Update app.py
Browse files
app.py
CHANGED
|
@@ -1,64 +1,135 @@
|
|
| 1 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
# Load Personality_LM model and tokenizer
|
| 6 |
-
model
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
def analyze_personality(text):
|
| 10 |
-
"""
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
with torch.no_grad():
|
| 14 |
-
|
|
|
|
| 15 |
|
|
|
|
| 16 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 17 |
predicted_scores = predictions[0].tolist()
|
| 18 |
|
|
|
|
| 19 |
trait_names = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
|
|
|
|
|
|
|
| 20 |
personality_traits = {trait: score for trait, score in zip(trait_names, predicted_scores)}
|
| 21 |
|
| 22 |
return personality_traits
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
"""
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
return response
|
| 33 |
|
| 34 |
def respond(user_message, history, personality_text):
|
| 35 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
traits = analyze_personality(personality_text)
|
| 37 |
-
|
| 38 |
-
|
|
|
|
| 39 |
|
|
|
|
| 40 |
history.append((user_message, final_response))
|
|
|
|
| 41 |
return history, history
|
| 42 |
|
| 43 |
def personality_demo():
|
| 44 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
with gr.Blocks() as demo:
|
|
|
|
| 46 |
gr.Markdown("### Personality-Based Chatbot")
|
| 47 |
|
|
|
|
| 48 |
personality_textbox = gr.Textbox(
|
| 49 |
label="Define Personality Text (Use direct input if no file)",
|
| 50 |
placeholder="Type personality description or paste a sample text here."
|
| 51 |
)
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
|
|
|
| 56 |
|
|
|
|
| 57 |
msg.submit(respond, [msg, chatbot, personality_textbox], [chatbot, chatbot])
|
|
|
|
|
|
|
| 58 |
clear.click(lambda: ([], []), None, [chatbot, chatbot])
|
| 59 |
|
| 60 |
return demo
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
|
|
|
| 63 |
demo = personality_demo()
|
| 64 |
demo.launch()
|
|
|
|
| 1 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
| 2 |
+
from huggingface_hub import InferenceClient
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
# Load Personality_LM model and tokenizer
|
| 7 |
+
# The model is pre-trained to evaluate personality traits based on text input
|
| 8 |
+
personality_model = AutoModelForSequenceClassification.from_pretrained("KevSun/Personality_LM", ignore_mismatched_sizes=True)
|
| 9 |
+
personality_tokenizer = AutoTokenizer.from_pretrained("KevSun/Personality_LM")
|
| 10 |
+
|
| 11 |
+
# Initialize the LLM client (HuggingFaceH4/zephyr-7b-beta)
|
| 12 |
+
llm_client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 13 |
|
| 14 |
def analyze_personality(text):
|
| 15 |
+
"""
|
| 16 |
+
Analyze personality traits from input text using the Personality_LM model.
|
| 17 |
+
Args:
|
| 18 |
+
text (str): The input text used for personality analysis.
|
| 19 |
+
Returns:
|
| 20 |
+
dict: A dictionary with personality traits and their corresponding scores.
|
| 21 |
+
"""
|
| 22 |
+
# Encode the input text for the model
|
| 23 |
+
encoded_input = personality_tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
| 24 |
+
|
| 25 |
+
# Set the model to evaluation mode
|
| 26 |
+
personality_model.eval()
|
| 27 |
with torch.no_grad():
|
| 28 |
+
# Perform prediction
|
| 29 |
+
outputs = personality_model(**encoded_input)
|
| 30 |
|
| 31 |
+
# Apply softmax to get probabilities for each trait
|
| 32 |
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 33 |
predicted_scores = predictions[0].tolist()
|
| 34 |
|
| 35 |
+
# Define trait names corresponding to the model's output indices
|
| 36 |
trait_names = ["agreeableness", "openness", "conscientiousness", "extraversion", "neuroticism"]
|
| 37 |
+
|
| 38 |
+
# Map traits to their respective scores
|
| 39 |
personality_traits = {trait: score for trait, score in zip(trait_names, predicted_scores)}
|
| 40 |
|
| 41 |
return personality_traits
|
| 42 |
|
| 43 |
+
def generate_response(user_message, traits):
|
| 44 |
+
"""
|
| 45 |
+
Generate a chatbot response using the LLM and personality traits.
|
| 46 |
+
Args:
|
| 47 |
+
user_message (str): The user's input message.
|
| 48 |
+
traits (dict): The personality traits with their scores.
