Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,039 Bytes
ff79aeb 2f52f66 d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb 12dcab8 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 ff79aeb d9adea5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 |
import os
import sys
import spaces
import torch
import numpy as np
import soundfile as sf
import librosa
import logging
import gradio as gr
import tempfile
import re
from typing import Dict, Optional
# --- 1. Setup Environment ---
# Add the project root to the Python path
project_root = os.path.dirname(os.path.abspath(__file__))
if project_root not in sys.path:
sys.path.insert(0, project_root)
# Configure logging
logging.basicConfig(level=logging.INFO, format='[%(name)s] %(message)s')
logger = logging.getLogger("VibeVoiceGradio")
# Mock ComfyUI's folder_paths module
class MockFolderPaths:
def get_folder_paths(self, folder_name):
if folder_name == "checkpoints":
models_dir = os.path.join(project_root, "models")
os.makedirs(models_dir, exist_ok=True)
return [models_dir]
return []
sys.modules['folder_paths'] = MockFolderPaths()
# Import BOTH node classes
from nodes.single_speaker_node import VibeVoiceSingleSpeakerNode
from nodes.multi_speaker_node import VibeVoiceMultipleSpeakersNode
# --- 2. Load Models and Share Weights ---
logger.info("Initializing VibeVoice nodes...")
# Instantiate both node types.
single_speaker_node = VibeVoiceSingleSpeakerNode()
multi_speaker_node = VibeVoiceMultipleSpeakersNode()
try:
logger.info("Loading VibeVoice-Large model once. This may take a while on the first run...")
# Load the model into one node first.
multi_speaker_node.load_model(
model_name='VibeVoice-Large',
model_path='aoi-ot/VibeVoice-Large',
attention_type='auto'
)
logger.info("Sharing loaded model weights between node instances...")
single_speaker_node.model = multi_speaker_node.model
single_speaker_node.processor = multi_speaker_node.processor
single_speaker_node.current_model_path = multi_speaker_node.current_model_path
single_speaker_node.current_attention_type = multi_speaker_node.current_attention_type
logger.info("VibeVoice-Large model loaded and shared successfully!")
except Exception as e:
logger.error(f"Failed to load the model: {e}", exc_info=True)
logger.error("Please ensure you have an internet connection for the first run and sufficient VRAM.")
sys.exit(1)
# --- 3. Helper Functions ---
def load_audio_for_node(file_path: Optional[str]) -> Optional[Dict]:
"""Loads an audio file and formats it for the node."""
if file_path is None:
return None
try:
waveform, sr = librosa.load(file_path, sr=24000, mono=True)
waveform_tensor = torch.from_numpy(waveform).float().unsqueeze(0).unsqueeze(0)
return {"waveform": waveform_tensor, "sample_rate": 24000}
except Exception as e:
logger.error(f"Failed to load audio file {file_path}: {e}")
return None
def save_audio_to_tempfile(audio_dict: Dict) -> Optional[str]:
"""Saves the node's audio output to a temporary WAV file for Gradio."""
if not audio_dict or "waveform" not in audio_dict:
return None
waveform_np = audio_dict["waveform"].squeeze().cpu().numpy()
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmpfile:
sf.write(tmpfile.name, waveform_np, audio_dict["sample_rate"])
return tmpfile.name
def detect_speaker_count(text: str) -> int:
"""Analyzes text to count the number of unique speakers."""
speaker_tags = re.findall(r'\[(\d+)\]\s*:', text)
if not speaker_tags:
# No tags found, treat as a single speaker monologue.
return 1
unique_speakers = set(int(tag) for tag in speaker_tags)
return len(unique_speakers)
# --- 4. Gradio Core Logic ---
@spaces.GPU
def generate_speech_gradio(
text: str,
speaker1_audio_path: Optional[str],
speaker2_audio_path: Optional[str],
speaker3_audio_path: Optional[str],
speaker4_audio_path: Optional[str],
seed: int,
diffusion_steps: int,
cfg_scale: float,
use_sampling: bool,
temperature: float,
top_p: float,
max_words_per_chunk: int,
progress=gr.Progress(track_tqdm=True)
):
"""The main function that Gradio will call, now with dynamic node switching."""
if not text or not text.strip():
raise gr.Error("Please provide some text to generate.")
progress(0, desc="Analyzing text and loading voices...")
speaker_count = detect_speaker_count(text)
# Load voices
speaker1_voice = load_audio_for_node(speaker1_audio_path)
speaker2_voice = load_audio_for_node(speaker2_audio_path)
speaker3_voice = load_audio_for_node(speaker3_audio_path)
speaker4_voice = load_audio_for_node(speaker4_audio_path)
progress(0.2, desc="Generating speech... (this can take a moment)")
try:
if speaker_count <= 1:
logger.info(f"Detected single speaker. Using VibeVoiceSingleSpeakerNode.")
