Spaces:
Running
on
Zero
Running
on
Zero
Upload 3 files
Browse files- app.py +41 -10
- llmdolphin.py +232 -54
- llmenv.py +23 -0
app.py
CHANGED
|
@@ -4,8 +4,8 @@ from tagger.utils import gradio_copy_text, COPY_ACTION_JS
|
|
| 4 |
from tagger.tagger import convert_danbooru_to_e621_prompt, insert_recom_prompt
|
| 5 |
from genimage import generate_image
|
| 6 |
from llmdolphin import (get_llm_formats, get_dolphin_model_format,
|
| 7 |
-
get_dolphin_models, get_dolphin_model_info, select_dolphin_model,
|
| 8 |
-
select_dolphin_format, add_dolphin_models, get_dolphin_sysprompt,
|
| 9 |
get_dolphin_sysprompt_mode, select_dolphin_sysprompt, get_dolphin_languages,
|
| 10 |
select_dolphin_language, dolphin_respond, dolphin_parse, respond_playground)
|
| 11 |
|
|
@@ -27,7 +27,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 27 |
chat_submit = gr.Button("Send", scale=1, variant="primary")
|
| 28 |
chat_clear = gr.Button("Clear", scale=1, variant="secondary")
|
| 29 |
with gr.Accordion("Additional inputs", open=False):
|
| 30 |
-
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0]
|
| 31 |
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
|
| 32 |
with gr.Row():
|
| 33 |
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
|
@@ -35,13 +35,18 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 35 |
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 36 |
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
| 37 |
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
with gr.Accordion("Add models", open=False):
|
| 39 |
chat_add_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/mradermacher/MagnumChronos-i1-GGUF/blob/main/MagnumChronos.i1-Q4_K_M.gguf", lines=1)
|
| 40 |
chat_add_format = gr.Dropdown(choices=get_llm_formats(), value=get_llm_formats()[0], label="Message format")
|
| 41 |
chat_add_submit = gr.Button("Update lists of models")
|
| 42 |
with gr.Accordion("Modes", open=True):
|
| 43 |
-
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0]
|
| 44 |
-
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0]
|
| 45 |
with gr.Row():
|
| 46 |
chat_mode = gr.Dropdown(choices=get_dolphin_sysprompt_mode(), value=get_dolphin_sysprompt_mode()[0], allow_custom_value=False, label="Mode")
|
| 47 |
chat_lang = gr.Dropdown(choices=get_dolphin_languages(), value="English", allow_custom_value=True, label="Output language")
|
|
@@ -68,9 +73,9 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 68 |
Don't worry about the strange appearance, **it's just a bug of Gradio!**""", elem_classes="title")
|
| 69 |
pg_chatbot = gr.Chatbot(scale=1, show_copy_button=True, show_share_button=False)
|
| 70 |
with gr.Accordion("Additional inputs", open=False):
|
| 71 |
-
pg_chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0]
|
| 72 |
-
pg_chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0]
|
| 73 |
-
pg_chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0]
|
| 74 |
pg_chat_sysmsg = gr.Textbox(value="You are a helpful assistant.", label="System message")
|
| 75 |
with gr.Row():
|
| 76 |
pg_chat_tokens = gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens")
|
|
@@ -78,6 +83,11 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 78 |
pg_chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 79 |
pg_chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
| 80 |
pg_chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
with gr.Accordion("Add models", open=True):
|
| 82 |
pg_chat_add_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/mradermacher/MagnumChronos-i1-GGUF/blob/main/MagnumChronos.i1-Q4_K_M.gguf", lines=1)
|
| 83 |
pg_chat_add_format = gr.Dropdown(choices=get_llm_formats(), value=get_llm_formats()[0], label="Message format")
|
|
@@ -90,7 +100,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 90 |
#clear_btn="Clear",
|
| 91 |
submit_btn="Send",
|
| 92 |
#additional_inputs_accordion='gr.Accordion(label="Additional Inputs", open=False)',
|
| 93 |
-
additional_inputs=[pg_chat_model, pg_chat_sysmsg, pg_chat_tokens, pg_chat_temperature, pg_chat_topp, pg_chat_topk, pg_chat_rp,
|
|
|
|
| 94 |
chatbot=pg_chatbot
|
| 95 |
)
|
| 96 |
gr.LoginButton()
|
|
@@ -99,7 +110,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 99 |
gr.on(
|
| 100 |
triggers=[chat_msg.submit, chat_submit.click],
|
| 101 |
fn=dolphin_respond,
|
| 102 |
-
inputs=[chat_msg, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, state],
|
| 103 |
outputs=[chatbot],
|
| 104 |
queue=True,
|
| 105 |
show_progress="full",
|
|
@@ -113,6 +124,8 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 113 |
.success(lambda: None, None, chatbot, queue=False)
|
| 114 |
chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False)\
|
| 115 |
.success(lambda: None, None, chatbot, queue=False)
|
|
|
|
|
|
|
| 116 |
chat_mode.change(select_dolphin_sysprompt, [chat_mode, state], [chat_sysmsg, state], queue=False)
|
| 117 |
chat_lang.change(select_dolphin_language, [chat_lang, state], [chat_sysmsg, state], queue=False)
|
| 118 |
gr.on(
|
|
@@ -123,6 +136,14 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 123 |
queue=True,
|
| 124 |
trigger_mode="once",
|
| 125 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
|
| 127 |
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS)
|
| 128 |
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS)
|
|
@@ -131,6 +152,7 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 131 |
|
| 132 |
