Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -10,7 +10,18 @@ from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffus
|
|
| 10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
|
|
|
| 14 |
|
| 15 |
help_text = """
|
| 16 |
To optimize image results:
|
|
@@ -56,28 +67,11 @@ if not torch.cuda.is_available():
|
|
| 56 |
|
| 57 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 58 |
|
| 59 |
-
|
| 60 |
-
# Image Generator
|
| 61 |
-
if torch.cuda.is_available():
|
| 62 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
| 63 |
-
"fluently/Fluently-XL-Final",
|
| 64 |
-
torch_dtype=torch.float16,
|
| 65 |
-
use_safetensors=True,
|
| 66 |
-
)
|
| 67 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
| 68 |
-
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
| 69 |
-
pipe.set_adapters("dalle")
|
| 70 |
-
|
| 71 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 72 |
-
if randomize_seed:
|
| 73 |
-
seed = random.randint(0, 999999)
|
| 74 |
-
return seed
|
| 75 |
-
|
| 76 |
# Generator
|
| 77 |
@spaces.GPU(duration=30, queue=False)
|
| 78 |
def king(type = "Image Generation",
|
| 79 |
input_image = None,
|
| 80 |
-
instruction: str
|
| 81 |
steps: int = 8,
|
| 82 |
randomize_seed: bool = False,
|
| 83 |
seed: int = 25,
|
|
@@ -90,7 +84,8 @@ def king(type = "Image Generation",
|
|
| 90 |
progress=gr.Progress(track_tqdm=True),
|
| 91 |
):
|
| 92 |
if type=="Image Editing" :
|
| 93 |
-
|
|
|
|
| 94 |
text_cfg_scale = text_cfg_scale
|
| 95 |
image_cfg_scale = image_cfg_scale
|
| 96 |
input_image = input_image
|
|
@@ -103,23 +98,18 @@ def king(type = "Image Generation",
|
|
| 103 |
num_inference_steps=steps, generator=generator).images[0]
|
| 104 |
return seed, output_image
|
| 105 |
else :
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
generator = torch.Generator().manual_seed(seed)
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
"output_type":"pil",
|
| 119 |
-
}
|
| 120 |
-
|
| 121 |
-
output_image = pipe(**options).images[0]
|
| 122 |
-
return seed, output_image
|
| 123 |
|
| 124 |
# Prompt classifier
|
| 125 |
def response(instruction, input_image=None):
|
|
|
|
| 10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
| 11 |
from huggingface_hub import hf_hub_download
|
| 12 |
from huggingface_hub import InferenceClient
|
| 13 |
+
import gradio as gr
|
| 14 |
+
import numpy as np
|
| 15 |
+
import random
|
| 16 |
+
import torch
|
| 17 |
+
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
| 18 |
+
import spaces
|
| 19 |
+
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
dtype = torch.float16
|
| 22 |
|
| 23 |
+
repo = "stabilityai/stable-diffusion-3-medium-diffusers"
|
| 24 |
+
pipe = StableDiffusion3Pipeline.from_pretrained(repo, torch_dtype=torch.float16).to(device)
|
| 25 |
|
| 26 |
help_text = """
|
| 27 |
To optimize image results:
|
|
|
|
| 67 |
|
| 68 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
# Generator
|
| 71 |
@spaces.GPU(duration=30, queue=False)
|
| 72 |
def king(type = "Image Generation",
|
| 73 |
input_image = None,
|
| 74 |
+
instruction: str ,
|
| 75 |
steps: int = 8,
|
| 76 |
randomize_seed: bool = False,
|
| 77 |
seed: int = 25,
|
|
|
|
| 84 |
progress=gr.Progress(track_tqdm=True),
|
| 85 |
):
|
| 86 |
if type=="Image Editing" :
|
| 87 |
+
if randomize_seed:
|
| 88 |
+
seed = random.randint(0, 99999)
|
| 89 |
text_cfg_scale = text_cfg_scale
|
| 90 |
image_cfg_scale = image_cfg_scale
|
| 91 |
input_image = input_image
|
|
|
|
| 98 |
num_inference_steps=steps, generator=generator).images[0]
|
| 99 |
return seed, output_image
|
| 100 |
else :
|
| 101 |
+
if randomize_seed:
|
| 102 |
+
seed = random.randint(0, 99999)
|
| 103 |
+
generator = torch.Generator().manual_seed(seed)
|
| 104 |
+
image = pipe(
|
| 105 |
+
prompt = prompt,
|
| 106 |
+
guidance_scale = guidance_scale,
|
| 107 |
+
num_inference_steps = steps,
|
| 108 |
+
width = width,
|
| 109 |
+
height = height,
|
| 110 |
+
generator = generator
|
| 111 |
+
).images[0]
|
| 112 |
+
return seed, image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
# Prompt classifier
|
| 115 |
def response(instruction, input_image=None):
|