Spaces:
Runtime error
Runtime error
| from typing import Optional | |
| import os, sys | |
| from transformers import LlamaForCausalLM, LlamaTokenizer | |
| import torch | |
| from datetime import datetime | |
| sys.path.append(os.path.dirname(__file__)) | |
| sys.path.append(os.path.dirname(os.path.abspath(__file__))) | |
| from utils.special_tok_llama2 import ( | |
| B_CODE, | |
| E_CODE, | |
| B_RESULT, | |
| E_RESULT, | |
| B_INST, | |
| E_INST, | |
| B_SYS, | |
| E_SYS, | |
| DEFAULT_PAD_TOKEN, | |
| DEFAULT_BOS_TOKEN, | |
| DEFAULT_EOS_TOKEN, | |
| DEFAULT_UNK_TOKEN, | |
| IGNORE_INDEX, | |
| ) | |
| def create_peft_config(model): | |
| from peft import ( | |
| get_peft_model, | |
| LoraConfig, | |
| TaskType, | |
| prepare_model_for_int8_training, | |
| ) | |
| peft_config = LoraConfig( | |
| task_type=TaskType.CAUSAL_LM, | |
| inference_mode=False, | |
| r=8, | |
| lora_alpha=32, | |
| lora_dropout=0.05, | |
| target_modules=["q_proj", "v_proj"], | |
| ) | |
| # prepare int-8 model for training | |
| model = prepare_model_for_int8_training(model) | |
| model = get_peft_model(model, peft_config) | |
| model.print_trainable_parameters() | |
| return model, peft_config | |
| def build_model_from_hf_path( | |
| hf_base_model_path: str = "./ckpt/llama-2-13b-chat", | |
| load_peft: Optional[bool] = False, | |
| peft_model_path: Optional[str] = None, | |
| load_in_4bit: bool = True, | |
| ): | |
| start_time = datetime.now() | |
| # build tokenizer | |
| tokenizer = LlamaTokenizer.from_pretrained( | |
| hf_base_model_path, | |
| padding_side="right", | |
| use_fast=False, | |
| ) | |
| # Handle special tokens | |
| special_tokens_dict = dict() | |
| if tokenizer.pad_token is None: | |
| special_tokens_dict["pad_token"] = DEFAULT_PAD_TOKEN # 32000 | |
| if tokenizer.eos_token is None: | |
| special_tokens_dict["eos_token"] = DEFAULT_EOS_TOKEN # 2 | |
| if tokenizer.bos_token is None: | |
| special_tokens_dict["bos_token"] = DEFAULT_BOS_TOKEN # 1 | |
| if tokenizer.unk_token is None: | |
| special_tokens_dict["unk_token"] = DEFAULT_UNK_TOKEN | |
| tokenizer.add_special_tokens(special_tokens_dict) | |
| tokenizer.add_tokens( | |
| [B_CODE, E_CODE, B_RESULT, E_RESULT, B_INST, E_INST, B_SYS, E_SYS], | |
| special_tokens=True, | |
| ) | |
| # build model | |
| model = LlamaForCausalLM.from_pretrained( | |
| hf_base_model_path, | |
| load_in_4bit=load_in_4bit, | |
| device_map="auto", | |
| ) | |
| model.resize_token_embeddings(len(tokenizer)) | |
| if load_peft and (peft_model_path is not None): | |
| from peft import PeftModel | |
| model = PeftModel.from_pretrained(model, peft_model_path) | |
| end_time = datetime.now() | |
| elapsed_time = end_time - start_time | |
| return {"tokenizer": tokenizer, "model": model} | |