pg_chat_model.change(select_dolphin_model, [pg_chat_model, state], [pg_chat_model, pg_chat_format, pg_chat_model_info, state], queue=True, show_progress="full")
|
| 133 |
pg_chat_format.change(select_dolphin_format, [pg_chat_format, state], [pg_chat_format, state], queue=False)
|
|
|
|
| 134 |
gr.on(
|
| 135 |
triggers=[pg_chat_add_text.submit, pg_chat_add_submit.click],
|
| 136 |
fn=add_dolphin_models,
|
|
@@ -139,6 +161,15 @@ with gr.Blocks(theme='NoCrypt/miku@>=1.2.2', fill_width=True, css=css, delete_ca
|
|
| 139 |
queue=True,
|
| 140 |
trigger_mode="once",
|
| 141 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
if __name__ == "__main__":
|
| 144 |
app.queue()
|
|
|
|
| 4 |
from tagger.tagger import convert_danbooru_to_e621_prompt, insert_recom_prompt
|
| 5 |
from genimage import generate_image
|
| 6 |
from llmdolphin import (get_llm_formats, get_dolphin_model_format,
|
| 7 |
+
get_dolphin_models, get_dolphin_model_info, select_dolphin_model, get_dolphin_loras, select_dolphin_lora,
|
| 8 |
+
add_dolphin_loras, select_dolphin_format, add_dolphin_models, get_dolphin_sysprompt,
|
| 9 |
get_dolphin_sysprompt_mode, select_dolphin_sysprompt, get_dolphin_languages,
|
| 10 |
select_dolphin_language, dolphin_respond, dolphin_parse, respond_playground)
|
| 11 |
|
|
|
|
| 27 |
chat_submit = gr.Button("Send", scale=1, variant="primary")
|
| 28 |
chat_clear = gr.Button("Clear", scale=1, variant="secondary")
|
| 29 |
with gr.Accordion("Additional inputs", open=False):
|
| 30 |
+
chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0]), label="Message format")
|
| 31 |
chat_sysmsg = gr.Textbox(value=get_dolphin_sysprompt(), label="System message")
|
| 32 |
with gr.Row():
|
| 33 |
chat_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
|
|
|
| 35 |
chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 36 |
chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
| 37 |
chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
| 38 |
+
with gr.Accordion("Loras", open=True, visible=False):
|
| 39 |
+
chat_lora = gr.Dropdown(choices=get_dolphin_loras(), value=get_dolphin_loras()[0], allow_custom_value=True, label="Lora")
|
| 40 |
+
chat_lora_scale = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.01, label="Lora scale")
|
| 41 |
+
chat_add_lora_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/ggml-org/LoRA-Qwen2.5-14B-Instruct-abliterated-v2-F16-GGUF/blob/main/LoRA-Qwen2.5-14B-Instruct-abliterated-v2-f16.gguf", lines=1)
|
| 42 |
+
chat_add_lora_submit = gr.Button("Update lists of loras")
|
| 43 |
with gr.Accordion("Add models", open=False):
|
| 44 |
chat_add_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/mradermacher/MagnumChronos-i1-GGUF/blob/main/MagnumChronos.i1-Q4_K_M.gguf", lines=1)
|
| 45 |
chat_add_format = gr.Dropdown(choices=get_llm_formats(), value=get_llm_formats()[0], label="Message format")
|
| 46 |
chat_add_submit = gr.Button("Update lists of models")
|
| 47 |
with gr.Accordion("Modes", open=True):
|
| 48 |
+
chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0], allow_custom_value=True, label="Model")
|
| 49 |
+
chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0]), label="Model info")
|
| 50 |
with gr.Row():
|
| 51 |
chat_mode = gr.Dropdown(choices=get_dolphin_sysprompt_mode(), value=get_dolphin_sysprompt_mode()[0], allow_custom_value=False, label="Mode")
|
| 52 |
chat_lang = gr.Dropdown(choices=get_dolphin_languages(), value="English", allow_custom_value=True, label="Output language")
|
|
|
|
| 73 |
Don't worry about the strange appearance, **it's just a bug of Gradio!**""", elem_classes="title")
|
| 74 |
pg_chatbot = gr.Chatbot(scale=1, show_copy_button=True, show_share_button=False)
|
| 75 |
with gr.Accordion("Additional inputs", open=False):
|
| 76 |
+
pg_chat_model = gr.Dropdown(choices=get_dolphin_models(), value=get_dolphin_models()[0], allow_custom_value=True, label="Model")
|
| 77 |
+
pg_chat_model_info = gr.Markdown(value=get_dolphin_model_info(get_dolphin_models()[0]), label="Model info")
|
| 78 |
+
pg_chat_format = gr.Dropdown(choices=get_llm_formats(), value=get_dolphin_model_format(get_dolphin_models()[0]), label="Message format")
|
| 79 |
pg_chat_sysmsg = gr.Textbox(value="You are a helpful assistant.", label="System message")
|
| 80 |
with gr.Row():
|
| 81 |
pg_chat_tokens = gr.Slider(minimum=1, maximum=4096, value=2048, step=1, label="Max tokens")
|
|
|
|
| 83 |
pg_chat_topp = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
|
| 84 |
pg_chat_topk = gr.Slider(minimum=0, maximum=100, value=40, step=1, label="Top-k")
|
| 85 |
pg_chat_rp = gr.Slider(minimum=0.0, maximum=2.0, value=1.1, step=0.1, label="Repetition penalty")
|
| 86 |
+
with gr.Accordion("Loras", open=True, visible=False):
|
| 87 |
+
pg_chat_lora = gr.Dropdown(choices=get_dolphin_loras(), value=get_dolphin_loras()[0], allow_custom_value=True, label="Lora")
|
| 88 |
+
pg_chat_lora_scale = gr.Slider(minimum=0.0, maximum=1.0, value=1.0, step=0.01, label="Lora scale")
|
| 89 |
+
pg_chat_add_lora_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/ggml-org/LoRA-Qwen2.5-14B-Instruct-abliterated-v2-F16-GGUF/blob/main/LoRA-Qwen2.5-14B-Instruct-abliterated-v2-f16.gguf", lines=1)
|
| 90 |
+
pg_chat_add_lora_submit = gr.Button("Update lists of loras")
|
| 91 |
with gr.Accordion("Add models", open=True):
|
| 92 |
pg_chat_add_text = gr.Textbox(label="URL or Repo ID", placeholder="https://huggingface.co/mradermacher/MagnumChronos-i1-GGUF/blob/main/MagnumChronos.i1-Q4_K_M.gguf", lines=1)
