Upload 3 files
Browse files- README.md +1 -1
- app.py +34 -45
- multit2i.py +39 -16
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: ππ
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version: 4.
|
| 8 |
app_file: app.py
|
| 9 |
short_description: Text-to-Image
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: blue
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.42.0
|
| 8 |
app_file: app.py
|
| 9 |
short_description: Text-to-Image
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -1,24 +1,18 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from model import models
|
| 3 |
-
from multit2i import (
|
| 4 |
-
load_models, infer_fn, infer_rand_fn, save_gallery,
|
| 5 |
change_model, warm_model, get_model_info_md, loaded_models,
|
| 6 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
| 7 |
-
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
| 11 |
-
insert_recom_prompt, compose_prompt_to_copy,
|
| 12 |
-
)
|
| 13 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 14 |
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
| 15 |
-
from tagger.utils import (
|
| 16 |
-
|
| 17 |
-
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS,
|
| 18 |
-
)
|
| 19 |
-
|
| 20 |
|
| 21 |
max_images = 8
|
|
|
|
| 22 |
load_models(models)
|
| 23 |
|
| 24 |
css = """
|
|
@@ -51,10 +45,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
| 51 |
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
| 52 |
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
| 53 |
with gr.Accordion("Advanced options", open=False):
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
| 58 |
with gr.Accordion("Recommended Prompt", open=False):
|
| 59 |
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
| 60 |
with gr.Row():
|
|
@@ -63,12 +60,14 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
| 63 |
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
| 64 |
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
| 65 |
with gr.Accordion("Prompt Transformer", open=False):
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 73 |
v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
| 74 |
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
|
|
@@ -115,13 +114,13 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
| 115 |
img_i = gr.Number(i, visible=False)
|
| 116 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
| 117 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
| 118 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
| 119 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
| 120 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 121 |
outputs=[o], queue=True, show_api=False)
|
| 122 |
gen_event2 = gr.on(triggers=[random_button.click],
|
| 123 |
-
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, l1, l2, l3, l4) if (i < n) else None,
|
| 124 |
-
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg,
|
| 125 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 126 |
outputs=[o], queue=True, show_api=False)
|
| 127 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
|
@@ -135,29 +134,19 @@ with gr.Blocks(theme="NoCrypt/miku@>=1.2.2", fill_width=True, css=css) as demo:
|
|
| 135 |
random_prompt.click(
|
| 136 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
| 137 |
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
| 138 |
-
).success(
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False,
|
| 142 |
-
)
|
| 143 |
-
tagger_generate_from_image.click(
|
| 144 |
-
lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
| 145 |
).success(
|
| 146 |
predict_tags_wd,
|
| 147 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
| 148 |
[v2_series, v2_character, prompt, v2_copy],
|
| 149 |
show_api=False,
|
| 150 |
-
).success(
|
| 151 |
-
|
| 152 |
-
).success(
|
| 153 |
-
|
| 154 |
-
).success(
|
| 155 |
-
convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
| 156 |
-
).success(
|
| 157 |
-
insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
| 158 |
-
).success(
