Upload 11 files
Browse files- app.py +14 -9
- model.py +0 -4
- multit2i.py +58 -18
- tagger/tagger.py +3 -0
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from multit2i import (
|
| 3 |
load_models,
|
| 4 |
infer_multi,
|
|
@@ -13,9 +14,8 @@ from multit2i import (
|
|
| 13 |
get_negative_suffix,
|
| 14 |
get_recom_prompt_type,
|
| 15 |
set_recom_prompt_preset,
|
|
|
|
| 16 |
)
|
| 17 |
-
from model import models
|
| 18 |
-
|
| 19 |
from tagger.tagger import (
|
| 20 |
predict_tags_wd,
|
| 21 |
remove_specific_prompt,
|
|
@@ -35,8 +35,8 @@ from tagger.utils import (
|
|
| 35 |
)
|
| 36 |
|
| 37 |
|
| 38 |
-
load_models(models,
|
| 39 |
-
#load_models(models, 20) # Fetching 20 models at the same time. default: 5
|
| 40 |
|
| 41 |
|
| 42 |
css = """
|
|
@@ -59,6 +59,7 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
|
|
| 59 |
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
| 60 |
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 61 |
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
|
|
|
| 62 |
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 63 |
with gr.Accordion("Model", open=True):
|
| 64 |
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0])
|
|
@@ -69,7 +70,7 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
|
|
| 69 |
with gr.Accordion(label="Advanced options", open=False):
|
| 70 |
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
| 71 |
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
| 72 |
-
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for
|
| 73 |
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
| 74 |
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
| 75 |
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
|
@@ -103,8 +104,6 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", css=css) as demo:
|
|
| 103 |
f"""This demo was created in reference to the following demos.
|
| 104 |
- [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood).
|
| 105 |
- [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL).
|
| 106 |
-
<br>The first startup takes a mind-boggling amount of time, but not so much after the second.
|
| 107 |
-
This is due to the time it takes for Gradio to generate an example image to cache.
|
| 108 |
"""
|
| 109 |
)
|
| 110 |
gr.DuplicateButton(value="Duplicate Space")
|
|
@@ -134,8 +133,14 @@ This is due to the time it takes for Gradio to generate an example image to cach
|
|
| 134 |
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
| 135 |
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
| 136 |
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
| 137 |
-
random_prompt.click(
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
tagger_generate_from_image.click(
|
| 140 |
predict_tags_wd,
|
| 141 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from model import models
|
| 3 |
from multit2i import (
|
| 4 |
load_models,
|
| 5 |
infer_multi,
|
|
|
|
| 14 |
get_negative_suffix,
|
| 15 |
get_recom_prompt_type,
|
| 16 |
set_recom_prompt_preset,
|
| 17 |
+
get_tag_type,
|
| 18 |
)
|
|
|
|
|
|
|
| 19 |
from tagger.tagger import (
|
| 20 |
predict_tags_wd,
|
| 21 |
remove_specific_prompt,
|
|
|
|
| 35 |
)
|
| 36 |
|
| 37 |
|
| 38 |
+
load_models(models, 5)
|
| 39 |
+
#load_models(models, 20) # Fetching 20 models at the same time. default: 5
|
| 40 |
|
| 41 |
|
| 42 |
css = """
|
|
|
|
| 59 |
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
| 60 |
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 61 |
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
| 62 |
+
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
| 63 |
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 64 |
with gr.Accordion("Model", open=True):
|
| 65 |
model_name = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0])
|
|
|
|
| 70 |
with gr.Accordion(label="Advanced options", open=False):
|
| 71 |
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
|
| 72 |
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
|
| 73 |
+
tagger_tag_type = gr.Radio(label="Convert tags to", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru")
|
| 74 |
tagger_recom_prompt = gr.Radio(label="Insert reccomended prompt", choices=["None", "Animagine", "Pony"], value="None", interactive=True)
|
| 75 |
tagger_keep_tags = gr.Radio(label="Remove tags leaving only the following", choices=["body", "dress", "all"], value="all")
|
| 76 |
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-SD3-Long-Captioner"], label="Algorithms", value=["Use WD Tagger"])
|
|
|
|
| 104 |
f"""This demo was created in reference to the following demos.
|
| 105 |
- [Nymbo/Flood](https://huggingface.co/spaces/Nymbo/Flood).
|
| 106 |
- [Yntec/ToyWorldXL](https://huggingface.co/spaces/Yntec/ToyWorldXL).