|
| 93 |
pg_chat_add_format = gr.Dropdown(choices=get_llm_formats(), value=get_llm_formats()[0], label="Message format")
|
|
|
|
| 100 |
#clear_btn="Clear",
|
| 101 |
submit_btn="Send",
|
| 102 |
#additional_inputs_accordion='gr.Accordion(label="Additional Inputs", open=False)',
|
| 103 |
+
additional_inputs=[pg_chat_model, pg_chat_sysmsg, pg_chat_tokens, pg_chat_temperature, pg_chat_topp, pg_chat_topk, pg_chat_rp,
|
| 104 |
+
pg_chat_lora, pg_chat_lora_scale, state],
|
| 105 |
chatbot=pg_chatbot
|
| 106 |
)
|
| 107 |
gr.LoginButton()
|
|
|
|
| 110 |
gr.on(
|
| 111 |
triggers=[chat_msg.submit, chat_submit.click],
|
| 112 |
fn=dolphin_respond,
|
| 113 |
+
inputs=[chat_msg, chatbot, chat_model, chat_sysmsg, chat_tokens, chat_temperature, chat_topp, chat_topk, chat_rp, chat_lora, chat_lora_scale, state],
|
| 114 |
outputs=[chatbot],
|
| 115 |
queue=True,
|
| 116 |
show_progress="full",
|
|
|
|
| 124 |
.success(lambda: None, None, chatbot, queue=False)
|
| 125 |
chat_format.change(select_dolphin_format, [chat_format, state], [chat_format, state], queue=False)\
|
| 126 |
.success(lambda: None, None, chatbot, queue=False)
|
| 127 |
+
chat_lora.change(select_dolphin_lora, [chat_lora, state], [chat_lora, state], queue=True, show_progress="full")\
|
| 128 |
+
.success(lambda: None, None, chatbot, queue=False)
|
| 129 |
chat_mode.change(select_dolphin_sysprompt, [chat_mode, state], [chat_sysmsg, state], queue=False)
|
| 130 |
chat_lang.change(select_dolphin_language, [chat_lang, state], [chat_sysmsg, state], queue=False)
|
| 131 |
gr.on(
|
|
|
|
| 136 |
queue=True,
|
| 137 |
trigger_mode="once",
|
| 138 |
)
|
| 139 |
+
gr.on(
|
| 140 |
+
triggers=[chat_add_lora_text.submit, chat_add_lora_submit.click],
|
| 141 |
+
fn=add_dolphin_loras,
|
| 142 |
+
inputs=[chat_add_lora_text],
|
| 143 |
+
outputs=[chat_lora],
|
| 144 |
+
queue=True,
|
| 145 |
+
trigger_mode="once",
|
| 146 |
+
)
|
| 147 |
|
| 148 |
copy_btn.click(gradio_copy_text, [output_text], js=COPY_ACTION_JS)
|
| 149 |
copy_btn_pony.click(gradio_copy_text, [output_text_pony], js=COPY_ACTION_JS)
|
|
|
|
| 152 |
|
| 153 |
pg_chat_model.change(select_dolphin_model, [pg_chat_model, state], [pg_chat_model, pg_chat_format, pg_chat_model_info, state], queue=True, show_progress="full")
|
| 154 |
pg_chat_format.change(select_dolphin_format, [pg_chat_format, state], [pg_chat_format, state], queue=False)
|
| 155 |
+
pg_chat_lora.change(select_dolphin_lora, [pg_chat_lora, state], [pg_chat_lora, state], queue=True, show_progress="full")
|
| 156 |
gr.on(
|
| 157 |
triggers=[pg_chat_add_text.submit, pg_chat_add_submit.click],
|
| 158 |
fn=add_dolphin_models,
|
|
|
|
| 161 |
queue=True,
|
| 162 |
trigger_mode="once",
|
| 163 |
)
|
| 164 |
+
gr.on(
|
| 165 |
+
triggers=[pg_chat_add_lora_text.submit, pg_chat_add_lora_submit.click],
|
| 166 |
+
fn=add_dolphin_loras,
|
| 167 |
+
inputs=[pg_chat_add_lora_text],
|
| 168 |
+
outputs=[pg_chat_lora],
|
| 169 |
+
queue=True,
|
| 170 |
+
trigger_mode="once",
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
|
| 174 |
if __name__ == "__main__":
|
| 175 |
app.queue()
|
llmdolphin.py
CHANGED
|
@@ -4,6 +4,8 @@ from pathlib import Path
|
|
| 4 |
import re
|
| 5 |
import torch
|
| 6 |
import gc
|
|
|
|
|
|
|
| 7 |
from typing import Any
|
| 8 |
from huggingface_hub import hf_hub_download, HfApi
|
| 9 |
from llama_cpp import Llama
|
|
@@ -15,14 +17,17 @@ from ja_to_danbooru.ja_to_danbooru import jatags_to_danbooru_tags
|
|
| 15 |
import wrapt_timeout_decorator
|
| 16 |
from llama_cpp_agent.messages_formatter import MessagesFormatter
|
| 17 |
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
|
| 18 |
-
from llmenv import llm_models, llm_models_dir, llm_formats, llm_languages, dolphin_system_prompt
|
| 19 |
import subprocess
|
| 20 |
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
| 21 |
|
| 22 |
|
| 23 |
-
|
|
|
|
| 24 |
default_llm_model_filename = list(llm_models.keys())[0]
|
|
|
|
| 25 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
def to_list(s: str):
|
|
@@ -68,43 +73,170 @@ def is_japanese(s: str):
|
|
| 68 |
return False
|
| 69 |
|
| 70 |
|
| 71 |
-
def
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
model_files = Path(llm_models_dir).glob('*.gguf')
|
| 79 |
for path in model_files:
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
llm_models_tupled_list = list_uniq(llm_models_tupled_list)
|
| 84 |
-
return llm_models_tupled_list
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def download_llm_models():
|
| 88 |
-
global llm_models_tupled_list
|
| 89 |
-
llm_models_tupled_list = []
|
| 90 |
-
for k, v in llm_models.items():
|
| 91 |
-
try:
|
| 92 |
-
hf_hub_download(repo_id = v[0], filename = k, local_dir = llm_models_dir)
|
| 93 |
-
except Exception:
|
| 94 |
-
continue
|
| 95 |
-
name = k
|
| 96 |
-
value = k
|
| 97 |
-
llm_models_tupled_list.append((name, value))
|
| 98 |
|
| 99 |
|
| 100 |
def download_llm_model(filename: str):
|
| 101 |
-
if not
|
| 102 |
try:
|
| 103 |
-
hf_hub_download(repo_id
|
| 104 |
except Exception as e:
|
| 105 |
print(e)
|
| 106 |
return default_llm_model_filename
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
return filename
|
| 109 |
|
| 110 |
|
|
@@ -122,9 +254,18 @@ def select_dolphin_model(filename: str, state: dict, progress=gr.Progress(track_
|
|
| 122 |
value = download_llm_model(filename)
|
| 123 |
progress(1, desc="Model loaded.")
