File size: 17,224 Bytes
3ea2ecf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import math
from typing import Callable
import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch import Tensor
from .model import Flux
from .modules.autoencoder import AutoEncoder
from .modules.conditioner import HFEmbedder
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder
from .util import PREFERED_KONTEXT_RESOLUTIONS
from einops import rearrange, repeat
from typing import Literal
import torchvision.transforms.functional as TVF
def get_noise(
num_samples: int,
height: int,
width: int,
device: torch.device,
dtype: torch.dtype,
seed: int,
):
return torch.randn(
num_samples,
16,
# allow for packing
2 * math.ceil(height / 16),
2 * math.ceil(width / 16),
dtype=dtype,
device=device,
generator=torch.Generator(device=device).manual_seed(seed),
)
def prepare_prompt(t5: HFEmbedder, clip: HFEmbedder, bs: int, prompt: str | list[str], neg: bool = False, device: str = "cuda") -> dict[str, Tensor]:
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"neg_txt" if neg else "txt": txt.to(device),
"neg_txt_ids" if neg else "txt_ids": txt_ids.to(device),
"neg_vec" if neg else "vec": vec.to(device),
}
def prepare_img( img: Tensor) -> dict[str, Tensor]:
bs, c, h, w = img.shape
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
}
def prepare_redux(
t5: HFEmbedder,
clip: HFEmbedder,
img: Tensor,
prompt: str | list[str],
encoder: ReduxImageEncoder,
img_cond_path: str,
) -> dict[str, Tensor]:
bs, _, h, w = img.shape
if bs == 1 and not isinstance(prompt, str):
bs = len(prompt)
img_cond = Image.open(img_cond_path).convert("RGB")
with torch.no_grad():
img_cond = encoder(img_cond)
img_cond = img_cond.to(torch.bfloat16)
if img_cond.shape[0] == 1 and bs > 1:
img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
if isinstance(prompt, str):
prompt = [prompt]
txt = t5(prompt)
txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
if txt.shape[0] == 1 and bs > 1:
txt = repeat(txt, "1 ... -> bs ...", bs=bs)
txt_ids = torch.zeros(bs, txt.shape[1], 3)
vec = clip(prompt)
if vec.shape[0] == 1 and bs > 1:
vec = repeat(vec, "1 ... -> bs ...", bs=bs)
return {
"img": img,
"img_ids": img_ids.to(img.device),
"txt": txt.to(img.device),
"txt_ids": txt_ids.to(img.device),
"vec": vec.to(img.device),
}
def prepare_kontext(
ae: AutoEncoder,
img_cond_list: list,
seed: int,
device: torch.device,
target_width: int | None = None,
target_height: int | None = None,
bs: int = 1,
img_mask = None,
) -> tuple[dict[str, Tensor], int, int]:
# load and encode the conditioning image
res_match_output = img_mask is not None
img_cond_seq = None
img_cond_seq_ids = None
if img_cond_list == None: img_cond_list = []
height_offset = 0
width_offset = 0
for cond_no, img_cond in enumerate(img_cond_list):
width, height = img_cond.size
aspect_ratio = width / height
if res_match_output:
width, height = target_width, target_height
else:
# Kontext is trained on specific resolutions, using one of them is recommended
_, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS)
width = 2 * int(width / 16)
height = 2 * int(height / 16)
img_cond = img_cond.resize((8 * width, 8 * height), Image.Resampling.LANCZOS)
img_cond = np.array(img_cond)
img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
img_cond = rearrange(img_cond, "h w c -> 1 c h w")
with torch.no_grad():
img_cond_latents = ae.encode(img_cond.to(device))
img_cond_latents = img_cond_latents.to(torch.bfloat16)
img_cond_latents = rearrange(img_cond_latents, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img_cond.shape[0] == 1 and bs > 1:
img_cond_latents = repeat(img_cond_latents, "1 ... -> bs ...", bs=bs)
img_cond = None
# image ids are the same as base image with the first dimension set to 1
# instead of 0
img_cond_ids = torch.zeros(height // 2, width // 2, 3)
img_cond_ids[..., 0] = 1
img_cond_ids[..., 1] = img_cond_ids[..., 1] + torch.arange(height // 2)[:, None] + height_offset
img_cond_ids[..., 2] = img_cond_ids[..., 2] + torch.arange(width // 2)[None, :] + width_offset
img_cond_ids = repeat(img_cond_ids, "h w c -> b (h w) c", b=bs)
height_offset += height // 2