|
| 159 |
-
compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False,
|
| 160 |
-
)
|
| 161 |
|
| 162 |
demo.queue()
|
| 163 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from model import models
|
| 3 |
+
from multit2i import (load_models, infer_fn, infer_rand_fn, save_gallery,
|
|
|
|
| 4 |
change_model, warm_model, get_model_info_md, loaded_models,
|
| 5 |
get_positive_prefix, get_positive_suffix, get_negative_prefix, get_negative_suffix,
|
| 6 |
+
get_recom_prompt_type, set_recom_prompt_preset, get_tag_type)
|
| 7 |
+
from tagger.tagger import (predict_tags_wd, remove_specific_prompt, convert_danbooru_to_e621_prompt,
|
| 8 |
+
insert_recom_prompt, compose_prompt_to_copy)
|
|
|
|
|
|
|
|
|
|
| 9 |
from tagger.fl2sd3longcap import predict_tags_fl2_sd3
|
| 10 |
from tagger.v2 import V2_ALL_MODELS, v2_random_prompt
|
| 11 |
+
from tagger.utils import (V2_ASPECT_RATIO_OPTIONS, V2_RATING_OPTIONS,
|
| 12 |
+
V2_LENGTH_OPTIONS, V2_IDENTITY_OPTIONS)
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
max_images = 8
|
| 15 |
+
MAX_SEED = 2**32-1
|
| 16 |
load_models(models)
|
| 17 |
|
| 18 |
css = """
|
|
|
|
| 45 |
prompt = gr.Text(label="Prompt", lines=2, max_lines=8, placeholder="1girl, solo, ...", show_copy_button=True)
|
| 46 |
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="")
|
| 47 |
with gr.Accordion("Advanced options", open=False):
|
| 48 |
+
with gr.Row():
|
| 49 |
+
width = gr.Number(label="Width", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
| 50 |
+
height = gr.Number(label="Height", info="If 0, the default value is used.", maximum=1216, step=32, value=0)
|
| 51 |
+
with gr.Row():
|
| 52 |
+
steps = gr.Number(label="Number of inference steps", info="If 0, the default value is used.", maximum=100, step=1, value=0)
|
| 53 |
+
cfg = gr.Number(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
| 54 |
+
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 55 |
with gr.Accordion("Recommended Prompt", open=False):
|
| 56 |
recom_prompt_preset = gr.Radio(label="Set Presets", choices=get_recom_prompt_type(), value="Common")
|
| 57 |
with gr.Row():
|
|
|
|
| 60 |
negative_prefix = gr.CheckboxGroup(label="Use Negative Prefix", choices=get_negative_prefix(), value=[])
|
| 61 |
negative_suffix = gr.CheckboxGroup(label="Use Negative Suffix", choices=get_negative_suffix(), value=["Common"])
|
| 62 |
with gr.Accordion("Prompt Transformer", open=False):
|
| 63 |
+
with gr.Row():
|
| 64 |
+
v2_rating = gr.Radio(label="Rating", choices=list(V2_RATING_OPTIONS), value="sfw")
|
| 65 |
+
v2_aspect_ratio = gr.Radio(label="Aspect ratio", info="The aspect ratio of the image.", choices=list(V2_ASPECT_RATIO_OPTIONS), value="square", visible=False)
|
| 66 |
+
v2_length = gr.Radio(label="Length", info="The total length of the tags.", choices=list(V2_LENGTH_OPTIONS), value="long")
|
| 67 |
+
with gr.Row():
|
| 68 |
+
v2_identity = gr.Radio(label="Keep identity", info="How strictly to keep the identity of the character or subject. If you specify the detail of subject in the prompt, you should choose `strict`. Otherwise, choose `none` or `lax`. `none` is very creative but sometimes ignores the input prompt.", choices=list(V2_IDENTITY_OPTIONS), value="lax")
|
| 69 |
+
v2_ban_tags = gr.Textbox(label="Ban tags", info="Tags to ban from the output.", placeholder="alternate costumen, ...", value="censored")
|
| 70 |
+
v2_tag_type = gr.Radio(label="Tag Type", info="danbooru for common, e621 for Pony.", choices=["danbooru", "e621"], value="danbooru", visible=False)
|
| 71 |
v2_model = gr.Dropdown(label="Model", choices=list(V2_ALL_MODELS.keys()), value=list(V2_ALL_MODELS.keys())[0])
|
| 72 |
v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False)
|
| 73 |
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=1)
|
|
|
|
| 114 |
img_i = gr.Number(i, visible=False)
|
| 115 |
image_num.change(lambda i, n: gr.update(visible = (i < n)), [img_i, image_num], o, show_api=False)
|
| 116 |