|
| 124 |
md = get_dolphin_model_info(filename)
|
|
|
|
| 125 |
return gr.update(value=value, choices=get_dolphin_models()), gr.update(value=get_dolphin_model_format(value)), gr.update(value=md), state
|
| 126 |
|
| 127 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
def select_dolphin_format(format_name: str, state: dict):
|
| 129 |
set_state(state, "override_llm_format", llm_formats[format_name])
|
| 130 |
return gr.update(value=format_name), state
|
|
@@ -134,7 +275,11 @@ download_llm_model(default_llm_model_filename)
|
|
| 134 |
|
| 135 |
|
| 136 |
def get_dolphin_models():
|
| 137 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
|
| 140 |
def get_llm_formats():
|
|
@@ -157,33 +302,41 @@ def get_dolphin_model_format(filename: str):
|
|
| 157 |
|
| 158 |
def add_dolphin_models(query: str, format_name: str):
|
| 159 |
global llm_models
|
| 160 |
-
api = HfApi()
|
| 161 |
-
add_models = {}
|
| 162 |
-
format = llm_formats[format_name]
|
| 163 |
-
filename = ""
|
| 164 |
-
repo = ""
|
| 165 |
try:
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
if not api.repo_exists(repo_id = repo) or not api.file_exists(repo_id = repo, filename = filename): return gr.update()
|
| 178 |
-
add_models[filename] = [repo, format]
|
| 179 |
else: return gr.update()
|
| 180 |
except Exception as e:
|
| 181 |
print(e)
|
| 182 |
return gr.update()
|
| 183 |
llm_models = (llm_models | add_models).copy()
|
| 184 |
-
|
| 185 |
choices = get_dolphin_models()
|
| 186 |
-
return gr.update(choices=choices, value=choices[-1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
|
| 188 |
|
| 189 |
def get_dolphin_sysprompt(state: dict={}):
|
|
@@ -221,6 +374,7 @@ def get_raw_prompt(msg: str):
|
|
| 221 |
return re.sub(r'[*/:_"#\n]', ' ', ", ".join(m)).lower() if m else ""
|
| 222 |
|
| 223 |
|
|
|
|
| 224 |
@torch.inference_mode()
|
| 225 |
@spaces.GPU(duration=59)
|
| 226 |
def dolphin_respond(
|
|
@@ -233,6 +387,8 @@ def dolphin_respond(
|
|
| 233 |
top_p: float = 0.95,
|
| 234 |
top_k: int = 40,
|
| 235 |
repeat_penalty: float = 1.1,
|
|
|
|
|
|
|
| 236 |
state: dict = {},
|
| 237 |
progress=gr.Progress(track_tqdm=True),
|
| 238 |
):
|
|
@@ -244,12 +400,18 @@ def dolphin_respond(
|
|
| 244 |
if override_llm_format: chat_template = override_llm_format
|
| 245 |
else: chat_template = llm_models[model][1]
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
llm = Llama(
|
| 248 |
model_path=str(model_path),
|
| 249 |
-
flash_attn=True,
|
| 250 |
n_gpu_layers=81, # 81
|
| 251 |
n_batch=1024,
|
| 252 |
n_ctx=8192, #8192
|
|
|
|
| 253 |
)
|
| 254 |
provider = LlamaCppPythonProvider(llm)
|
| 255 |
|
|
@@ -339,6 +501,8 @@ def dolphin_respond_auto(
|
|
| 339 |
top_p: float = 0.95,
|
| 340 |
top_k: int = 40,
|
| 341 |
repeat_penalty: float = 1.1,
|
|
|
|
|
|
|
| 342 |
state: dict = {},
|
| 343 |
progress=gr.Progress(track_tqdm=True),
|
| 344 |
):
|
|
@@ -351,12 +515,18 @@ def dolphin_respond_auto(
|
|
| 351 |
if override_llm_format: chat_template = override_llm_format
|
| 352 |
else: chat_template = llm_models[model][1]
|
| 353 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
llm = Llama(
|
| 355 |
model_path=str(model_path),
|
| 356 |
-
flash_attn=True,
|
| 357 |
n_gpu_layers=81, # 81
|
| 358 |
n_batch=1024,
|
| 359 |
n_ctx=8192, #8192
|
|
|
|
| 360 |
)
|
| 361 |
provider = LlamaCppPythonProvider(llm)
|
| 362 |
|
|
@@ -452,6 +622,8 @@ def respond_playground(
|
|
| 452 |
top_p: float = 0.95,
|
| 453 |
top_k: int = 40,
|
| 454 |
repeat_penalty: float = 1.1,
|
|
|
|
|
|
|
| 455 |
state: dict = {},
|
| 456 |
progress=gr.Progress(track_tqdm=True),
|
| 457 |
):
|
|
@@ -462,12 +634,18 @@ def respond_playground(
|
|
| 462 |
if override_llm_format: chat_template = override_llm_format
|
| 463 |
else: chat_template = llm_models[model][1]
|
| 464 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
llm = Llama(
|
| 466 |
model_path=str(model_path),
|
| 467 |
-
flash_attn=True,
|
| 468 |
n_gpu_layers=81, # 81
|
| 469 |
n_batch=1024,
|
| 470 |
n_ctx=8192, #8192
|
|
|
|
| 471 |
)
|
| 472 |
provider = LlamaCppPythonProvider(llm)
|
| 473 |
|
|
|
|
| 4 |
import re
|
| 5 |
import torch
|
| 6 |
import gc
|
| 7 |
+
import os
|
| 8 |
+
import urllib
|
| 9 |
from typing import Any
|
| 10 |
from huggingface_hub import hf_hub_download, HfApi
|
| 11 |
from llama_cpp import Llama
|
|
|
|
| 17 |
import wrapt_timeout_decorator
