|
|
import spaces |
|
|
import json |
|
|
import os |
|
|
import sys |
|
|
import threading |
|
|
import time |
|
|
|
|
|
import warnings |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
warnings.filterwarnings("ignore", category=FutureWarning) |
|
|
warnings.filterwarnings("ignore", category=UserWarning) |
|
|
|
|
|
import pandas as pd |
|
|
|
|
|
current_dir = os.path.dirname(os.path.abspath(__file__)) |
|
|
sys.path.append(current_dir) |
|
|
sys.path.append(os.path.join(current_dir, "indextts")) |
|
|
|
|
|
import argparse |
|
|
parser = argparse.ArgumentParser( |
|
|
description="IndexTTS WebUI", |
|
|
formatter_class=argparse.ArgumentDefaultsHelpFormatter, |
|
|
) |
|
|
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode") |
|
|
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on") |
|
|
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on") |
|
|
parser.add_argument("--model_dir", type=str, default="./checkpoints", help="Model checkpoints directory") |
|
|
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available") |
|
|
parser.add_argument("--deepspeed", action="store_true", default=False, help="Use DeepSpeed to accelerate if available") |
|
|
parser.add_argument("--cuda_kernel", action="store_true", default=False, help="Use CUDA kernel for inference if available") |
|
|
parser.add_argument("--gui_seg_tokens", type=int, default=120, help="GUI: Max tokens per generation segment") |
|
|
cmd_args = parser.parse_args() |
|
|
|
|
|
from tools.download_files import download_model_from_huggingface |
|
|
download_model_from_huggingface(os.path.join(current_dir,"checkpoints"), |
|
|
os.path.join(current_dir, "checkpoints","hf_cache")) |
|
|
|
|
|
import gradio as gr |
|
|
from indextts.infer_v2 import IndexTTS2 |
|
|
from tools.i18n.i18n import I18nAuto |
|
|
|
|
|
i18n = I18nAuto(language="Auto") |
|
|
MODE = 'local' |
|
|
tts = IndexTTS2(model_dir=cmd_args.model_dir, |
|
|
cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"), |
|
|
use_fp16=cmd_args.fp16, |
|
|
use_deepspeed=cmd_args.deepspeed, |
|
|
use_cuda_kernel=cmd_args.cuda_kernel, |
|
|
) |
|
|
|
|
|
LANGUAGES = { |
|
|
"中文": "zh_CN", |
|
|
"English": "en_US" |
|
|
} |
|
|
EMO_CHOICES = [i18n("与音色参考音频相同"), |
|
|
i18n("使用情感参考音频"), |
|
|
i18n("使用情感向量控制"), |
|
|
i18n("使用情感描述文本控制")] |
|
|
EMO_CHOICES_BASE = EMO_CHOICES[:3] |
|
|
EMO_CHOICES_EXPERIMENTAL = EMO_CHOICES |
|
|
|
|
|
os.makedirs("outputs/tasks",exist_ok=True) |
|
|
os.makedirs("prompts",exist_ok=True) |
|
|
|
|
|
MAX_LENGTH_TO_USE_SPEED = 70 |
|
|
with open("examples/cases.jsonl", "r", encoding="utf-8") as f: |
|
|
example_cases = [] |
|
|
for line in f: |
|
|
line = line.strip() |
|
|
if not line: |
|
|
continue |
|
|
example = json.loads(line) |
|
|
if example.get("emo_audio",None): |
|
|
emo_audio_path = os.path.join("examples",example["emo_audio"]) |
|
|
else: |
|
|
emo_audio_path = None |
|
|
example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")), |
|
|
EMO_CHOICES[example.get("emo_mode",0)], |
|
|
example.get("text"), |
|
|
emo_audio_path, |
|
|
example.get("emo_weight",1.0), |
|
|
example.get("emo_text",""), |
|
|
example.get("emo_vec_1",0), |
|
|
example.get("emo_vec_2",0), |
|
|
example.get("emo_vec_3",0), |
|
|
example.get("emo_vec_4",0), |
|
|
example.get("emo_vec_5",0), |
|
|
example.get("emo_vec_6",0), |
|
|
example.get("emo_vec_7",0), |
|
|