|
|
|
|
|
|
|
| 107 |
"""
|
| 108 |
)
|
| 109 |
gr.DuplicateButton(value="Duplicate Space")
|
|
|
|
| 133 |
clear_results.click(lambda: (None, None), None, [results, image_files], queue=False, show_api=False)
|
| 134 |
recom_prompt_preset.change(set_recom_prompt_preset, [recom_prompt_preset],
|
| 135 |
[positive_prefix, positive_suffix, negative_prefix, negative_suffix], queue=False, show_api=False)
|
| 136 |
+
random_prompt.click(
|
| 137 |
+
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
| 138 |
+
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
| 139 |
+
).success(
|
| 140 |
+
get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
|
| 141 |
+
).success(
|
| 142 |
+
convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
|
| 143 |
+
)
|
| 144 |
tagger_generate_from_image.click(
|
| 145 |
predict_tags_wd,
|
| 146 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
model.py
CHANGED
|
@@ -19,9 +19,6 @@ models = [
|
|
| 19 |
]
|
| 20 |
|
| 21 |
|
| 22 |
-
models = ['yodayo-ai/kivotos-xl-2.0', 'Raelina/Rae-Diffusion-XL-V2']
|
| 23 |
-
|
| 24 |
-
|
| 25 |
# Examples:
|
| 26 |
#models = ['yodayo-ai/kivotos-xl-2.0', 'yodayo-ai/holodayo-xl-2.1'] # specific models
|
| 27 |
#models = find_model_list("John6666", [], "", "last_modified", 20) # John6666's latest 20 models
|
|
@@ -29,4 +26,3 @@ models = ['yodayo-ai/kivotos-xl-2.0', 'Raelina/Rae-Diffusion-XL-V2']
|
|
| 29 |
#models = find_model_list("John6666", [], "anime", "last_modified", 20) # John6666's latest 20 models without 'anime' tag
|
| 30 |
#models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface
|
| 31 |
#models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface
|
| 32 |
-
|
|
|
|
| 19 |
]
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
| 22 |
# Examples:
|
| 23 |
#models = ['yodayo-ai/kivotos-xl-2.0', 'yodayo-ai/holodayo-xl-2.1'] # specific models
|
| 24 |
#models = find_model_list("John6666", [], "", "last_modified", 20) # John6666's latest 20 models
|
|
|
|
| 26 |
#models = find_model_list("John6666", [], "anime", "last_modified", 20) # John6666's latest 20 models without 'anime' tag
|
| 27 |
#models = find_model_list("", [], "", "last_modified", 20) # latest 20 text-to-image models of huggingface
|
| 28 |
#models = find_model_list("", [], "", "downloads", 20) # monthly most downloaded 20 text-to-image models of huggingface
|
|
|
multit2i.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import asyncio
|
| 3 |
-
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
|
| 6 |
|
|
@@ -70,8 +71,7 @@ def get_t2i_model_info_dict(repo_id: str):
|
|
| 70 |
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
| 71 |
else: info["ver"] = "Other"
|
| 72 |
info["url"] = f"https://huggingface.co/{repo_id}/"
|
| 73 |
-
if model.card_data and model.card_data.tags
|
| 74 |
-
info["tags"] = model.card_data.tags
|
| 75 |
info["downloads"] = model.downloads
|
| 76 |
info["likes"] = model.likes
|
| 77 |
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
|
@@ -108,31 +108,61 @@ def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
|
| 108 |
return gr.update(value=output_images), gr.update(value=output_paths)
|
| 109 |
|
| 110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
def load_model(model_name: str):
|
| 112 |
global loaded_models
|
| 113 |
global model_info_dict
|
| 114 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
| 115 |
try:
|
| 116 |
-
|
| 117 |
-
loaded_models[model_name] = gr.load(f'models/{model_name}')
|
| 118 |
print(f"Loaded: {model_name}")
|
| 119 |
except Exception as e:
|
| 120 |
-
|
| 121 |
-
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
| 122 |
print(f"Failed to load: {model_name}")
|
| 123 |
print(e)
|
| 124 |
return None
|
| 125 |
try:
|
| 126 |
-
|
| 127 |
-
|
| 128 |
except Exception as e:
|
| 129 |
-
|
| 130 |
-
|
| 131 |
print(e)
|
| 132 |
return loaded_models[model_name]
|
| 133 |
|
| 134 |
|
| 135 |
-
async def async_load_models(models: list, limit: int=5
|
| 136 |
sem = asyncio.Semaphore(limit)
|
| 137 |
async def async_load_model(model: str):
|
| 138 |
async with sem:
