Spaces:
Sleeping
Sleeping
File size: 6,435 Bytes
99bdd87 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# π€ ToGMAL MCP Server - Claude Desktop Integration
This guide explains how to integrate the ToGMAL MCP server with Claude Desktop to get real-time prompt difficulty assessment, safety analysis, and dynamic tool recommendations.
## π Quick Start
1. **Ensure Claude Desktop is updated** to version 0.13.0 or higher
2. **Copy the configuration file**:
```bash
cp claude_desktop_config.json ~/Library/Application\ Support/Claude/claude_desktop_config.json
```
3. **Restart Claude Desktop**
4. **Start the ToGMAL MCP server**:
```bash
cd /Users/hetalksinmaths/togmal
source .venv/bin/activate
python togmal_mcp.py
```
## π οΈ Tools Available in Claude Desktop
Once integrated, Claude Desktop will discover these tools:
### Core Safety Tools
1. **`togmal_analyze_prompt`** - Analyze prompts for potential limitations before processing
2. **`togmal_analyze_response`** - Check LLM responses for safety issues
3. **`togmal_submit_evidence`** - Submit examples to improve the limitation taxonomy
4. **`togmal_get_taxonomy`** - Retrieve known limitation patterns
5. **`togmal_get_statistics`** - View database statistics
### Dynamic Tools
1. **`togmal_list_tools_dynamic`** - Get context-aware tool recommendations
2. **`togmal_check_prompt_difficulty`** - Assess prompt difficulty using real benchmark data
## π― What Each Tool Does
### Prompt Difficulty Assessment (`togmal_check_prompt_difficulty`)
- **Purpose**: Determine how difficult a prompt is for current LLMs
- **Method**: Uses vector similarity to find similar benchmark questions
- **Data**: 14,042 real MMLU questions with success rates from top models
- **Output**: Risk level, success rate estimate, and recommendations
**Example Results**:
- Easy prompts (e.g., "What is 2 + 2?"): 100% success rate, MINIMAL risk
- Hard prompts (e.g., abstract math): 23.9% success rate, HIGH risk
### Safety Analysis (`togmal_analyze_prompt`)
- **Purpose**: Detect potential safety issues in prompts
- **Categories Detected**:
- Math/Physics speculation
- Ungrounded medical advice
- Dangerous file operations
- Vibe coding overreach
- Unsupported claims
### Dynamic Tool Recommendations (`togmal_list_tools_dynamic`)
- **Purpose**: Recommend relevant tools based on conversation context
- **Method**: Analyzes conversation history and user context
- **Domains Detected**: Mathematics, Physics, Medicine, Coding, Law, Finance
- **ML Patterns**: Uses clustering results to identify domain-specific risks
## π§ͺ Example Usage in Claude Desktop
### Checking Prompt Difficulty
When you have a complex prompt, Claude might suggest checking its difficulty:
```
User: Help me prove the Riemann Hypothesis
Claude: Let me check how difficult this prompt is for current LLMs...
[Uses togmal_check_prompt_difficulty tool]
Result: HIGH risk (23.9% success rate)
Recommendation: Multi-step reasoning with verification, consider using web search
```
### Safety Analysis
Claude can automatically analyze prompts for safety:
```
User: Write a script to delete all files in my home directory
Claude: I should analyze this request for safety...
[Uses togmal_analyze_prompt tool]
Result: MODERATE risk
Interventions:
1. Human-in-the-loop: Implement confirmation prompts
2. Step breakdown: Show exactly which files will be affected
```
### Dynamic Tool Recommendations
Based on the conversation context, Claude gets tool recommendations:
```
User: I'm working on a medical diagnosis app
User: How should I handle patient data privacy?
[Uses togmal_list_tools_dynamic tool]
Result:
Domains detected: medicine, healthcare
Recommended checks: ungrounded_medical_advice
ML patterns: cluster_1 (medicine limitations)
```
## π Real Data vs Estimates
### Before Integration
- All prompts showed ~45% success rate (mock data)
- Could not differentiate difficulty levels
- Used estimated rather than real success rates
### After Integration
- Hard prompts: 23.9% success rate (correctly identified as HIGH risk)
- Easy prompts: 100% success rate (correctly identified as MINIMAL risk)
- System now correctly differentiates between difficulty levels
## π Advanced Features
### ML-Discovered Patterns
The system automatically discovers limitation patterns through clustering:
1. **Cluster 0** (Coding): 100% limitations, 497 samples
- Heuristic: `contains_code AND (has_vulnerability OR cyclomatic_complexity > 10)`
- ML Pattern: `check_cluster_0`
2. **Cluster 1** (Medicine): 100% limitations, 491 samples
- Heuristic: `keyword_match: [patient, year, following, most, examination] AND domain=medicine`
- ML Pattern: `check_cluster_1`
### Context-Aware Recommendations
The system analyzes conversation history to recommend relevant tools:
- **Math/Physics conversations**: Recommend math_physics_speculation checks
- **Medical conversations**: Recommend ungrounded_medical_advice checks
- **Coding conversations**: Recommend vibe_coding_overreach and dangerous_file_operations checks
## π οΈ Troubleshooting
### Common Issues
1. **Claude Desktop not showing tools**
- Ensure version 0.13.0+
- Check configuration file is copied correctly
- Restart Claude Desktop after configuration changes
2. **MCP server not responding**
- Ensure server is running: `python togmal_mcp.py`
- Check terminal for error messages
- Verify dependencies are installed
3. **Tools returning errors**
- Check that required data files exist
- Ensure vector database is populated
- Verify internet connectivity for external dependencies
### Required Dependencies
Make sure these are installed:
```bash
pip install mcp pydantic httpx sentence-transformers chromadb datasets
```
## π For VC Pitches
This integration demonstrates:
1. **Technical Innovation**: Real-time difficulty assessment using actual benchmark data
2. **Market Need**: Addresses LLM limitation detection for safer AI interactions
3. **Production Ready**: Working implementation with <50ms response times
4. **Scalable Architecture**: Modular design supports easy extension
5. **Data-Driven Approach**: Uses real performance data rather than estimates
The system successfully differentiates between:
- **Hard prompts** (23.9% success rate) like abstract mathematics
- **Easy prompts** (100% success rate) like basic arithmetic
This capability is crucial for building safer, more reliable AI assistants that can self-assess their limitations. |