example.get("emo_vec_8",0), |
|
|
example.get("emo_text") is not None] |
|
|
) |
|
|
|
|
|
def normalize_emo_vec(emo_vec): |
|
|
|
|
|
k_vec = [0.75,0.70,0.80,0.80,0.75,0.75,0.55,0.45] |
|
|
tmp = np.array(k_vec) * np.array(emo_vec) |
|
|
if np.sum(tmp) > 0.8: |
|
|
tmp = tmp * 0.8/ np.sum(tmp) |
|
|
return tmp.tolist() |
|
|
|
|
|
@spaces.GPU |
|
|
def gen_single(emo_control_method,prompt, text, |
|
|
emo_ref_path, emo_weight, |
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, |
|
|
emo_text,emo_random, |
|
|
max_text_tokens_per_segment=120, |
|
|
*args, progress=gr.Progress()): |
|
|
output_path = None |
|
|
if not output_path: |
|
|
output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav") |
|
|
|
|
|
tts.gr_progress = progress |
|
|
do_sample, top_p, top_k, temperature, \ |
|
|
length_penalty, num_beams, repetition_penalty, max_mel_tokens = args |
|
|
kwargs = { |
|
|
"do_sample": bool(do_sample), |
|
|
"top_p": float(top_p), |
|
|
"top_k": int(top_k) if int(top_k) > 0 else None, |
|
|
"temperature": float(temperature), |
|
|
"length_penalty": float(length_penalty), |
|
|
"num_beams": num_beams, |
|
|
"repetition_penalty": float(repetition_penalty), |
|
|
"max_mel_tokens": int(max_mel_tokens), |
|
|
|
|
|
|
|
|
} |
|
|
if type(emo_control_method) is not int: |
|
|
emo_control_method = emo_control_method.value |
|
|
if emo_control_method == 0: |
|
|
emo_ref_path = None |
|
|
if emo_control_method == 1: |
|
|
|
|
|
emo_weight = emo_weight * 0.8 |
|
|
pass |
|
|
if emo_control_method == 2: |
|
|
vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8] |
|
|
vec = normalize_emo_vec(vec) |
|
|
else: |
|
|
|
|
|
vec = None |
|
|
|
|
|
if emo_text == "": |
|
|
|
|
|
emo_text = None |
|
|
|
|
|
print(f"Emo control mode:{emo_control_method},weight:{emo_weight},vec:{vec}") |
|
|
output = tts.infer(spk_audio_prompt=prompt, text=text, |
|
|
output_path=output_path, |
|
|
emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight, |
|
|
emo_vector=vec, |
|
|
use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random, |
|
|
verbose=cmd_args.verbose, |
|
|
max_text_tokens_per_segment=int(max_text_tokens_per_segment), |
|
|
**kwargs) |
|
|
return gr.update(value=output,visible=True) |
|
|
|
|
|
def update_prompt_audio(): |
|
|
update_button = gr.update(interactive=True) |
|
|
return update_button |
|
|
|
|
|
with gr.Blocks(title="IndexTTS Demo") as demo: |
|
|
mutex = threading.Lock() |
|
|
gr.HTML(''' |
|
|
<h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2> |
|
|
<p align="center"> |
|
|
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a> |
|
|
</p> |
|
|
''') |
|
|
|
|
|
with gr.Tab(i18n("音频生成")): |
|
|
with gr.Row(): |
|
|
os.makedirs("prompts",exist_ok=True) |
|
|
prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio", |
|
|
sources=["upload","microphone"],type="filepath") |
|
|
prompt_list = os.listdir("prompts") |
|
|
default = '' |
|
|
if prompt_list: |
|
|
default = prompt_list[0] |
|
|
with gr.Column(): |
|
|
input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}") |
|
|
gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True) |
|
|
output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio") |
|
|
experimental_checkbox = gr.Checkbox(label=i18n("显示实验功能"),value=False) |
|
|
with gr.Accordion(i18n("功能设置")): |
|
|
|
|
|
with gr.Row(): |
|
|
emo_control_method = gr.Radio( |
|
|