|
| 49 |
+
Returns:
|
| 50 |
+
str: The chatbot response.
|
| 51 |
+
"""
|
| 52 |
+
# Create a system message to guide the LLM behavior
|
| 53 |
+
system_message = (
|
| 54 |
+
"You are a chatbot with the following personality traits: "
|
| 55 |
+
f"Agreeableness: {traits['agreeableness']:.2f}, "
|
| 56 |
+
f"Openness: {traits['openness']:.2f}, "
|
| 57 |
+
f"Conscientiousness: {traits['conscientiousness']:.2f}, "
|
| 58 |
+
f"Extraversion: {traits['extraversion']:.2f}, "
|
| 59 |
+
f"Neuroticism: {traits['neuroticism']:.2f}."
|
| 60 |
+
" Respond to the user's message in a way that reflects these traits."
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Generate a response using the LLM
|
| 64 |
+
messages = [
|
| 65 |
+
{"role": "system", "content": system_message},
|
| 66 |
+
{"role": "user", "content": user_message}
|
| 67 |
+
]
|
| 68 |
+
|
| 69 |
+
response = ""
|
| 70 |
+
for message in llm_client.chat_completion(
|
| 71 |
+
messages,
|
| 72 |
+
max_tokens=256,
|
| 73 |
+
stream=True,
|
| 74 |
+
temperature=0.7,
|
| 75 |
+
top_p=0.95
|
| 76 |
+
):
|
| 77 |
+
token = message.choices[0].delta.content
|
| 78 |
+
response += token
|
| 79 |
+
|
| 80 |
return response
|
| 81 |
|
| 82 |
def respond(user_message, history, personality_text):
|
| 83 |
+
"""
|
| 84 |
+
Generate a chatbot response based on user input and personality traits.
|
| 85 |
+
Args:
|
| 86 |
+
user_message (str): The user's input message.
|
| 87 |
+
history (list): A list of message-response tuples to maintain conversation history.
|
| 88 |
+
personality_text (str): The text defining the chatbot's personality.
|
| 89 |
+
Returns:
|
| 90 |
+
tuple: Updated conversation history.
|
| 91 |
+
"""
|
| 92 |
+
# Analyze personality traits from the provided text
|
| 93 |
traits = analyze_personality(personality_text)
|
| 94 |
+
|
| 95 |
+
# Generate a response using the LLM and personality traits
|
| 96 |
+
final_response = generate_response(user_message, traits)
|
| 97 |
|
| 98 |
+
# Append the new interaction to the conversation history
|
| 99 |
history.append((user_message, final_response))
|
| 100 |
+
|
| 101 |
return history, history
|
| 102 |
|
| 103 |
def personality_demo():
|
| 104 |
+
"""
|
| 105 |
+
Create the Gradio interface for the chatbot with personality-based adjustments.
|
| 106 |
+
Returns:
|
| 107 |
+
gr.Blocks: The Gradio interface object.
|
| 108 |
+
"""
|
| 109 |
with gr.Blocks() as demo:
|
| 110 |
+
# Header for the chatbot interface
|
| 111 |
gr.Markdown("### Personality-Based Chatbot")
|
| 112 |
|
| 113 |
+
# Textbox for defining personality traits via input text
|
| 114 |
personality_textbox = gr.Textbox(
|
| 115 |
label="Define Personality Text (Use direct input if no file)",
|
| 116 |
placeholder="Type personality description or paste a sample text here."
|
| 117 |
)
|
| 118 |
|
| 119 |
+
# Chatbot UI elements
|
| 120 |
+
chatbot = gr.Chatbot() # Chat display area
|
| 121 |
+
msg = gr.Textbox(label="User Input", placeholder="Say something to the chatbot...") # User input box
|
| 122 |
+
clear = gr.Button("Clear Chat") # Button to clear chat history
|
| 123 |
|
| 124 |
+
# Link user input submission to the chatbot response function
|
| 125 |
msg.submit(respond, [msg, chatbot, personality_textbox], [chatbot, chatbot])
|
| 126 |
+
|
| 127 |
+
# Link clear button to reset the chat history
|
| 128 |
clear.click(lambda: ([], []), None, [chatbot, chatbot])
|
| 129 |
|
| 130 |
return demo
|
| 131 |
|
| 132 |
if __name__ == "__main__":
|
| 133 |
+
# Launch the Gradio demo interface
|
| 134 |
demo = personality_demo()
|
| 135 |
demo.launch()
|