Spaces:
Running
Running
| import streamlit as st | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| import torch | |
| import numpy as np | |
| # Load the model and tokenizer from Hugging Face | |
| model_name = "KevSun/IELTS_essay_scoring" | |
| model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
| tokenizer = AutoTokenizer.from_pretrained(model_name) | |
| # Streamlit app | |
| st.title("Automated Scoring IELTS App") | |
| st.write("Enter your IELTS essay below to predict scores from multiple dimensions:") | |
| # Input text from user | |
| user_input = st.text_area("Your text here:") | |
| if st.button("Predict"): | |
| if user_input: | |
| # Tokenize input text | |
| inputs = tokenizer(user_input, return_tensors="pt") | |
| # Get predictions from the model | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| # Extract the predictions | |
| predictions = outputs.logits.squeeze() | |
| # Convert to numpy array if necessary | |
| predicted_scores = predictions.numpy() | |
| #predictions = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
| #predictions = predictions[0].tolist() | |
| # Convert predictions to a NumPy array for the calculations | |
| #predictions_np = np.array(predictions) | |
| # Scale the predictions | |
| normalized_scores = (predicted_scores / predicted_scores.max()) * 9 # Scale to 9 | |
| rounded_scores = np.round(normalized_scores * 2) / 2 | |
| # Display the predictions | |
| labels = ["Task Achievement", "Coherence and Cohesion", "Vocabulary", "Grammar", "Overall"] | |
| for label, score in zip(labels, rounded_scores): | |
| st.write(f"{label}: {score:}") | |
| else: | |
| st.write("Please enter some text to get scores.") | |