File size: 11,569 Bytes
3ea2ecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import os
import re
import time
from dataclasses import dataclass
from glob import iglob
from mmgp import offload as offload
import torch
from shared.utils.utils import calculate_new_dimensions
from .sampling import denoise, get_schedule, prepare_kontext, prepare_prompt, prepare_multi_ip, unpack
from .modules.layers import get_linear_split_map
from transformers import SiglipVisionModel, SiglipImageProcessor
import torchvision.transforms.functional as TVF
import math
from shared.utils.utils import convert_image_to_tensor, convert_tensor_to_image

from .util import (
    aspect_ratio_to_height_width,
    load_ae,
    load_clip,
    load_flow_model,
    load_t5,
    save_image,
)

from PIL import Image
def preprocess_ref(raw_image: Image.Image, long_size: int = 512):
    # 获取原始图像的宽度和高度
    image_w, image_h = raw_image.size

    # 计算长边和短边
    if image_w >= image_h:
        new_w = long_size
        new_h = int((long_size / image_w) * image_h)
    else:
        new_h = long_size
        new_w = int((long_size / image_h) * image_w)

    # 按新的宽高进行等比例缩放
    raw_image = raw_image.resize((new_w, new_h), resample=Image.LANCZOS)
    target_w = new_w // 16 * 16
    target_h = new_h // 16 * 16

    # 计算裁剪的起始坐标以实现中心裁剪
    left = (new_w - target_w) // 2
    top = (new_h - target_h) // 2
    right = left + target_w
    bottom = top + target_h

    # 进行中心裁剪
    raw_image = raw_image.crop((left, top, right, bottom))

    # 转换为 RGB 模式
    raw_image = raw_image.convert("RGB")
    return raw_image

def stitch_images(img1, img2):
    # Resize img2 to match img1's height
    width1, height1 = img1.size
    width2, height2 = img2.size
    new_width2 = int(width2 * height1 / height2)
    img2_resized = img2.resize((new_width2, height1), Image.Resampling.LANCZOS)
    
    stitched = Image.new('RGB', (width1 + new_width2, height1))
    stitched.paste(img1, (0, 0))
    stitched.paste(img2_resized, (width1, 0))
    return stitched

class model_factory:
    def __init__(

        self,

        checkpoint_dir,

        model_filename = None,

        model_type = None, 

        model_def = None,

        base_model_type = None,

        text_encoder_filename = None,

        quantizeTransformer = False,

        save_quantized = False,

        dtype = torch.bfloat16,

        VAE_dtype = torch.float32,

        mixed_precision_transformer = False

    ):
        self.device = torch.device(f"cuda")
        self.VAE_dtype = VAE_dtype
        self.dtype = dtype
        torch_device = "cpu"
        self.guidance_max_phases = model_def.get("guidance_max_phases", 0) 

        # model_filename = ["c:/temp/flux1-schnell.safetensors"] 
        
        self.t5 = load_t5(torch_device, text_encoder_filename, max_length=512)
        self.clip = load_clip(torch_device)
        self.name = model_def.get("flux-model", "flux-dev")
        # self.name= "flux-dev-kontext"
        # self.name= "flux-dev"
        # self.name= "flux-schnell"
        source =  model_def.get("source", None)
        self.model = load_flow_model(self.name, model_filename[0] if source is None else source, torch_device)
        self.model_def = model_def 
        self.vae = load_ae(self.name, device=torch_device)

        siglip_processor = siglip_model = feature_embedder = None
        if self.name == 'flux-dev-uso':
            siglip_path = "ckpts/siglip-so400m-patch14-384"
            siglip_processor = SiglipImageProcessor.from_pretrained(siglip_path)
            siglip_model = SiglipVisionModel.from_pretrained(siglip_path)
            siglip_model.eval().to("cpu")
            if len(model_filename) > 1:
                from .modules.layers import SigLIPMultiFeatProjModel                
                feature_embedder = SigLIPMultiFeatProjModel(
                    siglip_token_nums=729,
                    style_token_nums=64,
                    siglip_token_dims=1152,
                    hidden_size=3072, #self.hidden_size,
                    context_layer_norm=True,
                )
                offload.load_model_data(feature_embedder, model_filename[1])
        self.vision_encoder = siglip_model
        self.vision_encoder_processor = siglip_processor
        self.feature_embedder = feature_embedder
   
        # offload.change_dtype(self.model, dtype, True)
        # offload.save_model(self.model, "flux-dev.safetensors")

        if not source is None:
            from wgp import save_model
            save_model(self.model, model_type, dtype, None)

        if save_quantized:
            from wgp import save_quantized_model
            save_quantized_model(self.model, model_type, model_filename[0], dtype, None)

        split_linear_modules_map = get_linear_split_map()
        self.model.split_linear_modules_map = split_linear_modules_map
        offload.split_linear_modules(self.model, split_linear_modules_map )

