Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
f1812bf
1
Parent(s):
102761b
Delete modules/llama_func.py
Browse files- modules/llama_func.py +0 -166
modules/llama_func.py
DELETED
|
@@ -1,166 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import logging
|
| 3 |
-
|
| 4 |
-
from llama_index import download_loader
|
| 5 |
-
from llama_index import (
|
| 6 |
-
Document,
|
| 7 |
-
LLMPredictor,
|
| 8 |
-
PromptHelper,
|
| 9 |
-
QuestionAnswerPrompt,
|
| 10 |
-
RefinePrompt,
|
| 11 |
-
)
|
| 12 |
-
import colorama
|
| 13 |
-
import PyPDF2
|
| 14 |
-
from tqdm import tqdm
|
| 15 |
-
|
| 16 |
-
from modules.presets import *
|
| 17 |
-
from modules.utils import *
|
| 18 |
-
from modules.config import local_embedding
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
def get_index_name(file_src):
|
| 22 |
-
file_paths = [x.name for x in file_src]
|
| 23 |
-
file_paths.sort(key=lambda x: os.path.basename(x))
|
| 24 |
-
|
| 25 |
-
md5_hash = hashlib.md5()
|
| 26 |
-
for file_path in file_paths:
|
| 27 |
-
with open(file_path, "rb") as f:
|
| 28 |
-
while chunk := f.read(8192):
|
| 29 |
-
md5_hash.update(chunk)
|
| 30 |
-
|
| 31 |
-
return md5_hash.hexdigest()
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
def block_split(text):
|
| 35 |
-
blocks = []
|
| 36 |
-
while len(text) > 0:
|
| 37 |
-
blocks.append(Document(text[:1000]))
|
| 38 |
-
text = text[1000:]
|
| 39 |
-
return blocks
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
def get_documents(file_src):
|
| 43 |
-
documents = []
|
| 44 |
-
logging.debug("Loading documents...")
|
| 45 |
-
logging.debug(f"file_src: {file_src}")
|
| 46 |
-
for file in file_src:
|
| 47 |
-
filepath = file.name
|
| 48 |
-
filename = os.path.basename(filepath)
|
| 49 |
-
file_type = os.path.splitext(filepath)[1]
|
| 50 |
-
logging.info(f"loading file: {filename}")
|
| 51 |
-
try:
|
| 52 |
-
if file_type == ".pdf":
|
| 53 |
-
logging.debug("Loading PDF...")
|
| 54 |
-
try:
|
| 55 |
-
from modules.pdf_func import parse_pdf
|
| 56 |
-
from modules.config import advance_docs
|
| 57 |
-
|
| 58 |
-
two_column = advance_docs["pdf"].get("two_column", False)
|
| 59 |
-
pdftext = parse_pdf(filepath, two_column).text
|
| 60 |
-
except:
|
| 61 |
-
pdftext = ""
|
| 62 |
-
with open(filepath, "rb") as pdfFileObj:
|
| 63 |
-
pdfReader = PyPDF2.PdfReader(pdfFileObj)
|
| 64 |
-
for page in tqdm(pdfReader.pages):
|
| 65 |
-
pdftext += page.extract_text()
|
| 66 |
-
text_raw = pdftext
|
| 67 |
-
elif file_type == ".docx":
|
| 68 |
-
logging.debug("Loading Word...")
|
| 69 |
-
DocxReader = download_loader("DocxReader")
|
| 70 |
-
loader = DocxReader()
|
| 71 |
-
text_raw = loader.load_data(file=filepath)[0].text
|
| 72 |
-
elif file_type == ".epub":
|
| 73 |
-
logging.debug("Loading EPUB...")
|
| 74 |
-
EpubReader = download_loader("EpubReader")
|
| 75 |
-
loader = EpubReader()
|
| 76 |
-
text_raw = loader.load_data(file=filepath)[0].text
|
| 77 |
-
elif file_type == ".xlsx":
|
| 78 |
-
logging.debug("Loading Excel...")
|
| 79 |
-
text_list = excel_to_string(filepath)
|
| 80 |
-
for elem in text_list:
|
| 81 |
-
documents.append(Document(elem))
|
| 82 |
-
continue
|
| 83 |
-
else:
|
| 84 |
-
logging.debug("Loading text file...")
