File size: 17,224 Bytes
3ea2ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import math
from typing import Callable

import numpy as np
import torch
from einops import rearrange, repeat
from PIL import Image
from torch import Tensor

from .model import Flux
from .modules.autoencoder import AutoEncoder
from .modules.conditioner import HFEmbedder
from .modules.image_embedders import CannyImageEncoder, DepthImageEncoder, ReduxImageEncoder
from .util import PREFERED_KONTEXT_RESOLUTIONS
from einops import rearrange, repeat
from typing import Literal
import torchvision.transforms.functional as TVF


def get_noise(

    num_samples: int,

    height: int,

    width: int,

    device: torch.device,

    dtype: torch.dtype,

    seed: int,

):
    return torch.randn(
        num_samples,
        16,
        # allow for packing
        2 * math.ceil(height / 16),
        2 * math.ceil(width / 16),
        dtype=dtype,
        device=device,
        generator=torch.Generator(device=device).manual_seed(seed),
    )


def prepare_prompt(t5: HFEmbedder, clip: HFEmbedder, bs: int, prompt: str | list[str], neg: bool = False, device: str = "cuda") -> dict[str, Tensor]:
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return {
        "neg_txt" if neg else "txt": txt.to(device),
        "neg_txt_ids" if neg else "txt_ids": txt_ids.to(device),
        "neg_vec" if neg else "vec": vec.to(device),
    }


def prepare_img( img: Tensor) -> dict[str, Tensor]:
    bs, c, h, w = img.shape

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
    }





def prepare_redux(

    t5: HFEmbedder,

    clip: HFEmbedder,

    img: Tensor,

    prompt: str | list[str],

    encoder: ReduxImageEncoder,

    img_cond_path: str,

) -> dict[str, Tensor]:
    bs, _, h, w = img.shape
    if bs == 1 and not isinstance(prompt, str):
        bs = len(prompt)

    img_cond = Image.open(img_cond_path).convert("RGB")
    with torch.no_grad():
        img_cond = encoder(img_cond)

    img_cond = img_cond.to(torch.bfloat16)
    if img_cond.shape[0] == 1 and bs > 1:
        img_cond = repeat(img_cond, "1 ... -> bs ...", bs=bs)

    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)

    if isinstance(prompt, str):
        prompt = [prompt]
    txt = t5(prompt)
    txt = torch.cat((txt, img_cond.to(txt)), dim=-2)
    if txt.shape[0] == 1 and bs > 1:
        txt = repeat(txt, "1 ... -> bs ...", bs=bs)
    txt_ids = torch.zeros(bs, txt.shape[1], 3)

    vec = clip(prompt)
    if vec.shape[0] == 1 and bs > 1:
        vec = repeat(vec, "1 ... -> bs ...", bs=bs)

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
        "txt": txt.to(img.device),
        "txt_ids": txt_ids.to(img.device),
        "vec": vec.to(img.device),
    }


def prepare_kontext(

    ae: AutoEncoder,

    img_cond_list: list,

    seed: int,

    device: torch.device,

    target_width: int | None = None,

    target_height: int | None = None,

    bs: int = 1,

    img_mask = None,

) -> tuple[dict[str, Tensor], int, int]:
    # load and encode the conditioning image

    res_match_output = img_mask is not None

    img_cond_seq = None
    img_cond_seq_ids = None
    if img_cond_list == None: img_cond_list = []
    height_offset = 0
    width_offset = 0
    for cond_no, img_cond in enumerate(img_cond_list): 
        width, height = img_cond.size
        aspect_ratio = width / height
        if res_match_output:
            width, height = target_width, target_height
        else:
            # Kontext is trained on specific resolutions, using one of them is recommended
            _, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERED_KONTEXT_RESOLUTIONS)
        width = 2 * int(width / 16)
        height = 2 * int(height / 16)

        img_cond = img_cond.resize((8 * width, 8 * height), Image.Resampling.LANCZOS)
        img_cond = np.array(img_cond)
        img_cond = torch.from_numpy(img_cond).float() / 127.5 - 1.0
        img_cond = rearrange(img_cond, "h w c -> 1 c h w")
        with torch.no_grad():
            img_cond_latents = ae.encode(img_cond.to(device))

        img_cond_latents = img_cond_latents.to(torch.bfloat16)
        img_cond_latents = rearrange(img_cond_latents, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
        if img_cond.shape[0] == 1 and bs > 1:
            img_cond_latents = repeat(img_cond_latents, "1 ... -> bs ...", bs=bs)
        img_cond = None