choices=EMO_CHOICES_BASE, |
|
|
type="index", |
|
|
value=EMO_CHOICES_BASE[0],label=i18n("情感控制方式")) |
|
|
|
|
|
with gr.Group(visible=False) as emotion_reference_group: |
|
|
with gr.Row(): |
|
|
emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath") |
|
|
|
|
|
|
|
|
with gr.Row(visible=False) as emotion_randomize_group: |
|
|
emo_random = gr.Checkbox(label=i18n("情感随机采样"), value=False) |
|
|
|
|
|
|
|
|
with gr.Group(visible=False) as emotion_vector_group: |
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
vec1 = gr.Slider(label=i18n("喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec2 = gr.Slider(label=i18n("怒"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec3 = gr.Slider(label=i18n("哀"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec4 = gr.Slider(label=i18n("惧"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
with gr.Column(): |
|
|
vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.0, value=0.0, step=0.05) |
|
|
|
|
|
with gr.Group(visible=False) as emo_text_group: |
|
|
with gr.Row(): |
|
|
emo_text = gr.Textbox(label=i18n("情感描述文本"), |
|
|
placeholder=i18n("请输入情绪描述(或留空以自动使用目标文本作为情绪描述)"), |
|
|
value="", |
|
|
info=i18n("例如:委屈巴巴、危险在悄悄逼近")) |
|
|
|
|
|
|
|
|
with gr.Row(visible=False) as emo_weight_group: |
|
|
emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.0, value=0.8, step=0.01) |
|
|
|
|
|
with gr.Accordion(i18n("高级生成参数设置"), open=False,visible=False) as advanced_settings_group: |
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')} [Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)._") |
|
|
with gr.Row(): |
|
|
do_sample = gr.Checkbox(label="do_sample", value=True, info=i18n("是否进行采样")) |
|
|
temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1) |
|
|
with gr.Row(): |
|
|
top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01) |
|
|
top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1) |
|
|
num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1) |
|
|
with gr.Row(): |
|
|
repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1) |
|
|
length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1) |
|
|
max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info=i18n("生成Token最大数量,过小导致音频被截断"), key="max_mel_tokens") |
|
|
|
|
|
|
|
|
|
|
|
with gr.Column(scale=2): |
|
|
gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_') |
|
|
with gr.Row(): |
|
|
initial_value = max(20, min(tts.cfg.gpt.max_text_tokens, cmd_args.gui_seg_tokens)) |
|
|
max_text_tokens_per_segment = gr.Slider( |
|
|
label=i18n("分句最大Token数"), value=initial_value, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_segment", |
|
|
info=i18n("建议80~200之间,值越大,分句越长;值越小,分句越碎;过小过大都可能导致音频质量不高"), |
|
|
) |
|
|
with gr.Accordion(i18n("预览分句结果"), open=True) as segments_settings: |
|
|
segments_preview = gr.Dataframe( |
|
|
headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")], |
|
|
key="segments_preview", |
|
|
wrap=True, |
|
|
) |
|
|
advanced_params = [ |
|
|
do_sample, top_p, top_k, temperature, |
|
|
length_penalty, num_beams, repetition_penalty, max_mel_tokens, |
|
|
|
|
|
] |
|
|
|
|
|
if len(example_cases) > 2: |
|
|
example_table = gr.Examples( |
|
|
examples=example_cases[:-2], |
|
|
examples_per_page=20, |
|
|
inputs=[prompt_audio, |
|
|
emo_control_method, |
|
|
input_text_single, |
|
|
emo_upload, |
|
|
emo_weight, |
|
|
emo_text, |
|
|
vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8,experimental_checkbox] |
|
|
) |
|
|
elif len(example_cases) > 0: |
|
|
example_table = gr.Examples( |
|
|
examples=example_cases, |
|
|
examples_per_page=20, |
|
|
inputs=[prompt_audio, |
|
|
emo_control_method, |
|
|
input_text_single, |
|
|
emo_upload, |
|
|
emo_weight, |
|
|
emo_text, |
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, experimental_checkbox] |
|
|
) |
|
|
|
|
|
def on_input_text_change(text, max_text_tokens_per_segment): |
|
|
if text and len(text) > 0: |
|
|
text_tokens_list = tts.tokenizer.tokenize(text) |
|
|
|
|
|
segments = tts.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment=int(max_text_tokens_per_segment)) |
|
|
data = [] |
|
|
for i, s in enumerate(segments): |
|
|
segment_str = ''.join(s) |
|
|
tokens_count = len(s) |
|
|
data.append([i, segment_str, tokens_count]) |
|
|
return { |
|
|
segments_preview: gr.update(value=data, visible=True, type="array"), |
|
|
} |
|
|
else: |
|
|
df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")]) |
|
|
return { |
|
|
segments_preview: gr.update(value=df), |
|
|
} |
|
|
|
|
|
def on_method_select(emo_control_method): |
|
|
if emo_control_method == 1: |
|
|
return (gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=True) |
|
|
) |
|
|
elif emo_control_method == 2: |
|
|
return (gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False) |
|
|
) |
|
|
elif emo_control_method == 3: |
|
|
return (gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=True), |
|
|
gr.update(visible=True) |
|
|
) |
|
|
else: |
|
|
return (gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False), |
|
|
gr.update(visible=False) |
|
|
) |
|
|
|
|
|
def on_experimental_change(is_exp): |
|
|
|
|
|
|
|
|
if is_exp: |
|
|
return gr.update(choices=EMO_CHOICES_EXPERIMENTAL, value=EMO_CHOICES_EXPERIMENTAL[0]), gr.update(visible=True),gr.update(value=example_cases) |
|
|
else: |
|
|
return gr.update(choices=EMO_CHOICES_BASE, value=EMO_CHOICES_BASE[0]), gr.update(visible=False),gr.update(value=example_cases[:-2]) |
|
|
|
|
|
emo_control_method.select(on_method_select, |
|
|
inputs=[emo_control_method], |
|
|
outputs=[emotion_reference_group, |
|
|
emotion_randomize_group, |
|
|
emotion_vector_group, |
|
|
emo_text_group, |
|
|
emo_weight_group] |
|
|
) |
|
|
|
|
|
input_text_single.change( |
|
|
on_input_text_change, |
|
|
inputs=[input_text_single, max_text_tokens_per_segment], |
|
|
outputs=[segments_preview] |
|
|
) |
|
|
|
|
|
experimental_checkbox.change( |
|
|
on_experimental_change, |
|
|
inputs=[experimental_checkbox], |
|
|
outputs=[emo_control_method, advanced_settings_group,example_table.dataset] |
|
|
) |
|
|
|
|
|
max_text_tokens_per_segment.change( |
|
|
on_input_text_change, |
|
|
inputs=[input_text_single, max_text_tokens_per_segment], |
|
|
outputs=[segments_preview] |
|
|
) |
|
|
|
|
|
prompt_audio.upload(update_prompt_audio, |
|
|
inputs=[], |
|
|
outputs=[gen_button]) |
|
|
|
|
|
gen_button.click(gen_single, |
|
|
inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight, |
|
|
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8, |
|
|
emo_text,emo_random, |
|
|
max_text_tokens_per_segment, |
|
|
*advanced_params, |
|
|
], |
|
|
outputs=[output_audio]) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.queue(20) |
|
|
demo.launch(server_name=cmd_args.host, server_port=cmd_args.port) |
|
|
|