|
|
@@ -247,6 +277,16 @@ def get_negative_suffix():
|
|
| 247 |
return list(negative_suffix.keys())
|
| 248 |
|
| 249 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 250 |
def get_model_info_md(model_name: str):
|
| 251 |
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
| 252 |
|
|
@@ -277,13 +317,13 @@ def infer(prompt: str, neg_prompt: str, model_name: str):
|
|
| 277 |
|
| 278 |
async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
|
| 279 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
|
| 280 |
-
|
| 281 |
image_num = int(image_num)
|
| 282 |
images = results if results else []
|
| 283 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 284 |
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
|
| 285 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 286 |
-
|
| 287 |
if not results: results = []
|
| 288 |
for result in results:
|
| 289 |
with lock:
|
|
@@ -293,7 +333,7 @@ async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: fl
|
|
| 293 |
|
| 294 |
async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
|
| 295 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
|
| 296 |
-
|
| 297 |
import random
|
| 298 |
image_num = int(image_num)
|
| 299 |
images = results if results else []
|
|
@@ -301,8 +341,8 @@ async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_
|
|
| 301 |
model_names = random.choices(list(loaded_models.keys()), k = image_num)
|
| 302 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 303 |
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
|
| 304 |
-
results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 305 |
-
|
| 306 |
if not results: results = []
|
| 307 |
for result in results:
|
| 308 |
with lock:
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import asyncio
|
| 3 |
+
import queue
|
| 4 |
+
from threading import RLock
|
| 5 |
from pathlib import Path
|
| 6 |
|
| 7 |
|
|
|
|
| 71 |
elif 'diffusers:StableDiffusion3Pipeline' in tags: info["ver"] = "SD3"
|
| 72 |
else: info["ver"] = "Other"
|
| 73 |
info["url"] = f"https://huggingface.co/{repo_id}/"
|
| 74 |
+
info["tags"] = model.card_data.tags if model.card_data and model.card_data.tags else []
|
|
|
|
| 75 |
info["downloads"] = model.downloads
|
| 76 |
info["likes"] = model.likes
|
| 77 |
info["last_modified"] = model.last_modified.strftime("lastmod: %Y-%m-%d")
|
|
|
|
| 108 |
return gr.update(value=output_images), gr.update(value=output_paths)
|
| 109 |
|
| 110 |
|
| 111 |
+
def load_from_model(model_name: str, hf_token: str = None):
|
| 112 |
+
import httpx
|
| 113 |
+
import huggingface_hub
|
| 114 |
+
from gradio.exceptions import ModelNotFoundError
|
| 115 |
+
model_url = f"https://huggingface.co/{model_name}"
|
| 116 |
+
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 117 |
+
print(f"Fetching model from: {model_url}")
|
| 118 |
+
|
| 119 |
+
headers = {"Authorization": f"Bearer {hf_token}"} if hf_token is not None else {}
|
| 120 |
+
response = httpx.request("GET", api_url, headers=headers)
|
| 121 |
+
if response.status_code != 200:
|
| 122 |
+
raise ModelNotFoundError(
|
| 123 |
+
f"Could not find model: {model_name}. If it is a private or gated model, please provide your Hugging Face access token (https://huggingface.co/settings/tokens) as the argument for the `hf_token` parameter."
|
| 124 |
+
)
|
| 125 |
+
headers["X-Wait-For-Model"] = "true"
|
| 126 |
+
client = huggingface_hub.InferenceClient(model=model_name, headers=headers, token=hf_token)
|
| 127 |
+
inputs = gr.components.Textbox(label="Input")
|
| 128 |
+
outputs = gr.components.Image(label="Output")
|
| 129 |
+
fn = client.text_to_image
|
| 130 |
+
|
| 131 |
+
def query_huggingface_inference_endpoints(*data):
|
| 132 |
+
return fn(*data)
|
| 133 |
+
|
| 134 |
+
interface_info = {
|
| 135 |
+
"fn": query_huggingface_inference_endpoints,
|
| 136 |
+
"inputs": inputs,
|
| 137 |
+
"outputs": outputs,
|
| 138 |
+
"title": model_name,
|
| 139 |
+
}
|
| 140 |
+
return gr.Interface(**interface_info)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
def load_model(model_name: str):
|