        # image ids are the same as base image with the first dimension set to 1
        # instead of 0
        img_cond_ids = torch.zeros(height // 2, width // 2, 3)
        img_cond_ids[..., 0] = 1
        img_cond_ids[..., 1] = img_cond_ids[..., 1] + torch.arange(height // 2)[:, None] + height_offset
        img_cond_ids[..., 2] = img_cond_ids[..., 2] + torch.arange(width // 2)[None, :] + width_offset
        img_cond_ids = repeat(img_cond_ids, "h w c -> b (h w) c", b=bs)
        height_offset +=  height // 2 
        width_offset +=  width // 2

        if target_width is None:
            target_width = 8 * width
        if target_height is None:
            target_height = 8 * height
        img_cond_ids = img_cond_ids.to(device)
        if cond_no == 0:
            img_cond_seq, img_cond_seq_ids  = img_cond_latents, img_cond_ids
        else:
            img_cond_seq, img_cond_seq_ids  =  torch.cat([img_cond_seq, img_cond_latents], dim=1), torch.cat([img_cond_seq_ids, img_cond_ids], dim=1)
        
    return_dict = {
        "img_cond_seq": img_cond_seq,
        "img_cond_seq_ids": img_cond_seq_ids,
    }
    if img_mask is not None:
        from shared.utils.utils import convert_image_to_tensor, convert_tensor_to_image
        # image_height, image_width = calculate_new_dimensions(ref_height, ref_width, image_height, image_width, False, block_size=multiple_of)
        image_mask_latents = convert_image_to_tensor(img_mask.resize((target_width // 16, target_height // 16), resample=Image.Resampling.LANCZOS))
        image_mask_latents = torch.where(image_mask_latents>-0.5, 1., 0. )[0:1]
        image_mask_rebuilt = image_mask_latents.repeat_interleave(16, dim=-1).repeat_interleave(16, dim=-2).unsqueeze(0)
        # convert_tensor_to_image( image_mask_rebuilt.squeeze(0).repeat(3,1,1)).save("mmm.png")
        image_mask_latents = image_mask_latents.reshape(1, -1, 1).to(device)        
        return_dict.update({
            "img_msk_latents": image_mask_latents,
            "img_msk_rebuilt": image_mask_rebuilt,
        })

    img = get_noise(
        bs,
        target_height,
        target_width,
        device=device,
        dtype=torch.bfloat16,
        seed=seed,
    )
    return_dict.update(prepare_img(img))

    return return_dict, target_height, target_width


def time_shift(mu: float, sigma: float, t: Tensor):
    return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)


def get_lin_function(

    x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15

) -> Callable[[float], float]:
    m = (y2 - y1) / (x2 - x1)
    b = y1 - m * x1
    return lambda x: m * x + b


def get_schedule(

    num_steps: int,

    image_seq_len: int,

    base_shift: float = 0.5,

    max_shift: float = 1.15,

    shift: bool = True,

) -> list[float]:
    # extra step for zero
    timesteps = torch.linspace(1, 0, num_steps + 1)