gen_event = gr.on(triggers=[run_button.click, prompt.submit],
|
| 117 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
| 118 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
| 119 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 120 |
outputs=[o], queue=True, show_api=False)
|
| 121 |
gen_event2 = gr.on(triggers=[random_button.click],
|
| 122 |
+
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4: infer_rand_fn(m, t1, t2, n1, n2, n3, n4, n5, l1, l2, l3, l4) if (i < n) else None,
|
| 123 |
+
inputs=[img_i, image_num, model_name, prompt, neg_prompt, height, width, steps, cfg, seed,
|
| 124 |
positive_prefix, positive_suffix, negative_prefix, negative_suffix],
|
| 125 |
outputs=[o], queue=True, show_api=False)
|
| 126 |
o.change(save_gallery, [o, results], [results, image_files], show_api=False)
|
|
|
|
| 134 |
random_prompt.click(
|
| 135 |
v2_random_prompt, [prompt, v2_series, v2_character, v2_rating, v2_aspect_ratio, v2_length,
|
| 136 |
v2_identity, v2_ban_tags, v2_model], [prompt, v2_series, v2_character], show_api=False,
|
| 137 |
+
).success(get_tag_type, [positive_prefix, positive_suffix, negative_prefix, negative_suffix], [v2_tag_type], queue=False, show_api=False
|
| 138 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, v2_tag_type], [prompt], queue=False, show_api=False)
|
| 139 |
+
tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
).success(
|
| 141 |
predict_tags_wd,
|
| 142 |
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
|
| 143 |
[v2_series, v2_character, prompt, v2_copy],
|
| 144 |
show_api=False,
|
| 145 |
+
).success(predict_tags_fl2_sd3, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
|
| 146 |
+
).success(remove_specific_prompt, [prompt, tagger_keep_tags], [prompt], queue=False, show_api=False,
|
| 147 |
+
).success(convert_danbooru_to_e621_prompt, [prompt, tagger_tag_type], [prompt], queue=False, show_api=False,
|
| 148 |
+
).success(insert_recom_prompt, [prompt, neg_prompt, tagger_recom_prompt], [prompt, neg_prompt], queue=False, show_api=False,
|
| 149 |
+
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
|
| 151 |
demo.queue()
|
| 152 |
demo.launch()
|
multit2i.py
CHANGED
|
@@ -6,7 +6,7 @@ from huggingface_hub import InferenceClient
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
|
| 9 |
-
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None
|
| 10 |
server_timeout = 600
|
| 11 |
inference_timeout = 300
|
| 12 |
|
|
@@ -33,22 +33,43 @@ def is_repo_name(s):
|
|
| 33 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
| 34 |
|
| 35 |
|
| 36 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
from huggingface_hub import HfApi
|
| 38 |
api = HfApi()
|
| 39 |
default_tags = ["diffusers"]
|
| 40 |
if not sort: sort = "last_modified"
|
|
|
|
| 41 |
models = []
|
| 42 |
try:
|
| 43 |
-
model_infos = api.list_models(author=author,
|
| 44 |
-
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Error: Failed to list models.")
|
| 47 |
print(e)
|
| 48 |
return models
|
| 49 |
for model in model_infos:
|
| 50 |
-
if not model.private and not model.gated
|
| 51 |
-
|
|
|
|
| 52 |
models.append(model.id)
|
| 53 |
if len(models) == limit: break
|
| 54 |
return models
|
|
@@ -333,13 +354,14 @@ def warm_model(model_name: str):
|
|
| 333 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
| 334 |
def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
|
| 335 |
height: int | None = None, width: int | None = None,
|
| 336 |
-
steps: int | None = None, cfg: int | None = None):
|
| 337 |
png_path = "image.png"
|
| 338 |
kwargs = {}
|
| 339 |
if height is not None and height >= 256: kwargs["height"] = height
|
| 340 |
if width is not None and width >= 256: kwargs["width"] = width
|
| 341 |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
| 342 |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
|
|
|
| 343 |
try:
|
| 344 |
if isinstance(client, InferenceClient):
|
| 345 |
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
|
@@ -355,17 +377,18 @@ def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt:
