Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| import json | |
| # Initialize Hugging Face Inference Client | |
| api_key = os.getenv("HF_TOKEN") | |
| client = InferenceClient(api_key=api_key) | |
| # Load or initialize system prompts | |
| PROMPTS_FILE = "system_prompts.json" | |
| if os.path.exists(PROMPTS_FILE): | |
| with open(PROMPTS_FILE, "r") as file: | |
| system_prompts = json.load(file) | |
| else: | |
| system_prompts = {"default": "You are a expert visual descriptor, A prompt engineer for diffuser image generation models. Always descript a 'full-body' character from head to toe. inspired by the user input."} | |
| def save_prompts(): | |
| """Save the current system prompts to a JSON file.""" | |
| with open(PROMPTS_FILE, "w") as file: | |
| json.dump(system_prompts, file, indent=4) | |
| def chat_with_model(user_input, system_prompt, selected_model): | |
| """Send user input to the model and return its response.""" | |
| messages = [ | |
| {"role": "system", "content": system_prompt}, | |
| {"role": "user", "content": user_input} | |
| ] | |
| try: | |
| result = client.chat.completions.create( | |
| model=selected_model, | |
| messages=messages, | |
| temperature=0.9, | |
| max_tokens=512, | |
| top_p=0.97, | |
| stream=False # Stream disabled for simplicity | |
| ) | |
| return result["choices"][0]["message"]["content"] | |
| except Exception as e: | |
| return f"Error: {str(e)}" | |
| def update_prompt(name, content): | |
| """Update or add a new system prompt.""" | |
| system_prompts[name] = content | |
| save_prompts() | |
| return f"System prompt '{name}' saved." | |
| def get_prompt(name): | |
| """Retrieve a system prompt by name.""" | |
| return system_prompts.get(name, "") | |
| # List of available models | |
| available_models = [ | |
| "aifeifei798/DarkIdol-Llama-3.1-8B-Instruct-1.2-Uncensored", | |
| "HuggingFaceH4/zephyr-7b-beta", | |
| "HuggingFaceH4/zephyr-7b-alpha", | |
| "Qwen/Qwen2.5-Coder-0.5B-Instruct", | |
| "Qwen/Qwen2.5-Coder-1.5B-Instruct", | |
| ] | |
| # Gradio Interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## Hugging Face Chatbot with Gradio") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_selector = gr.Dropdown(choices=available_models, label="Select Model", value=available_models[0]) | |
| system_prompt_name = gr.Dropdown(choices=list(system_prompts.keys()), label="Select System Prompt") | |
| system_prompt_content = gr.TextArea(label="System Prompt", value=get_prompt("default"), lines=4) | |
| save_prompt_button = gr.Button("Save System Prompt") | |
| user_input = gr.TextArea(label="Enter your prompt", placeholder="Describe the character or request a detailed description...", lines=4) | |
| submit_button = gr.Button("Generate") | |
| with gr.Column(): | |
| output = gr.TextArea(label="Model Response", interactive=False, lines=10) | |
| def load_prompt(name): | |
| return get_prompt(name) | |
| system_prompt_name.change( | |
| lambda name: (name, get_prompt(name)), | |
| inputs=[system_prompt_name], | |
| outputs=[system_prompt_name, system_prompt_content] | |
| ) | |
| save_prompt_button.click(update_prompt, inputs=[system_prompt_name, system_prompt_content], outputs=[]) | |
| submit_button.click(chat_with_model, inputs=[user_input, system_prompt_content, model_selector], outputs=[output]) | |
| # Run the app | |
| demo.launch() | |