|
| 18 |
from llama_cpp_agent.messages_formatter import MessagesFormatter
|
| 19 |
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
|
| 20 |
+
from llmenv import llm_models, llm_models_dir, llm_loras, llm_loras_dir, llm_formats, llm_languages, dolphin_system_prompt
|
| 21 |
import subprocess
|
| 22 |
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
|
| 23 |
|
| 24 |
|
| 25 |
+
llm_models_list = []
|
| 26 |
+
llm_loras_list = []
|
| 27 |
default_llm_model_filename = list(llm_models.keys())[0]
|
| 28 |
+
default_llm_lora_filename = list(llm_loras.keys())[0]
|
| 29 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 30 |
+
HF_TOKEN = os.getenv("HF_TOKEN", False)
|
| 31 |
|
| 32 |
|
| 33 |
def to_list(s: str):
|
|
|
|
| 73 |
return False
|
| 74 |
|
| 75 |
|
| 76 |
+
def get_dir_size(path: str):
|
| 77 |
+
total = 0
|
| 78 |
+
with os.scandir(path) as it:
|
| 79 |
+
for entry in it:
|
| 80 |
+
if entry.is_file():
|
| 81 |
+
total += entry.stat().st_size
|
| 82 |
+
elif entry.is_dir():
|
| 83 |
+
total += get_dir_size(entry.path)
|
| 84 |
+
return total
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_dir_size_gb(path: str):
|
| 88 |
+
try:
|
| 89 |
+
size_gb = get_dir_size(path) / (1024 ** 3)
|
| 90 |
+
print(f"Dir size: {size_gb:.2f} GB ({path})")
|
| 91 |
+
except Exception as e:
|
| 92 |
+
size_gb = 999
|
| 93 |
+
print(f"Error while retrieving the used storage: {e}.")
|
| 94 |
+
finally:
|
| 95 |
+
return size_gb
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def clean_dir(path: str, size_gb: float, limit_gb: float):
|
| 99 |
+
try:
|
| 100 |
+
files = os.listdir(path)
|
| 101 |
+
files = [os.path.join(path, f) for f in files if f.endswith(".gguf") and default_llm_model_filename not in f and default_llm_lora_filename not in f]
|
| 102 |
+
files.sort(key=os.path.getatime, reverse=False)
|
| 103 |
+
req_bytes = int((size_gb - limit_gb) * (1024 ** 3))
|
| 104 |
+
for file in files:
|
| 105 |
+
if req_bytes < 0: break
|
| 106 |
+
size = os.path.getsize(file)
|
| 107 |
+
Path(file).unlink()
|
| 108 |
+
req_bytes -= size
|
| 109 |
+
print(f"Deleted: {file}")
|
| 110 |
+
except Exception as e:
|
| 111 |
+
print(e)
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def update_storage(path: str, limit_gb: float=50.0):
|
| 115 |
+
size_gb = get_dir_size_gb(path)
|
| 116 |
+
if size_gb > limit_gb:
|
| 117 |
+
print("Cleaning storage...")
|
| 118 |
+
clean_dir(path, size_gb, limit_gb)
|
| 119 |
+
#get_dir_size_gb(path)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def split_hf_url(url: str):
|
| 123 |
+
try:
|
| 124 |
+
s = list(re.findall(r'^(?:https?://huggingface.co/)(?:(datasets|spaces)/)?(.+?/.+?)/\w+?/.+?/(?:(.+)/)?(.+?.\w+)(?:\?download=true)?$', url)[0])
|
| 125 |
+
if len(s) < 4: return "", "", "", ""
|
| 126 |
+
repo_id = s[1]
|
| 127 |
+
if s[0] == "datasets": repo_type = "dataset"
|
| 128 |
+
elif s[0] == "spaces": repo_type = "space"
|
| 129 |
+
else: repo_type = "model"
|
| 130 |
+
subfolder = urllib.parse.unquote(s[2]) if s[2] else None
|
| 131 |
+
filename = urllib.parse.unquote(s[3])
|
| 132 |
+
return repo_id, filename, subfolder, repo_type
|
| 133 |
+
except Exception as e:
|
| 134 |
+
print(e)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
def hf_url_exists(url: str):
|
| 138 |
+
hf_token = HF_TOKEN
|
| 139 |
+
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 140 |
+
api = HfApi(token=hf_token)
|
| 141 |
+
return api.file_exists(repo_id=repo_id, filename=filename, repo_type=repo_type, token=hf_token)
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
def get_repo_type(repo_id: str):
|
| 145 |
+
try:
|
| 146 |
+
api = HfApi(token=HF_TOKEN)
|
| 147 |
+
if api.repo_exists(repo_id=repo_id, repo_type="dataset", token=HF_TOKEN): return "dataset"
|
| 148 |
+
elif api.repo_exists(repo_id=repo_id, repo_type="space", token=HF_TOKEN): return "space"
|
| 149 |
+
elif api.repo_exists(repo_id=repo_id, token=HF_TOKEN): return "model"
|
| 150 |
+
else: return None
|
| 151 |
+
except Exception as e:
|
| 152 |
+
print(e)
|
| 153 |
+
raise Exception(f"Repo not found: {repo_id} {e}")
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def get_hf_blob_url(repo_id: str, repo_type: str, path: str):
|
| 157 |
+
if repo_type == "model": return f"https://huggingface.co/{repo_id}/blob/main/{path}"
|
| 158 |
+