|
|
| 355 |
|
| 356 |
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
| 357 |
height: int | None = None, width: int | None = None,
|
| 358 |
-
steps: int | None = None, cfg: int | None = None,
|
| 359 |
save_path: str | None = None, timeout: float = inference_timeout):
|
| 360 |
import random
|
| 361 |
noise = ""
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
|
|
|
| 365 |
model = load_model(model_name)
|
| 366 |
if not model: return None
|
| 367 |
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
|
| 368 |
-
height, width, steps, cfg))
|
| 369 |
await asyncio.sleep(0)
|
| 370 |
try:
|
| 371 |
result = await asyncio.wait_for(task, timeout=timeout)
|
|
@@ -382,7 +405,7 @@ async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
|
| 382 |
|
| 383 |
|
| 384 |
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
| 385 |
-
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
| 386 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
| 387 |
if model_name == 'NA':
|
| 388 |
return None
|
|
@@ -390,7 +413,7 @@ def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height
|
|
| 390 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 391 |
loop = asyncio.new_event_loop()
|
| 392 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
| 393 |
-
steps, cfg, save_path, inference_timeout))
|
| 394 |
except (Exception, asyncio.CancelledError) as e:
|
| 395 |
print(e)
|
| 396 |
print(f"Task aborted: {model_name}")
|
|
@@ -401,7 +424,7 @@ def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height
|
|
| 401 |
|
| 402 |
|
| 403 |
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
| 404 |
-
width: int | None = None, steps: int | None = None, cfg: int | None = None,
|
| 405 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
| 406 |
import random
|
| 407 |
if model_name_dummy == 'NA':
|
|
@@ -412,7 +435,7 @@ def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = N
|
|
| 412 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 413 |
loop = asyncio.new_event_loop()
|
| 414 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
| 415 |
-
steps, cfg, save_path, inference_timeout))
|
| 416 |
except (Exception, asyncio.CancelledError) as e:
|
| 417 |
print(e)
|
| 418 |
print(f"Task aborted: {model_name}")
|
|
|
|
| 6 |
import os
|
| 7 |
|
| 8 |
|
| 9 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 10 |
server_timeout = 600
|
| 11 |
inference_timeout = 300
|
| 12 |
|
|
|
|
| 33 |
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
| 34 |
|
| 35 |
|
| 36 |
+
def get_status(model_name: str):
|
| 37 |
+
from huggingface_hub import InferenceClient
|
| 38 |
+
client = InferenceClient(timeout=10)
|
| 39 |
+
return client.get_model_status(model_name)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def is_loadable(model_name: str, force_gpu: bool = False):
|
| 43 |
+
try:
|
| 44 |
+
status = get_status(model_name)
|
| 45 |
+
except Exception as e:
|
| 46 |
+
print(e)
|
| 47 |
+
print(f"Couldn't load {model_name}.")
|
| 48 |
+
return False
|
| 49 |
+
gpu_state = isinstance(status.compute_type, dict) and "gpu" in status.compute_type.keys()
|
| 50 |
+
if status is None or status.state not in ["Loadable", "Loaded"] or (force_gpu and not gpu_state):
|
| 51 |
+
print(f"Couldn't load {model_name}. Model state:'{status.state}', GPU:{gpu_state}")
|
| 52 |
+
return status is not None and status.state in ["Loadable", "Loaded"] and (not force_gpu or gpu_state)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 56 |
from huggingface_hub import HfApi
|
| 57 |
api = HfApi()
|
| 58 |
default_tags = ["diffusers"]
|
| 59 |
if not sort: sort = "last_modified"
|
| 60 |
+
limit = limit * 20 if check_status and force_gpu else limit * 5
|
| 61 |
models = []
|
| 62 |
try:
|
| 63 |
+
model_infos = api.list_models(author=author, task="text-to-image",
|
| 64 |
+
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
| 65 |
except Exception as e:
|
| 66 |
print(f"Error: Failed to list models.")