width_offset += width // 2
if target_width is None:
target_width = 8 * width
if target_height is None:
target_height = 8 * height
img_cond_ids = img_cond_ids.to(device)
if cond_no == 0:
img_cond_seq, img_cond_seq_ids = img_cond_latents, img_cond_ids
else:
img_cond_seq, img_cond_seq_ids = torch.cat([img_cond_seq, img_cond_latents], dim=1), torch.cat([img_cond_seq_ids, img_cond_ids], dim=1)
return_dict = {
"img_cond_seq": img_cond_seq,
"img_cond_seq_ids": img_cond_seq_ids,
}
if img_mask is not None:
from shared.utils.utils import convert_image_to_tensor, convert_tensor_to_image
# image_height, image_width = calculate_new_dimensions(ref_height, ref_width, image_height, image_width, False, block_size=multiple_of)
image_mask_latents = convert_image_to_tensor(img_mask.resize((target_width // 16, target_height // 16), resample=Image.Resampling.LANCZOS))
image_mask_latents = torch.where(image_mask_latents>-0.5, 1., 0. )[0:1]
image_mask_rebuilt = image_mask_latents.repeat_interleave(16, dim=-1).repeat_interleave(16, dim=-2).unsqueeze(0)
# convert_tensor_to_image( image_mask_rebuilt.squeeze(0).repeat(3,1,1)).save("mmm.png")
image_mask_latents = image_mask_latents.reshape(1, -1, 1).to(device)
return_dict.update({
"img_msk_latents": image_mask_latents,
"img_msk_rebuilt": image_mask_rebuilt,
})
img = get_noise(
bs,
target_height,
target_width,
device=device,
dtype=torch.bfloat16,
seed=seed,
)
return_dict.update(prepare_img(img))
return return_dict, target_height, target_width
def time_shift(mu: float, sigma: float, t: Tensor):
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
def get_lin_function(
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15
) -> Callable[[float], float]:
m = (y2 - y1) / (x2 - x1)
b = y1 - m * x1
return lambda x: m * x + b
def get_schedule(
num_steps: int,
image_seq_len: int,
base_shift: float = 0.5,
max_shift: float = 1.15,
shift: bool = True,
) -> list[float]:
# extra step for zero
timesteps = torch.linspace(1, 0, num_steps + 1)
# shifting the schedule to favor high timesteps for higher signal images
if shift:
# estimate mu based on linear estimation between two points
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
timesteps = time_shift(mu, 1.0, timesteps)
return timesteps.tolist()
def denoise(
model: Flux,
# model input
img: Tensor,
img_ids: Tensor,
txt: Tensor,
txt_ids: Tensor,
vec: Tensor,
# sampling parameters
timesteps: list[float],
guidance: float = 4.0,
real_guidance_scale = None,
# extra img tokens (channel-wise)
neg_txt: Tensor = None,
neg_txt_ids: Tensor= None,
neg_vec: Tensor = None,
img_cond: Tensor | None = None,
# extra img tokens (sequence-wise)
img_cond_seq: Tensor | None = None,
img_cond_seq_ids: Tensor | None = None,
siglip_embedding = None,
siglip_embedding_ids = None,
callback=None,
pipeline=None,
loras_slists=None,
unpack_latent = None,
joint_pass= False,
img_msk_latents = None,
img_msk_rebuilt = None,
denoising_strength = 1,
):
kwargs = {'pipeline': pipeline, 'callback': callback, "img_len" : img.shape[1], "siglip_embedding": siglip_embedding, "siglip_embedding_ids": siglip_embedding_ids}
if callback != None:
callback(-1, None, True)
original_image_latents = None if img_cond_seq is None else img_cond_seq.clone()
original_timesteps = timesteps
morph, first_step = False, 0
if img_msk_latents is not None:
randn = torch.randn_like(original_image_latents)
if denoising_strength < 1.:
first_step = int(len(timesteps) * (1. - denoising_strength))
if not morph:
latent_noise_factor = timesteps[first_step]
latents = original_image_latents * (1.0 - latent_noise_factor) + randn * latent_noise_factor
img = latents.to(img)
latents = None
timesteps = timesteps[first_step:]
updated_num_steps= len(timesteps) -1
if callback != None:
from shared.utils.loras_mutipliers import update_loras_slists
update_loras_slists(model, loras_slists, len(original_timesteps))
callback(-1, None, True, override_num_inference_steps = updated_num_steps)
from mmgp import offload
# this is ignored for schnell
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
offload.set_step_no_for_lora(model, first_step + i)
if pipeline._interrupt:
return None