    # shifting the schedule to favor high timesteps for higher signal images
    if shift:
        # estimate mu based on linear estimation between two points
        mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len)
        timesteps = time_shift(mu, 1.0, timesteps)

    return timesteps.tolist()


def denoise(

    model: Flux,

    # model input

    img: Tensor,

    img_ids: Tensor,

    txt: Tensor,

    txt_ids: Tensor,

    vec: Tensor,

    # sampling parameters

    timesteps: list[float],

    guidance: float = 4.0,

    real_guidance_scale = None,

    # extra img tokens (channel-wise)

    neg_txt: Tensor = None,

    neg_txt_ids: Tensor= None,

    neg_vec: Tensor = None,

    img_cond: Tensor | None = None,

    # extra img tokens (sequence-wise)

    img_cond_seq: Tensor | None = None,

    img_cond_seq_ids: Tensor | None = None,

    siglip_embedding = None,

    siglip_embedding_ids = None,

    callback=None,

    pipeline=None,

    loras_slists=None,

    unpack_latent = None,

    joint_pass= False,

    img_msk_latents = None,

    img_msk_rebuilt = None,

    denoising_strength = 1,

):

    kwargs = {'pipeline': pipeline, 'callback': callback, "img_len" : img.shape[1], "siglip_embedding": siglip_embedding, "siglip_embedding_ids": siglip_embedding_ids}

    if callback != None:
        callback(-1, None, True)

    original_image_latents = None if img_cond_seq is None else img_cond_seq.clone() 
    original_timesteps = timesteps
    morph, first_step = False, 0
    if img_msk_latents is not None:
        randn = torch.randn_like(original_image_latents)
        if denoising_strength < 1.:
            first_step = int(len(timesteps) * (1. - denoising_strength))
        if not morph:
            latent_noise_factor = timesteps[first_step]
            latents  = original_image_latents  * (1.0 - latent_noise_factor) + randn * latent_noise_factor
            img = latents.to(img)
            latents = None
            timesteps = timesteps[first_step:]


    updated_num_steps= len(timesteps) -1
    if callback != None:
        from shared.utils.loras_mutipliers import update_loras_slists
        update_loras_slists(model, loras_slists, len(original_timesteps))
        callback(-1, None, True, override_num_inference_steps = updated_num_steps)
    from mmgp import offload
    # this is ignored for schnell
    guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype)
    for i, (t_curr, t_prev) in enumerate(zip(timesteps[:-1], timesteps[1:])):
        offload.set_step_no_for_lora(model, first_step  + i)
        if pipeline._interrupt:
            return None

        if img_msk_latents is not None and denoising_strength <1. and i == first_step and morph:
            latent_noise_factor = t_curr/1000
            img  = original_image_latents  * (1.0 - latent_noise_factor) + img * latent_noise_factor 

        t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device)
        img_input = img
        img_input_ids = img_ids
        if img_cond is not None:
            img_input = torch.cat((img, img_cond), dim=-1)
        if img_cond_seq is not None:
            img_input = torch.cat((img_input, img_cond_seq), dim=1)
            img_input_ids = torch.cat((img_input_ids, img_cond_seq_ids), dim=1)
        if not joint_pass or real_guidance_scale == 1:
            pred = model(
                img=img_input,
                img_ids=img_input_ids,
                txt_list=[txt],
                txt_ids_list=[txt_ids],
                y_list=[vec],
                timesteps=t_vec,
                guidance=guidance_vec,
                **kwargs
            )[0]
            if pred == None: return None
            if real_guidance_scale> 1:
                neg_pred = model(
                    img=img_input,
                    img_ids=img_input_ids,
                    txt_list=[neg_txt],
                    txt_ids_list=[neg_txt_ids],
                    y_list=[neg_vec],
                    timesteps=t_vec,
                    guidance=guidance_vec,
                    **kwargs
                )[0]
                if neg_pred == None: return None
        else:
            pred, neg_pred = model(
                img=img_input,
                img_ids=img_input_ids,
                txt_list=[txt, neg_txt],
                txt_ids_list=[txt_ids, neg_txt_ids],
                y_list=[vec, neg_vec],
                timesteps=t_vec,
                guidance=guidance_vec,
                **kwargs
            )
            if pred == None: return None

        if real_guidance_scale > 1:
            pred = neg_pred + real_guidance_scale * (pred - neg_pred)