# Prepare text for single speaker node (remove tags like [1]:)
processed_text = re.sub(r'\[1\]\s*:', '', text).strip()
audio_output_tuple = single_speaker_node.generate_speech(
text=processed_text,
model='VibeVoice-Large',
attention_type='auto',
free_memory_after_generate=False,
diffusion_steps=int(diffusion_steps),
seed=int(seed),
cfg_scale=cfg_scale,
use_sampling=use_sampling,
voice_to_clone=speaker1_voice, # Use speaker 1's voice for cloning
temperature=temperature,
top_p=top_p,
max_words_per_chunk=int(max_words_per_chunk)
)
else:
logger.info(f"Detected {speaker_count} speakers. Using VibeVoiceMultipleSpeakersNode.")
audio_output_tuple = multi_speaker_node.generate_speech(
text=text,
model='VibeVoice-Large',
attention_type='auto',
free_memory_after_generate=False,
diffusion_steps=int(diffusion_steps),
seed=int(seed),
cfg_scale=cfg_scale,
use_sampling=use_sampling,
speaker1_voice=speaker1_voice,
speaker2_voice=speaker2_voice,
speaker3_voice=speaker3_voice,
speaker4_voice=speaker4_voice,
temperature=temperature,
top_p=top_p
)
except Exception as e:
logger.error(f"Error during speech generation: {e}", exc_info=True)
raise gr.Error(f"An error occurred during generation: {e}")
progress(0.9, desc="Saving audio file...")
output_audio_path = save_audio_to_tempfile(audio_output_tuple[0])
if output_audio_path is None:
raise gr.Error("Failed to process the generated audio.")
return output_audio_path
# --- 5. Gradio UI Layout ---
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown(
"# VibeVoice Text-to-Speech Demo\n"
"Generate single or multi-speaker audio. For single-speaker monologues, the system automatically uses a specialized node with text chunking."
)
with gr.Row():
with gr.Column(scale=2):
text_input = gr.Textbox(
label="Text Input",
placeholder=(
"Enter plain text for a single speaker, or use tags like [1]:, [2]: for multiple speakers.\n\n"
"[1]: Hello, I'm the first speaker.\n"
"[2]: Hi there, I'm the second! How are you?"
),
lines=8,
max_lines=20
)
with gr.Accordion("Upload Speaker Voices (Optional)", open=True):
gr.Markdown("Upload a short audio clip (3-30 seconds, clear audio) for each speaker you want to clone.")
with gr.Row():
speaker1_audio = gr.Audio(label="Speaker 1 Voice", type="filepath")
speaker2_audio = gr.Audio(label="Speaker 2 Voice", type="filepath")
with gr.Row():
speaker3_audio = gr.Audio(label="Speaker 3 Voice", type="filepath")
speaker4_audio = gr.Audio(label="Speaker 4 Voice", type="filepath")
with gr.Accordion("Advanced Options", open=False):
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=42, interactive=True)
diffusion_steps = gr.Slider(label="Diffusion Steps", minimum=5, maximum=100, step=1, value=20, interactive=True, info="More steps = better quality, but slower.")
cfg_scale = gr.Slider(label="CFG Scale", minimum=0.5, maximum=3.5, step=0.05, value=1.3, interactive=True, info="Guidance scale.")
use_sampling = gr.Checkbox(label="Use Sampling", value=False, interactive=True, info="Enable for more varied, less deterministic output.")
temperature = gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, step=0.05, value=0.95, interactive=True, info="Only used when sampling is enabled.")
top_p = gr.Slider(label="Top P", minimum=0.1, maximum=1.0, step=0.05, value=0.95, interactive=True, info="Only used when sampling is enabled.")
max_words_per_chunk = gr.Slider(label="Max Words Per Chunk", minimum=100, maximum=500, step=10, value=250, interactive=True, info="For long single-speaker text. Splits text to avoid errors.")
with gr.Column(scale=1):
generate_button = gr.Button("Generate Speech", variant="primary")
audio_output = gr.Audio(label="Generated Speech", type="filepath", interactive=False)
inputs = [
text_input,
speaker1_audio, speaker2_audio, speaker3_audio, speaker4_audio,
seed, diffusion_steps, cfg_scale, use_sampling, temperature, top_p, max_words_per_chunk
]
generate_button.click(
fn=generate_speech_gradio,
inputs=inputs,
outputs=audio_output
)
if __name__ == "__main__":
demo.launch() |