    
    def generate(

            self,

            seed: int | None = None,

            input_prompt: str = "replace the logo with the text 'Black Forest Labs'",            

            n_prompt: str = None,

            sampling_steps: int = 20,

            input_ref_images = None,

            input_frames= None,

            input_masks= None,

            width= 832,

            height=480,

            embedded_guidance_scale: float = 2.5,

            guide_scale = 2.5,

            fit_into_canvas = None,

            callback = None,

            loras_slists = None,

            batch_size = 1,

            video_prompt_type = "",

            joint_pass = False,

            image_refs_relative_size = 100,

            denoising_strength = 1.,

            **bbargs

    ):
            if self._interrupt:
                return None
            if self.guidance_max_phases < 1: guide_scale = 1
            if n_prompt is None or len(n_prompt) == 0: n_prompt = "low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors"
            device="cuda"
            flux_dev_uso = self.name in ['flux-dev-uso']
            flux_dev_umo = self.name in ['flux-dev-umo']
            latent_stiching =  self.name in ['flux-dev-uso', 'flux-dev-umo'] 

            lock_dimensions=  False

            input_ref_images = [] if input_ref_images is None else input_ref_images[:]
            if flux_dev_umo:
                ref_long_side = 512 if len(input_ref_images) <= 1 else 320
                input_ref_images = [preprocess_ref(img, ref_long_side) for img in input_ref_images]
                lock_dimensions = True
            ref_style_imgs = []
            if "I" in video_prompt_type and len(input_ref_images) > 0: 
                if flux_dev_uso :
                    if "J" in video_prompt_type:
                        ref_style_imgs = input_ref_images
                        input_ref_images = []
                    elif len(input_ref_images) > 1 :
                        ref_style_imgs = input_ref_images[-1:]
                        input_ref_images = input_ref_images[:-1]

                if latent_stiching:
                    # latents stiching with resize 
                    if not lock_dimensions :
                        for i in range(len(input_ref_images)):
                            w, h = input_ref_images[i].size
                            image_height, image_width = calculate_new_dimensions(int(height*image_refs_relative_size/100), int(width*image_refs_relative_size/100), h, w, 0)
                            input_ref_images[i] = input_ref_images[i].resize((image_width, image_height), resample=Image.Resampling.LANCZOS) 
                else:
                    # image stiching method
                    stiched = input_ref_images[0]
                    for new_img in input_ref_images[1:]:
                        stiched = stitch_images(stiched, new_img)
                    input_ref_images  = [stiched]
            elif input_frames is not None:
                input_ref_images = [convert_tensor_to_image(input_frames) ] 
            else:
                input_ref_images = None
            image_mask = None if input_masks is None else convert_tensor_to_image(input_masks, mask_levels= True) 
        

            if self.name in ['flux-dev-uso', 'flux-dev-umo']  :
                inp, height, width = prepare_multi_ip(
                    ae=self.vae,
                    img_cond_list=input_ref_images,
                    target_width=width,
                    target_height=height,
                    bs=batch_size,
                    seed=seed,
                    device=device,
                )
            else:
                inp, height, width = prepare_kontext(
                    ae=self.vae,
                    img_cond_list=input_ref_images,
                    target_width=width,
                    target_height=height,
                    bs=batch_size,
                    seed=seed,
                    device=device,
                    img_mask=image_mask,
                )

            inp.update(prepare_prompt(self.t5, self.clip, batch_size, input_prompt))
            if guide_scale != 1:
                inp.update(prepare_prompt(self.t5, self.clip, batch_size, n_prompt, neg = True, device=device))

            timesteps = get_schedule(sampling_steps, inp["img"].shape[1], shift=(self.name != "flux-schnell"))

            ref_style_imgs = [self.vision_encoder_processor(img, return_tensors="pt").to(self.device) for img in ref_style_imgs]
            if self.feature_embedder is not None and ref_style_imgs is not None and len(ref_style_imgs) > 0 and self.vision_encoder is not None:
                # processing style feat into textural hidden space
                siglip_embedding = [self.vision_encoder(**emb, output_hidden_states=True) for emb in ref_style_imgs]
                siglip_embedding = torch.cat([self.feature_embedder(emb) for emb in siglip_embedding], dim=1)
                siglip_embedding_ids = torch.zeros( siglip_embedding.shape[0], siglip_embedding.shape[1], 3 ).to(device)
                inp["siglip_embedding"] = siglip_embedding
                inp["siglip_embedding_ids"] = siglip_embedding_ids

            def unpack_latent(x):
                return unpack(x.float(), height, width) 

            # denoise initial noise
            x = denoise(self.model, **inp, timesteps=timesteps, guidance=embedded_guidance_scale, real_guidance_scale =guide_scale, callback=callback, pipeline=self, loras_slists= loras_slists, unpack_latent = unpack_latent, joint_pass = joint_pass, denoising_strength = denoising_strength)
            if x==None: return None
            # decode latents to pixel space
            x = unpack_latent(x)
            with torch.autocast(device_type=device, dtype=torch.bfloat16):
                x = self.vae.decode(x)

            if image_mask is not None:
                from shared.utils.utils import convert_image_to_tensor
                img_msk_rebuilt = inp["img_msk_rebuilt"]
                img= input_frames.squeeze(1).unsqueeze(0) # convert_image_to_tensor(image_guide) 
                x = img * (1 - img_msk_rebuilt) + x.to(img) * img_msk_rebuilt 

            x = x.clamp(-1, 1)
            x = x.transpose(0, 1)
            return x