        img += (t_prev - t_curr) * pred

        if img_msk_latents is not None:
            latent_noise_factor = t_prev
            # noisy_image  = original_image_latents  * (1.0 - latent_noise_factor) + torch.randn_like(original_image_latents) * latent_noise_factor 
            noisy_image  = original_image_latents  * (1.0 - latent_noise_factor) + randn * latent_noise_factor 
            img  =  noisy_image * (1-img_msk_latents)  + img_msk_latents * img
            noisy_image = None

        if callback is not None:
            preview = unpack_latent(img).transpose(0,1)
            callback(i, preview, False)         


    return img

def prepare_multi_ip(

    ae: AutoEncoder,

    img_cond_list: list,

    seed: int,

    device: torch.device,

    target_width: int | None = None,

    target_height: int | None = None,

    bs: int = 1,

    pe: Literal["d", "h", "w", "o"] = "d",

) -> dict[str, Tensor]:
    ref_imgs = img_cond_list
    assert pe in ["d", "h", "w", "o"]

    ref_imgs = [
        ae.encode(
            (TVF.to_tensor(ref_img) * 2.0 - 1.0)
            .unsqueeze(0)
            .to(device, torch.float32)
        ).to(torch.bfloat16)
        for ref_img in img_cond_list
    ]

    img = get_noise( bs, target_height, target_width, device=device, dtype=torch.bfloat16, seed=seed)
    bs, c, h, w = img.shape
    # tgt img
    img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2)
    if img.shape[0] == 1 and bs > 1:
        img = repeat(img, "1 ... -> bs ...", bs=bs)

    img_ids = torch.zeros(h // 2, w // 2, 3)
    img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None]
    img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :]
    img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
    img_cond_seq = img_cond_seq_ids = None
    pe_shift_w, pe_shift_h = w // 2, h // 2
    for cond_no, ref_img in enumerate(ref_imgs):
        _, _, ref_h1, ref_w1 = ref_img.shape
        ref_img = rearrange(
            ref_img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2
        )
        if ref_img.shape[0] == 1 and bs > 1:
            ref_img = repeat(ref_img, "1 ... -> bs ...", bs=bs)
        ref_img_ids1 = torch.zeros(ref_h1 // 2, ref_w1 // 2, 3)
        # img id分别在宽高偏移各自最大值
        h_offset = pe_shift_h if pe in {"d", "h"} else 0
        w_offset = pe_shift_w if pe in {"d", "w"} else 0
        ref_img_ids1[..., 1] = (
            ref_img_ids1[..., 1] + torch.arange(ref_h1 // 2)[:, None] + h_offset
        )
        ref_img_ids1[..., 2] = (
            ref_img_ids1[..., 2] + torch.arange(ref_w1 // 2)[None, :] + w_offset
        )
        ref_img_ids1 = repeat(ref_img_ids1, "h w c -> b (h w) c", b=bs)

        if target_width is None:
            target_width = 8 * ref_w1
        if target_height is None:
            target_height = 8 * ref_h1
        ref_img_ids1 = ref_img_ids1.to(device)
        if cond_no == 0:
            img_cond_seq, img_cond_seq_ids  = ref_img, ref_img_ids1
        else:
            img_cond_seq, img_cond_seq_ids  =  torch.cat([img_cond_seq, ref_img], dim=1), torch.cat([img_cond_seq_ids, ref_img_ids1], dim=1)


        # 更新pe shift
        pe_shift_h += ref_h1 // 2
        pe_shift_w += ref_w1 // 2

    return {
        "img": img,
        "img_ids": img_ids.to(img.device),
        "img_cond_seq": img_cond_seq,
        "img_cond_seq_ids": img_cond_seq_ids,
    }, target_height, target_width


def unpack(x: Tensor, height: int, width: int) -> Tensor:
    return rearrange(
        x,
        "b (h w) (c ph pw) -> b c (h ph) (w pw)",
        h=math.ceil(height / 16),
        w=math.ceil(width / 16),
        ph=2,
        pw=2,
    )