|
| 67 |
print(e)
|
| 68 |
return models
|
| 69 |
for model in model_infos:
|
| 70 |
+
if not model.private and not model.gated:
|
| 71 |
+
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 72 |
+
if not_tag and not_tag in model.tags or not loadable: continue
|
| 73 |
models.append(model.id)
|
| 74 |
if len(models) == limit: break
|
| 75 |
return models
|
|
|
|
| 354 |
# https://huggingface.co/docs/huggingface_hub/package_reference/inference_client
|
| 355 |
def infer_body(client: InferenceClient | gr.Interface, prompt: str, neg_prompt: str | None = None,
|
| 356 |
height: int | None = None, width: int | None = None,
|
| 357 |
+
steps: int | None = None, cfg: int | None = None, seed: int = -1):
|
| 358 |
png_path = "image.png"
|
| 359 |
kwargs = {}
|
| 360 |
if height is not None and height >= 256: kwargs["height"] = height
|
| 361 |
if width is not None and width >= 256: kwargs["width"] = width
|
| 362 |
if steps is not None and steps >= 1: kwargs["num_inference_steps"] = steps
|
| 363 |
if cfg is not None and cfg > 0: cfg = kwargs["guidance_scale"] = cfg
|
| 364 |
+
if seed >= 0: kwargs["seed"] = seed
|
| 365 |
try:
|
| 366 |
if isinstance(client, InferenceClient):
|
| 367 |
image = client.text_to_image(prompt=prompt, negative_prompt=neg_prompt, **kwargs, token=HF_TOKEN)
|
|
|
|
| 377 |
|
| 378 |
async def infer(model_name: str, prompt: str, neg_prompt: str | None = None,
|
| 379 |
height: int | None = None, width: int | None = None,
|
| 380 |
+
steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
| 381 |
save_path: str | None = None, timeout: float = inference_timeout):
|
| 382 |
import random
|
| 383 |
noise = ""
|
| 384 |
+
if seed < 0:
|
| 385 |
+
rand = random.randint(1, 500)
|
| 386 |
+
for i in range(rand):
|
| 387 |
+
noise += " "
|
| 388 |
model = load_model(model_name)
|
| 389 |
if not model: return None
|
| 390 |
task = asyncio.create_task(asyncio.to_thread(infer_body, model, f"{prompt} {noise}", neg_prompt,
|
| 391 |
+
height, width, steps, cfg, seed))
|
| 392 |
await asyncio.sleep(0)
|
| 393 |
try:
|
| 394 |
result = await asyncio.wait_for(task, timeout=timeout)
|
|
|
|
| 405 |
|
| 406 |
|
| 407 |
def infer_fn(model_name: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
| 408 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
| 409 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
| 410 |
if model_name == 'NA':
|
| 411 |
return None
|
|
|
|
| 413 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 414 |
loop = asyncio.new_event_loop()
|
| 415 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
| 416 |
+
steps, cfg, seed, save_path, inference_timeout))
|
| 417 |
except (Exception, asyncio.CancelledError) as e:
|
| 418 |
print(e)
|
| 419 |
print(f"Task aborted: {model_name}")
|
|
|
|
| 424 |
|
| 425 |
|
| 426 |
def infer_rand_fn(model_name_dummy: str, prompt: str, neg_prompt: str | None = None, height: int | None = None,
|
| 427 |
+
width: int | None = None, steps: int | None = None, cfg: int | None = None, seed: int = -1,
|
| 428 |
pos_pre: list = [], pos_suf: list = [], neg_pre: list = [], neg_suf: list = [], save_path: str | None = None):
|
| 429 |
import random
|
| 430 |
if model_name_dummy == 'NA':
|
|
|
|
| 435 |
prompt, neg_prompt = recom_prompt(prompt, neg_prompt, pos_pre, pos_suf, neg_pre, neg_suf)
|
| 436 |
loop = asyncio.new_event_loop()
|
| 437 |
result = loop.run_until_complete(infer(model_name, prompt, neg_prompt, height, width,
|
| 438 |
+
steps, cfg, seed, save_path, inference_timeout))
|
| 439 |
except (Exception, asyncio.CancelledError) as e:
|
| 440 |
print(e)
|
| 441 |
print(f"Task aborted: {model_name}")
|