|
| 85 |
-
with open(filepath, "r", encoding="utf-8") as f:
|
| 86 |
-
text_raw = f.read()
|
| 87 |
-
except Exception as e:
|
| 88 |
-
logging.error(f"Error loading file: {filename}")
|
| 89 |
-
pass
|
| 90 |
-
text = add_space(text_raw)
|
| 91 |
-
# text = block_split(text)
|
| 92 |
-
# documents += text
|
| 93 |
-
documents += [Document(text)]
|
| 94 |
-
logging.debug("Documents loaded.")
|
| 95 |
-
return documents
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
def construct_index(
|
| 99 |
-
api_key,
|
| 100 |
-
file_src,
|
| 101 |
-
max_input_size=4096,
|
| 102 |
-
num_outputs=5,
|
| 103 |
-
max_chunk_overlap=20,
|
| 104 |
-
chunk_size_limit=600,
|
| 105 |
-
embedding_limit=None,
|
| 106 |
-
separator=" ",
|
| 107 |
-
):
|
| 108 |
-
from langchain.chat_models import ChatOpenAI
|
| 109 |
-
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
| 110 |
-
from llama_index import GPTSimpleVectorIndex, ServiceContext, LangchainEmbedding, OpenAIEmbedding
|
| 111 |
-
|
| 112 |
-
if api_key:
|
| 113 |
-
os.environ["OPENAI_API_KEY"] = api_key
|
| 114 |
-
else:
|
| 115 |
-
# 由于一个依赖的愚蠢的设计,这里必须要有一个API KEY
|
| 116 |
-
os.environ["OPENAI_API_KEY"] = "sk-xxxxxxx"
|
| 117 |
-
chunk_size_limit = None if chunk_size_limit == 0 else chunk_size_limit
|
| 118 |
-
embedding_limit = None if embedding_limit == 0 else embedding_limit
|
| 119 |
-
separator = " " if separator == "" else separator
|
| 120 |
-
|
| 121 |
-
prompt_helper = PromptHelper(
|
| 122 |
-
max_input_size=max_input_size,
|
| 123 |
-
num_output=num_outputs,
|
| 124 |
-
max_chunk_overlap=max_chunk_overlap,
|
| 125 |
-
embedding_limit=embedding_limit,
|
| 126 |
-
chunk_size_limit=600,
|
| 127 |
-
separator=separator,
|
| 128 |
-
)
|
| 129 |
-
index_name = get_index_name(file_src)
|
| 130 |
-
if os.path.exists(f"./index/{index_name}.json"):
|
| 131 |
-
logging.info("找到了缓存的索引文件,加载中……")
|
| 132 |
-
return GPTSimpleVectorIndex.load_from_disk(f"./index/{index_name}.json")
|
| 133 |
-
else:
|
| 134 |
-
try:
|
| 135 |
-
documents = get_documents(file_src)
|
| 136 |
-
if local_embedding:
|
| 137 |
-
embed_model = LangchainEmbedding(HuggingFaceEmbeddings(model_name = "sentence-transformers/distiluse-base-multilingual-cased-v2"))
|
| 138 |
-
else:
|
| 139 |
-
embed_model = OpenAIEmbedding()
|
| 140 |
-
logging.info("构建索引中……")
|
| 141 |
-
with retrieve_proxy():
|
| 142 |
-
service_context = ServiceContext.from_defaults(
|
| 143 |
-
prompt_helper=prompt_helper,
|
| 144 |
-
chunk_size_limit=chunk_size_limit,
|
| 145 |
-
embed_model=embed_model,
|
| 146 |
-
)
|
| 147 |
-
index = GPTSimpleVectorIndex.from_documents(
|
| 148 |
-
documents, service_context=service_context
|
| 149 |
-
)
|
| 150 |
-
logging.debug("索引构建完成!")
|
| 151 |
-
os.makedirs("./index", exist_ok=True)
|
| 152 |
-
index.save_to_disk(f"./index/{index_name}.json")
|
| 153 |
-
logging.debug("索引已保存至本地!")
|
| 154 |
-
return index
|
| 155 |
-
|
| 156 |
-
except Exception as e:
|
| 157 |
-
logging.error("索引构建失败!", e)
|
| 158 |
-
print(e)
|
| 159 |
-
return None
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
def add_space(text):
|
| 163 |
-
punctuations = {",": ", ", "。": "。 ", "?": "? ", "!": "! ", ":": ": ", ";": "; "}
|
| 164 |
-
for cn_punc, en_punc in punctuations.items():
|
| 165 |
-
text = text.replace(cn_punc, en_punc)
|
| 166 |
-
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|