|
|
import gc
|
|
|
import logging
|
|
|
|
|
|
import torch
|
|
|
|
|
|
from .eval_utils import (ModelConfig, VideoInfo, all_model_cfg, generate, load_image,
|
|
|
load_video, make_video, setup_eval_logging)
|
|
|
from .model.flow_matching import FlowMatching
|
|
|
from .model.networks import MMAudio, get_my_mmaudio
|
|
|
from .model.sequence_config import SequenceConfig
|
|
|
from .model.utils.features_utils import FeaturesUtils
|
|
|
|
|
|
persistent_offloadobj = None
|
|
|
|
|
|
def get_model(persistent_models = False, verboseLevel = 1) -> tuple[MMAudio, FeaturesUtils, SequenceConfig]:
|
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
|
|
|
|
global device, persistent_offloadobj, persistent_net, persistent_features_utils, persistent_seq_cfg
|
|
|
|
|
|
log = logging.getLogger()
|
|
|
|
|
|
device = 'cpu'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dtype = torch.bfloat16
|
|
|
|
|
|
model: ModelConfig = all_model_cfg['large_44k_v2']
|
|
|
|
|
|
|
|
|
setup_eval_logging()
|
|
|
|
|
|
seq_cfg = model.seq_cfg
|
|
|
if persistent_offloadobj == None:
|
|
|
from accelerate import init_empty_weights
|
|
|
|
|
|
net: MMAudio = get_my_mmaudio(model.model_name)
|
|
|
net.load_weights(torch.load(model.model_path, map_location=device, weights_only=True))
|
|
|
net.to(device, dtype).eval()
|
|
|
log.info(f'Loaded weights from {model.model_path}')
|
|
|
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
|
|
synchformer_ckpt=model.synchformer_ckpt,
|
|
|
enable_conditions=True,
|
|
|
mode=model.mode,
|
|
|
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
|
|
need_vae_encoder=False)
|
|
|
feature_utils = feature_utils.to(device, dtype).eval()
|
|
|
feature_utils.device = "cuda"
|
|
|
|
|
|
pipe = { "net" : net, "clip" : feature_utils.clip_model, "syncformer" : feature_utils.synchformer, "vocode" : feature_utils.tod.vocoder, "vae" : feature_utils.tod.vae }
|
|
|
from mmgp import offload
|
|
|
offloadobj = offload.profile(pipe, profile_no=4, verboseLevel=2)
|
|
|
if persistent_models:
|
|
|
persistent_offloadobj = offloadobj
|
|
|
persistent_net = net
|
|
|
persistent_features_utils = feature_utils
|
|
|
persistent_seq_cfg = seq_cfg
|
|
|
|
|
|
else:
|
|
|
offloadobj = persistent_offloadobj
|
|
|
net = persistent_net
|
|
|
feature_utils = persistent_features_utils
|
|
|
seq_cfg = persistent_seq_cfg
|
|
|
|
|
|
if not persistent_models:
|
|
|
persistent_offloadobj = None
|
|
|
persistent_net = None
|
|
|
persistent_features_utils = None
|
|
|
persistent_seq_cfg = None
|
|
|
|
|
|
return net, feature_utils, seq_cfg, offloadobj
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
def video_to_audio(video, prompt: str, negative_prompt: str, seed: int, num_steps: int,
|
|
|
cfg_strength: float, duration: float, save_path , persistent_models = False, audio_file_only = False, verboseLevel = 1):
|
|
|
|
|
|
global device
|
|
|
|
|
|
net, feature_utils, seq_cfg, offloadobj = get_model(persistent_models, verboseLevel )
|
|
|
|
|
|
rng = torch.Generator(device="cuda")
|
|
|
if seed >= 0:
|
|
|
rng.manual_seed(seed)
|
|
|
else:
|
|
|
rng.seed()
|
|
|
fm = FlowMatching(min_sigma=0, inference_mode='euler', num_steps=num_steps)
|
|
|
|
|
|
video_info = load_video(video, duration)
|
|
|
clip_frames = video_info.clip_frames
|
|
|
sync_frames = video_info.sync_frames
|
|
|
duration = video_info.duration_sec
|
|
|
clip_frames = clip_frames.unsqueeze(0)
|
|
|
sync_frames = sync_frames.unsqueeze(0)
|
|
|
seq_cfg.duration = duration
|
|
|
net.update_seq_lengths(seq_cfg.latent_seq_len, seq_cfg.clip_seq_len, seq_cfg.sync_seq_len)
|
|
|
|
|
|
audios = generate(clip_frames,
|
|
|
sync_frames, [prompt],
|
|
|
negative_text=[negative_prompt],
|
|
|
feature_utils=feature_utils,
|
|
|
net=net,
|
|
|
fm=fm,
|
|
|
rng=rng,
|
|
|
cfg_strength=cfg_strength,
|
|
|
offloadobj = offloadobj
|
|
|
)
|
|
|
audio = audios.float().cpu()[0]
|
|
|
|
|
|
|
|
|
if audio_file_only:
|
|
|
import torchaudio
|
|
|
torchaudio.save(save_path, audio.unsqueeze(0) if audio.dim() == 1 else audio, seq_cfg.sampling_rate)
|
|
|
else:
|
|
|
make_video(video, video_info, save_path, audio, sampling_rate=seq_cfg.sampling_rate)
|
|
|
|
|
|
offloadobj.unload_all()
|
|
|
if not persistent_models:
|
|
|
offloadobj.release()
|
|
|
|
|
|
torch.cuda.empty_cache()
|
|
|
gc.collect()
|
|
|
return save_path
|
|
|
|