elif repo_type == "dataset": return f"https://huggingface.co/datasets/{repo_id}/blob/main/{path}"
|
| 159 |
+
elif repo_type == "space": return f"https://huggingface.co/spaces/{repo_id}/blob/main/{path}"
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def get_gguf_url(s: str):
|
| 163 |
+
def find_gguf(d: dict, keys: dict):
|
| 164 |
+
paths = []
|
| 165 |
+
for key, size in keys.items():
|
| 166 |
+
if size != 0: l = [p for p, s in d.items() if key.lower() in p.lower() and s < size]
|
| 167 |
+
else: l = [p for p in d.keys() if key.lower() in p.lower()]
|
| 168 |
+
if len(l) > 0: paths.append(l[0])
|
| 169 |
+
if len(paths) > 0: return paths[0]
|
| 170 |
+
return list(d.keys())[0]
|
| 171 |
+
|
| 172 |
+
try:
|
| 173 |
+
if s.lower().endswith(".gguf"): return s
|
| 174 |
+
repo_type = get_repo_type(s)
|
| 175 |
+
if repo_type is None: return s
|
| 176 |
+
repo_id = s
|
| 177 |
+
api = HfApi(token=HF_TOKEN)
|
| 178 |
+
gguf_dict = {i.path: i.size for i in api.list_repo_tree(repo_id=repo_id, repo_type=repo_type, recursive=True, token=HF_TOKEN) if i.path.endswith(".gguf")}
|
| 179 |
+
if len(gguf_dict) == 0: return s
|
| 180 |
+
return get_hf_blob_url(repo_id, repo_type, find_gguf(gguf_dict, {"Q5_K_M": 6000000000, "Q4_K_M": 0, "Q4": 0}))
|
| 181 |
+
except Exception as e:
|
| 182 |
+
print(e)
|
| 183 |
+
return s
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
def download_hf_file(directory, url, progress=gr.Progress(track_tqdm=True)):
|
| 187 |
+
hf_token = HF_TOKEN
|
| 188 |
+
repo_id, filename, subfolder, repo_type = split_hf_url(url)
|
| 189 |
+
try:
|
| 190 |
+
print(f"Downloading {url} to {directory}")
|
| 191 |
+
if subfolder is not None: path = hf_hub_download(repo_id=repo_id, filename=filename, subfolder=subfolder, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 192 |
+
else: path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type=repo_type, local_dir=directory, token=hf_token)
|
| 193 |
+
return path
|
| 194 |
+
except Exception as e:
|
| 195 |
+
print(f"Failed to download: {e}")
|
| 196 |
+
return None
|
| 197 |
+
|
| 198 |
+
|
| 199 |
+
def update_llm_model_list():
|
| 200 |
+
global llm_models_list
|
| 201 |
+
llm_models_list = []
|
| 202 |
+
for k in llm_models.keys():
|
| 203 |
+
llm_models_list.append(k)
|
| 204 |
model_files = Path(llm_models_dir).glob('*.gguf')
|
| 205 |
for path in model_files:
|
| 206 |
+
llm_models_list.append(path.name)
|
| 207 |
+
llm_models_list = list_uniq(llm_models_list)
|
| 208 |
+
return llm_models_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
| 210 |
|
| 211 |
def download_llm_model(filename: str):
|
| 212 |
+
if filename not in llm_models.keys(): return default_llm_model_filename
|
| 213 |
try:
|
| 214 |
+
hf_hub_download(repo_id=llm_models[filename][0], filename=filename, local_dir=llm_models_dir, token=HF_TOKEN)
|
| 215 |
except Exception as e:
|
| 216 |
print(e)
|
| 217 |
return default_llm_model_filename
|
| 218 |
+
update_llm_model_list()
|
| 219 |
+
return filename
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
def update_llm_lora_list():
|
| 223 |
+
global llm_loras_list
|
| 224 |
+
llm_loras_list = list(llm_loras.keys()).copy()
|
| 225 |
+
model_files = Path(llm_loras_dir).glob('*.gguf')
|
| 226 |
+
for path in model_files:
|
| 227 |
+
llm_loras_list.append(path.name)
|
| 228 |
+
llm_loras_list = list_uniq([""] + llm_loras_list)
|
| 229 |
+
return llm_loras_list
|
| 230 |
+
|
| 231 |
+
|
| 232 |
+
def download_llm_lora(filename: str):
|
| 233 |
+
if not filename in llm_loras.keys(): return ""
|
| 234 |
+
try:
|
| 235 |
+
download_hf_file(llm_loras_dir, llm_loras[filename])
|
| 236 |
+
except Exception as e:
|
| 237 |
+
print(e)
|
| 238 |
+
return ""
|
| 239 |
+
update_llm_lora_list()
|
| 240 |
return filename
|
| 241 |
|
| 242 |
|
|
|
|
| 254 |
value = download_llm_model(filename)
|
| 255 |
progress(1, desc="Model loaded.")
|
| 256 |
md = get_dolphin_model_info(filename)
|
| 257 |
+
update_storage(llm_models_dir)
|
| 258 |
return gr.update(value=value, choices=get_dolphin_models()), gr.update(value=get_dolphin_model_format(value)), gr.update(value=md), state
|
| 259 |
|
| 260 |
|
| 261 |
+
def select_dolphin_lora(filename: str, state: dict, progress=gr.Progress(track_tqdm=True)):
|
| 262 |
+
progress(0, desc="Loading lora...")
|
| 263 |
+
value = download_llm_lora(filename)
|
| 264 |
+
progress(1, desc="Lora loaded.")