if img_msk_latents is not None and denoising_strength <1. and i == first_step and morph:
latent_noise_factor = t_curr/1000
img = original_image_latents * (1.0 - latent_noise_factor) + img * latent_noise_factor
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
img_input = img
img_input_ids = img_ids
if img_cond is not None:
img_input = torch.cat((img, img_cond), dim=-1)
if img_cond_seq is not None:
img_input = torch.cat((img_input, img_cond_seq), dim=1)
img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
if not joint_pass or real_guidance_scale == 1:
pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[txt],
txt_ids_list=[txt_ids],
y_list=[vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)[0]
if pred == None: return None
if real_guidance_scale> 1:
neg_pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[neg_txt],
txt_ids_list=[neg_txt_ids],
y_list=[neg_vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)[0]
if neg_pred == None: return None
else:
pred, neg_pred = model(
img=img_input,
img_ids=img_input_ids,
txt_list=[txt, neg_txt],
txt_ids_list=[txt_ids, neg_txt_ids],
y_list=[vec, neg_vec],
timesteps=t_vec,
guidance=guidance_vec,
**kwargs
)
if pred == None: return None
if real_guidance_scale > 1:
pred = neg_pred + real_guidance_scale * (pred - neg_pred)
img += (t_prev - t_curr) * pred
if img_msk_latents is not None:
latent_noise_factor = t_prev
# noisy_image = original_image_latents * (1.0 - latent_noise_factor) + torch.randn_like(original_image_latents) * latent_noise_factor
noisy_image = original_image_latents * (1.0 - latent_noise_factor) + randn * latent_noise_factor
img = noisy_image * (1-img_msk_latents) + img_msk_latents * img
noisy_image = None
if callback is not None:
preview = unpack_latent(img).transpose(0,1)
callback(i, preview, False)
return img
def prepare_multi_ip(
ae: AutoEncoder,
img_cond_list: list,
seed: int,
device: torch.device,
target_width: int | None = None,
target_height: int | None = None,
bs: int = 1,
pe: Literal["d", "h", "w", "o"] = "d",
) -> dict[str, Tensor]:
ref_imgs = img_cond_list
assert pe in ["d", "h", "w", "o"]
ref_imgs = [
ae.encode(
(TVF.to_tensor(ref_img) * 2.0 - 1.0)
.unsqueeze(0)
.to(device, torch.float32)
).to(torch.bfloat16)
for ref_img in img_cond_list
]
img = get_noise( bs, target_height, target_width, device=device, dtype=torch.bfloat16, seed=seed)
bs, c, h, w = img.shape
# tgt img
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
if img.shape[0] == 1 and bs > 1:
img = repeat(img, "1 ... -> bs ...", bs=bs)
img_ids = torch.zeros(h // 2, w // 2, 3)
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
img_cond_seq = img_cond_seq_ids = None
pe_shift_w, pe_shift_h = w // 2, h // 2
for cond_no, ref_img in enumerate(ref_imgs):
_, _, ref_h1, ref_w1 = ref_img.shape
ref_img = rearrange(
ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2
)
if ref_img.shape[0] == 1 and bs > 1:
ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
ref_img_ids1 = torch.zeros(ref_h1 // 2, ref_w1 // 2, 3)
# img id分别在宽高偏移各自最大值
h_offset = pe_shift_h if pe in {"d", "h"} else 0
w_offset = pe_shift_w if pe in {"d", "w"} else 0
ref_img_ids1[..., 1] = (
ref_img_ids1[..., 1] + torch.arange(ref_h1 // 2)[:, None] + h_offset
)
ref_img_ids1[..., 2] = (
ref_img_ids1[..., 2] + torch.arange(ref_w1 // 2)[None, :] + w_offset
)
ref_img_ids1 = repeat(ref_img_ids1, "h w c -> b (h w) c", b=bs)
if target_width is None:
target_width = 8 * ref_w1
if target_height is None:
target_height = 8 * ref_h1
ref_img_ids1 = ref_img_ids1.to(device)
if cond_no == 0:
img_cond_seq, img_cond_seq_ids = ref_img, ref_img_ids1
else:
img_cond_seq, img_cond_seq_ids = torch.cat([img_cond_seq, ref_img], dim=1), torch.cat([img_cond_seq_ids, ref_img_ids1], dim=1)
# 更新pe shift
pe_shift_h += ref_h1 // 2
pe_shift_w += ref_w1 // 2
return {
"img": img,
"img_ids": img_ids.to(img.device),
"img_cond_seq": img_cond_seq,
"img_cond_seq_ids": img_cond_seq_ids,
}, target_height, target_width
def unpack(x: Tensor, height: int, width: int) -> Tensor:
return rearrange(
x,
"b (h w) (c ph pw) -> b c (h ph) (w pw)",
h=math.ceil(height / 16),
w=math.ceil(width / 16),
ph=2,
pw=2,
)
|