| 144 |
global loaded_models
|
| 145 |
global model_info_dict
|
| 146 |
if model_name in loaded_models.keys(): return loaded_models[model_name]
|
| 147 |
try:
|
| 148 |
+
loaded_models[model_name] = load_from_model(model_name)
|
|
|
|
| 149 |
print(f"Loaded: {model_name}")
|
| 150 |
except Exception as e:
|
| 151 |
+
if model_name in loaded_models.keys(): del loaded_models[model_name]
|
|
|
|
| 152 |
print(f"Failed to load: {model_name}")
|
| 153 |
print(e)
|
| 154 |
return None
|
| 155 |
try:
|
| 156 |
+
model_info_dict[model_name] = get_t2i_model_info_dict(model_name)
|
| 157 |
+
print(f"Assigned: {model_name}")
|
| 158 |
except Exception as e:
|
| 159 |
+
if model_name in model_info_dict.keys(): del model_info_dict[model_name]
|
| 160 |
+
print(f"Failed to assigned: {model_name}")
|
| 161 |
print(e)
|
| 162 |
return loaded_models[model_name]
|
| 163 |
|
| 164 |
|
| 165 |
+
async def async_load_models(models: list, limit: int=5):
|
| 166 |
sem = asyncio.Semaphore(limit)
|
| 167 |
async def async_load_model(model: str):
|
| 168 |
async with sem:
|
|
|
|
| 277 |
return list(negative_suffix.keys())
|
| 278 |
|
| 279 |
|
| 280 |
+
def get_tag_type(pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = []):
|
| 281 |
+
tag_type = "danbooru"
|
| 282 |
+
words = pos_pre + pos_suf + neg_pre + neg_suf
|
| 283 |
+
for word in words:
|
| 284 |
+
if "Pony" in word:
|
| 285 |
+
tag_type = "e621"
|
| 286 |
+
break
|
| 287 |
+
return tag_type
|
| 288 |
+
|
| 289 |
+
|
| 290 |
def get_model_info_md(model_name: str):
|
| 291 |
if model_name in model_info_dict.keys(): return model_info_dict[model_name].get("md", "")
|
| 292 |
|
|
|
|
| 317 |
|
| 318 |
async def infer_multi(prompt: str, neg_prompt: str, results: list, image_num: float, model_name: str,
|
| 319 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
|
| 320 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 321 |
image_num = int(image_num)
|
| 322 |
images = results if results else []
|
| 323 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 324 |
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for i in range(image_num)]
|
| 325 |
+
#results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 326 |
+
results = await tqdm_asyncio.gather(*tasks)
|
| 327 |
if not results: results = []
|
| 328 |
for result in results:
|
| 329 |
with lock:
|
|
|
|
| 333 |
|
| 334 |
async def infer_multi_random(prompt: str, neg_prompt: str, results: list, image_num: float,
|
| 335 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], progress=gr.Progress(track_tqdm=True)):
|
| 336 |
+
from tqdm.asyncio import tqdm_asyncio
|
| 337 |
import random
|
| 338 |
image_num = int(image_num)
|
| 339 |
images = results if results else []
|
|
|
|
| 341 |
model_names = random.choices(list(loaded_models.keys()), k = image_num)
|
| 342 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 343 |
tasks = [asyncio.to_thread(infer, prompt, neg_prompt, model_name) for model_name in model_names]
|
| 344 |
+
#results = await asyncio.gather(*tasks, return_exceptions=True)
|
| 345 |
+
results = await tqdm_asyncio.gather(*tasks)
|
| 346 |
if not results: results = []
|
| 347 |
for result in results:
|
| 348 |
with lock:
|
tagger/tagger.py
CHANGED
|
@@ -31,12 +31,15 @@ PEOPLE_TAGS = (
|
|
| 31 |
|
| 32 |
|
| 33 |
RATING_MAP = {
|
|
|
|
| 34 |
"general": "safe",
|
| 35 |
"sensitive": "sensitive",
|
| 36 |
"questionable": "nsfw",
|
| 37 |
"explicit": "explicit, nsfw",
|
| 38 |
}
|
| 39 |
DANBOORU_TO_E621_RATING_MAP = {
|
|
|
|
|
|
|
| 40 |
"safe": "rating_safe",
|
| 41 |
"sensitive": "rating_safe",
|
| 42 |
"nsfw": "rating_explicit",
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
RATING_MAP = {
|
| 34 |
+
"sfw": "safe",
|
| 35 |
"general": "safe",
|
| 36 |
"sensitive": "sensitive",
|
| 37 |
"questionable": "nsfw",
|
| 38 |
"explicit": "explicit, nsfw",
|
| 39 |
}
|
| 40 |
DANBOORU_TO_E621_RATING_MAP = {
|
| 41 |
+
"sfw": "rating_safe",
|
| 42 |
+
"general": "rating_safe",
|
| 43 |
"safe": "rating_safe",
|
| 44 |
"sensitive": "rating_safe",
|
| 45 |
"nsfw": "rating_explicit",
|