|
| 265 |
+
update_storage(llm_loras_dir)
|
| 266 |
+
return gr.update(value=value, choices=get_dolphin_loras()), state
|
| 267 |
+
|
| 268 |
+
|
| 269 |
def select_dolphin_format(format_name: str, state: dict):
|
| 270 |
set_state(state, "override_llm_format", llm_formats[format_name])
|
| 271 |
return gr.update(value=format_name), state
|
|
|
|
| 275 |
|
| 276 |
|
| 277 |
def get_dolphin_models():
|
| 278 |
+
return update_llm_model_list()
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
def get_dolphin_loras():
|
| 282 |
+
return update_llm_lora_list()
|
| 283 |
|
| 284 |
|
| 285 |
def get_llm_formats():
|
|
|
|
| 302 |
|
| 303 |
def add_dolphin_models(query: str, format_name: str):
|
| 304 |
global llm_models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 305 |
try:
|
| 306 |
+
add_models = {}
|
| 307 |
+
format = llm_formats[format_name]
|
| 308 |
+
filename = ""
|
| 309 |
+
repo = ""
|
| 310 |
+
query = get_gguf_url(query)
|
| 311 |
+
if hf_url_exists(query):
|
| 312 |
+
s = list(re.findall(r'^https?://huggingface.co/(.+?/.+?)/(?:blob|resolve)/main/(.+.gguf)(?:\?download=true)?$', query)[0])
|
| 313 |
+
if len(s) == 2:
|
| 314 |
+
repo = s[0]
|
| 315 |
+
filename = s[1]
|
| 316 |
+
add_models[filename] = [repo, format]
|
|
|
|
|
|
|
| 317 |
else: return gr.update()
|
| 318 |
except Exception as e:
|
| 319 |
print(e)
|
| 320 |
return gr.update()
|
| 321 |
llm_models = (llm_models | add_models).copy()
|
| 322 |
+
update_llm_model_list()
|
| 323 |
choices = get_dolphin_models()
|
| 324 |
+
return gr.update(choices=choices, value=choices[-1])
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
def add_dolphin_loras(query: str):
|
| 328 |
+
global llm_loras
|
| 329 |
+
try:
|
| 330 |
+
add_loras = {}
|
| 331 |
+
query = get_gguf_url(query)
|
| 332 |
+
if hf_url_exists(query): add_loras[Path(query).name] = query
|
| 333 |
+
except Exception as e:
|
| 334 |
+
print(e)
|
| 335 |
+
return gr.update()
|
| 336 |
+
llm_loras = (llm_loras | add_loras).copy()
|
| 337 |
+
update_llm_lora_list()
|
| 338 |
+
choices = get_dolphin_loras()
|
| 339 |
+
return gr.update(choices=choices, value=choices[-1])
|
| 340 |
|
| 341 |
|
| 342 |
def get_dolphin_sysprompt(state: dict={}):
|
|
|
|
| 374 |
return re.sub(r'[*/:_"#\n]', ' ', ", ".join(m)).lower() if m else ""
|
| 375 |
|
| 376 |
|
| 377 |
+
# https://llama-cpp-python.readthedocs.io/en/latest/api-reference/
|
| 378 |
@torch.inference_mode()
|
| 379 |
@spaces.GPU(duration=59)
|
| 380 |
def dolphin_respond(
|
|
|
|
| 387 |
top_p: float = 0.95,
|
| 388 |
top_k: int = 40,
|
| 389 |
repeat_penalty: float = 1.1,
|
| 390 |
+
lora: str = "",
|
| 391 |
+
lora_scale: float = 1.0,
|
| 392 |
state: dict = {},
|
| 393 |
progress=gr.Progress(track_tqdm=True),
|
| 394 |
):
|
|
|
|
| 400 |
if override_llm_format: chat_template = override_llm_format
|
| 401 |
else: chat_template = llm_models[model][1]
|
| 402 |
|
| 403 |
+
kwargs = {}
|
| 404 |
+
if lora:
|
| 405 |
+
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
|
| 406 |
+
kwargs["lora_scale"] = lora_scale
|
| 407 |
+
else:
|
| 408 |
+
kwargs["flash_attn"] = True
|
| 409 |
llm = Llama(
|
| 410 |
model_path=str(model_path),
|
|
|
|
| 411 |
n_gpu_layers=81, # 81
|
| 412 |
n_batch=1024,
|
| 413 |
n_ctx=8192, #8192
|
| 414 |
+
**kwargs,
|
| 415 |
)
|
| 416 |
provider = LlamaCppPythonProvider(llm)
|
| 417 |
|
|
|
|
| 501 |
top_p: float = 0.95,
|
| 502 |
top_k: int = 40,
|
| 503 |
repeat_penalty: float = 1.1,
|
| 504 |
+
lora: str = "",
|
| 505 |
+
lora_scale: float = 1.0,
|
| 506 |
state: dict = {},
|
| 507 |
progress=gr.Progress(track_tqdm=True),
|
| 508 |
):
|
|
|
|
| 515 |
if override_llm_format: chat_template = override_llm_format
|
| 516 |
else: chat_template = llm_models[model][1]
|
| 517 |
|
| 518 |
+
kwargs = {}
|
| 519 |
+
if lora:
|
| 520 |
+
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
|
| 521 |
+
kwargs["lora_scale"] = lora_scale
|
| 522 |
+
else:
|
| 523 |
+
kwargs["flash_attn"] = True
|
| 524 |
llm = Llama(
|
| 525 |
model_path=str(model_path),
|
|
|
|
| 526 |
n_gpu_layers=81, # 81
|
| 527 |
n_batch=1024,
|
| 528 |
n_ctx=8192, #8192
|
| 529 |
+
**kwargs,
|
| 530 |
)
|
| 531 |
provider = LlamaCppPythonProvider(llm)
|
| 532 |
|
|
|
|
| 622 |
top_p: float = 0.95,
|
| 623 |
top_k: int = 40,
|
| 624 |
repeat_penalty: float = 1.1,
|
| 625 |
+
lora: str = "",
|
| 626 |
+
lora_scale: float = 1.0,
|
| 627 |
state: dict = {},
|
| 628 |
progress=gr.Progress(track_tqdm=True),
|
| 629 |
):
|
|
|
|
| 634 |
if override_llm_format: chat_template = override_llm_format
|
| 635 |
else: chat_template = llm_models[model][1]
|
| 636 |
|
| 637 |
+
kwargs = {}
|
