kwargs['y']['lengths']): | |
| _suffix = sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] | |
| _prefix = sample['sample'][sample_i, :, :, :unfolding_handshake] | |
| try: | |
| _blend = (_suffix * (1 - alpha) + _prefix * alpha) | |
| except(RuntimeError): | |
| print("Error") | |
| sample['sample'][sample_i - 1, :, :, -unfolding_handshake + len:len] = _blend #### 混合操作,保证下一帧的 left = 这一帧的 right, 这样 double take 的时候才能直接用 right 覆盖 left | |
| sample['sample'][sample_i, :, :, :unfolding_handshake] = _blend | |
| if dump_steps is not None and i in dump_steps: | |
| dump.append(deepcopy(sample["sample"])) | |
| final = sample | |
| if dump_steps is not None: | |
| return dump | |
| res = {"output":final["sample"]} | |
| return res | |
| def p_sample_loop_progressive( | |
| self, | |
| model, | |
| shape, | |
| noise=None, | |
| clip_denoised=True, | |
| denoised_fn=None, | |
| cond_fn=None, | |
| model_kwargs=None, | |
| device=None, | |
| progress=False, | |
| skip_timesteps=0, | |
| init_image=None, | |
| randomize_class=False, | |
| cond_fn_with_grad=False, | |
| const_noise=False, | |
| eval_mask=None | |
| ): | |
| """ | |
| Generate samples from the model and yield intermediate samples from | |
| each timestep of diffusion. | |
| Arguments are the same as p_sample_loop(). | |
| Returns a generator over dicts, where each dict is the return value of | |
| p_sample(). | |
| """ | |
| if device is None: | |
| device = next(model.parameters()).device | |
| assert isinstance(shape, (tuple, list)) | |
| if noise is not None: | |
| img = noise | |
| else: | |
| img = th.randn(*shape, device=device) | |
| if skip_timesteps and init_image is None: | |
| init_image = th.zeros_like(img) | |
| indices = list(range(self.num_timesteps - skip_timesteps))[::-1] #### [999, 998, ... 0] | |
| if init_image is not None: | |
| my_t = th.ones([shape[0]], device=device, dtype=th.long) * indices[0] | |
| img = self.q_sample(init_image, my_t, img, model_kwargs=model_kwargs) | |
| ''' | |
| 把 eval_mask 放在这里相当于初始化时若干帧的结果存在问题 | |
| 如果把 eval_mask 放在循环中, 就相当于推理过程中指定位置一直在生成不同的错误帧 | |
| ''' | |
| if eval_mask is not None and img.shape[0] != 1: | |
| rand_img = torch.randperm(img.shape[0]) | |
| rand_img = img[rand_img] | |
| img = img * (1 - eval_mask) + rand_img * eval_mask | |
| elif eval_mask is not None and img.shape[0] == 1: | |
| rand_img = th.randn(*shape, device=device) | |
| img = img * (1 - eval_mask) + rand_img * eval_mask | |
| if progress: | |
| # Lazy import so that we don't depend on tqdm. | |
| from tqdm.auto import tqdm | |
| indices = tqdm(indices) | |
| for i in indices: | |
| t = th.tensor([i] * shape[0], device=device) ### t = [999] | |
| if randomize_class and 'y' in model_kwargs: | |
| model_kwargs['y'] = th.randint(low=0, high=model.num_classes, | |
| size=model_kwargs['y'].shape, | |
| device=model_kwargs['y'].device) | |
| with th.no_grad(): | |
| sample_fn = self.p_sample | |
| condition = deepcopy(model_kwargs) | |
| out = sample_fn( | |
| model, | |
| img, | |
| t, | |
| clip_denoised=clip_denoised, | |
| denoised_fn=denoised_fn, | |
| cond_fn=cond_fn, | |
| model_kwargs=condition, | |
| const_noise=const_noise, | |
| ) | |
| yield out | |
| img = out["sample"] ##### 最开始是随机噪声,然后会得到 999 的输出,然后得到 998 的输出,最后一步是预测的 x0 | |
| def training_losses(self, model, x_start, t, model_kwargs=None, noise=None): | |
| """ | |
| Compute training losses for a single timestep. | |
| :param model: the model to evaluate loss on. | |
| :param x_start: the [N x C x ...] tensor of inputs. 生成目标 x0 | |
| :param t: a batch of timestep indices. | |
| :param model_kwargs: if not None, a dict of extra keyword arguments to | |
| pass to the model. This can be used for conditioning. | |
| :param noise: if specified, the specific Gaussian noise to try to remove. | |
| :return: a dict with the key "loss" containing a tensor of shape [N]. | |
| Some mean or variance settings may also have other keys. | |
| """ | |
| mask = model_kwargs['y']['mask'] | |
| if len(x_start.shape) == 3: | |
| x_start = x_start.permute(0, 2, 1).unsqueeze(2) | |
| elif len(x_start.shape) == 4: | |
| x_start = x_start.permute(0, 2, 3, 1) | |
| if self.rep == "smplx": | |
| addition_rotate_mask = torch.ones_like(x_start) | |
| # addition_rotate_mask = mask.repeat(1, x_start.shape[1], x_start.shape[2], 1) ### [bs, njoints, nfeats, nframes] | |
| # speed = x_start[..., 1::] - x_start[..., :-1] #### [bs, njoints, nfeats, nframes-1] | |
| # speed = speed.sum(dim=-1).sum(dim=-1) #### [bs, njoints] | |
| # nosub = speed == 0 #### find joints that have no change between different frames and not calculate loss function | |
| # addition_rotate_mask[nosub] = 0 | |
| else: | |
| addition_rotate_mask = torch.ones_like(x_start) | |
| if noise is None: | |
| noise = th.randn_like(x_start) | |
| x_t = self.q_sample(x_start, t, noise=noise, model_kwargs=model_kwargs) ###### 前向传播 x0 到 xt | |
| terms = {} | |
| if self.loss_type == LossType.MSE or self.loss_type == LossType.RESCALED_MSE: #### 默认用 mse 损失 | |
| model_output = model(x_t, self._scale_timesteps(t), **model_kwargs) #### mixup_res | |
| model_output = model_output["output"] #### [bs, 263, 1, nframes] -> [nfrmaes, bs, 512] -> [bs, 263, 1, nframes] | |
| if self.model_mean_type == ModelMeanType.START_X: | |
| target = x_start | |
| elif self.model_mean_type == ModelMeanType.EPSILON: | |
| target = noise | |
| elif self.model_mean_type == ModelMeanType.PREVIOUS_X: | |
| target = self.q_posterior_mean_variance(x_start=x_start, x_t=x_t, t=t)[0] | |
| assert model_output.shape == target.shape == x_start.shape | |
| terms["rot_mse"] = self.masked_l2(target, model_output, mask, addition_rotate_mask=addition_rotate_mask) | |
| terms["loss"] = terms["rot_mse"] | |
| else: | |
| raise NotImplementedError(self.loss_type) | |
| return terms | |
| def _extract_into_tensor(arr, timesteps, broadcast_shape): | |
| """ | |
| Extract values from a 1-D numpy array for a batch of indices. | |
| :param arr: the 1-D numpy array. | |
| :param timesteps: a tensor of indices into the array to extract. | |
| :param broadcast_shape: a larger shape of K dimensions with the batch | |
| dimension equal to the length of timesteps. | |
| :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims. | |
| """ | |
| res = th.from_numpy(arr).to(device=timesteps.device)[timesteps].float() | |
| while len(res.shape) < len(broadcast_shape): | |
| res = res[..., None] | |
| return res.expand(broadcast_shape) | |