| 638 |
+
if lora:
|
| 639 |
+
kwargs["lora_path"] = str(Path(f"{llm_loras_dir}/{lora}"))
|
| 640 |
+
kwargs["lora_scale"] = lora_scale
|
| 641 |
+
else:
|
| 642 |
+
kwargs["flash_attn"] = True
|
| 643 |
llm = Llama(
|
| 644 |
model_path=str(model_path),
|
|
|
|
| 645 |
n_gpu_layers=81, # 81
|
| 646 |
n_batch=1024,
|
| 647 |
n_ctx=8192, #8192
|
| 648 |
+
**kwargs,
|
| 649 |
)
|
| 650 |
provider = LlamaCppPythonProvider(llm)
|
| 651 |
|
llmenv.py
CHANGED
|
@@ -1,5 +1,7 @@
|
|
| 1 |
from llama_cpp_agent import MessagesFormatterType
|
| 2 |
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
|
|
|
|
|
|
|
| 3 |
|
| 4 |
llm_models = {
|
| 5 |
#"": ["", MessagesFormatterType.LLAMA_3],
|
|
@@ -96,6 +98,20 @@ llm_models = {
|
|
| 96 |
#"": ["", MessagesFormatterType.OPEN_CHAT],
|
| 97 |
#"": ["", MessagesFormatterType.CHATML],
|
| 98 |
#"": ["", MessagesFormatterType.PHI_3],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
"SJT-14B.Q4_K_M.gguf": ["mradermacher/SJT-14B-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 100 |
"Hermes-Llama-3.2-CoT-Summary.Q5_K_M.gguf": ["mradermacher/Hermes-Llama-3.2-CoT-Summary-GGUF", MessagesFormatterType.LLAMA_3],
|
| 101 |
"Rombo-LLM-V2.5-Qwen-7b.Q5_K_M.gguf": ["mradermacher/Rombo-LLM-V2.5-Qwen-7b-GGUF", MessagesFormatterType.OPEN_CHAT],
|
|
@@ -2080,7 +2096,14 @@ llm_models = {
|
|
| 2080 |
}
|
| 2081 |
|
| 2082 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2083 |
llm_models_dir = "./llm_models"
|
|
|
|
| 2084 |
|
| 2085 |
|
| 2086 |
llm_formats = {
|
|
|
|
| 1 |
from llama_cpp_agent import MessagesFormatterType
|
| 2 |
from formatter import mistral_v1_formatter, mistral_v2_formatter, mistral_v3_tekken_formatter
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
|
| 6 |
llm_models = {
|
| 7 |
#"": ["", MessagesFormatterType.LLAMA_3],
|
|
|
|
| 98 |
#"": ["", MessagesFormatterType.OPEN_CHAT],
|
| 99 |
#"": ["", MessagesFormatterType.CHATML],
|
| 100 |
#"": ["", MessagesFormatterType.PHI_3],
|
| 101 |
+
"MN-12B-solracht-EXPERIMENTAL-011425.Q4_K_M.gguf": ["mradermacher/MN-12B-solracht-EXPERIMENTAL-011425-GGUF", MessagesFormatterType.MISTRAL],
|
| 102 |
+
"Llamaverse-3.1-8B-Instruct.Q5_K_M.gguf": ["mradermacher/Llamaverse-3.1-8B-Instruct-GGUF", MessagesFormatterType.LLAMA_3],
|
| 103 |
+
"Morphing-8B-Model_Stock.Q5_K_M.gguf": ["mradermacher/Morphing-8B-Model_Stock-GGUF", MessagesFormatterType.LLAMA_3],
|
| 104 |
+
"Not_Even_My_Final_Form-8B-Model_Stock.Q5_K_M.gguf": ["mradermacher/Not_Even_My_Final_Form-8B-Model_Stock-GGUF", MessagesFormatterType.LLAMA_3],
|
| 105 |
+
"Qwen2.5-7B-sft-ultrachat.Q5_K_M.gguf": ["mradermacher/Qwen2.5-7B-sft-ultrachat-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 106 |
+
"Kosmos-EVAA-Franken-Immersive-v40-8B.Q5_K_M.gguf": ["mradermacher/Kosmos-EVAA-Franken-Immersive-v40-8B-GGUF", MessagesFormatterType.LLAMA_3],
|
| 107 |
+
"light-7b-beta.Q5_K_M.gguf": ["mradermacher/light-7b-beta-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 108 |
+
"light-3B-beta.Q5_K_M.gguf": ["mradermacher/light-3B-beta-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 109 |
+
"Magnolia-v4-12B.Q4_K_M.gguf": ["mradermacher/Magnolia-v4-12B-GGUF", MessagesFormatterType.MISTRAL],
|
| 110 |
+
"Darkest-muse-v1-lorablated-v2.i1-Q4_K_M.gguf": ["mradermacher/Darkest-muse-v1-lorablated-v2-i1-GGUF", MessagesFormatterType.ALPACA],
|
| 111 |
+
"Eunoia-Gemma-9B-o1-Indo.Q4_K_M.gguf": ["mradermacher/Eunoia-Gemma-9B-o1-Indo-GGUF", MessagesFormatterType.ALPACA],
|
| 112 |
+
"VISION-1.Q5_K_M.gguf": ["mradermacher/VISION-1-GGUF", MessagesFormatterType.LLAMA_3],
|
| 113 |
+
"RigoChat-7b-v2.i1-Q5_K_M.gguf": ["mradermacher/RigoChat-7b-v2-i1-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 114 |
+
"italy-10b-q5_k_m.gguf": ["ClaudioItaly/Italy-10B-Q5_K_M-GGUF", MessagesFormatterType.ALPACA],
|
| 115 |
"SJT-14B.Q4_K_M.gguf": ["mradermacher/SJT-14B-GGUF", MessagesFormatterType.OPEN_CHAT],
|
| 116 |
"Hermes-Llama-3.2-CoT-Summary.Q5_K_M.gguf": ["mradermacher/Hermes-Llama-3.2-CoT-Summary-GGUF", MessagesFormatterType.LLAMA_3],
|
| 117 |
"Rombo-LLM-V2.5-Qwen-7b.Q5_K_M.gguf": ["mradermacher/Rombo-LLM-V2.5-Qwen-7b-GGUF", MessagesFormatterType.OPEN_CHAT],
|
|
|
|
| 2096 |
}
|
| 2097 |
|
| 2098 |
|
| 2099 |
+
llm_loras_urls = [
|
| 2100 |
+
"https://huggingface.co/ggml-org/LoRA-Qwen2.5-32B-Instruct-abliterated-F16-GGUF/blob/main/LoRA-Qwen2.5-32B-Instruct-abliterated-f16.gguf",
|
| 2101 |
+
]
|
| 2102 |
+
llm_loras = {str(Path(u).name): u for u in llm_loras_urls}
|
| 2103 |
+
|
| 2104 |
+
|
| 2105 |
llm_models_dir = "./llm_models"
|
| 2106 |
+
llm_loras_dir = "./llm_loras"
|
| 2107 |
|
| 2108 |
|
| 2109 |
llm_formats = {
|