|
|
import torch |
|
|
import librosa |
|
|
import json5 |
|
|
from huggingface_hub import hf_hub_download |
|
|
from transformers import SeamlessM4TFeatureExtractor, Wav2Vec2BertModel |
|
|
import safetensors |
|
|
import numpy as np |
|
|
|
|
|
from indextts.utils.maskgct.models.codec.kmeans.repcodec_model import RepCodec |
|
|
from indextts.utils.maskgct.models.tts.maskgct.maskgct_s2a import MaskGCT_S2A |
|
|
from indextts.utils.maskgct.models.codec.amphion_codec.codec import CodecEncoder, CodecDecoder |
|
|
import time |
|
|
|
|
|
|
|
|
def _load_config(config_fn, lowercase=False): |
|
|
"""Load configurations into a dictionary |
|
|
|
|
|
Args: |
|
|
config_fn (str): path to configuration file |
|
|
lowercase (bool, optional): whether changing keys to lower case. Defaults to False. |
|
|
|
|
|
Returns: |
|
|
dict: dictionary that stores configurations |
|
|
""" |
|
|
with open(config_fn, "r") as f: |
|
|
data = f.read() |
|
|
config_ = json5.loads(data) |
|
|
if "base_config" in config_: |
|
|
|
|
|
p_config_path = os.path.join(os.getenv("WORK_DIR"), config_["base_config"]) |
|
|
p_config_ = _load_config(p_config_path) |
|
|
config_ = override_config(p_config_, config_) |
|
|
if lowercase: |
|
|
|
|
|
config_ = get_lowercase_keys_config(config_) |
|
|
return config_ |
|
|
|
|
|
|
|
|
def load_config(config_fn, lowercase=False): |
|
|
"""Load configurations into a dictionary |
|
|
|
|
|
Args: |
|
|
config_fn (str): path to configuration file |
|
|
lowercase (bool, optional): _description_. Defaults to False. |
|
|
|
|
|
Returns: |
|
|
JsonHParams: an object that stores configurations |
|
|
""" |
|
|
config_ = _load_config(config_fn, lowercase=lowercase) |
|
|
|
|
|
cfg = JsonHParams(**config_) |
|
|
return cfg |
|
|
|
|
|
|
|
|
class JsonHParams: |
|
|
def __init__(self, **kwargs): |
|
|
for k, v in kwargs.items(): |
|
|
if type(v) == dict: |
|
|
v = JsonHParams(**v) |
|
|
self[k] = v |
|
|
|
|
|
def keys(self): |
|
|
return self.__dict__.keys() |
|
|
|
|
|
def items(self): |
|
|
return self.__dict__.items() |
|
|
|
|
|
def values(self): |
|
|
return self.__dict__.values() |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.__dict__) |
|
|
|
|
|
def __getitem__(self, key): |
|
|
return getattr(self, key) |
|
|
|
|
|
def __setitem__(self, key, value): |
|
|
return setattr(self, key, value) |
|
|
|
|
|
def __contains__(self, key): |
|
|
return key in self.__dict__ |
|
|
|
|
|
def __repr__(self): |
|
|
return self.__dict__.__repr__() |
|
|
|
|
|
|
|
|
def build_semantic_model(path_='./models/tts/maskgct/ckpt/wav2vec2bert_stats.pt'): |
|
|
semantic_model = Wav2Vec2BertModel.from_pretrained("facebook/w2v-bert-2.0") |
|
|
semantic_model.eval() |
|
|
stat_mean_var = torch.load(path_) |
|
|
semantic_mean = stat_mean_var["mean"] |
|
|
semantic_std = torch.sqrt(stat_mean_var["var"]) |
|
|
return semantic_model, semantic_mean, semantic_std |
|
|
|
|
|
|
|
|
def build_semantic_codec(cfg): |
|
|
semantic_codec = RepCodec(cfg=cfg) |
|
|
semantic_codec.eval() |
|
|
return semantic_codec |
|
|
|
|
|
|
|
|
def build_s2a_model(cfg, device): |
|
|
soundstorm_model = MaskGCT_S2A(cfg=cfg) |
|
|
soundstorm_model.eval() |
|
|
soundstorm_model.to(device) |
|
|
return soundstorm_model |
|
|
|
|
|
|
|
|
def build_acoustic_codec(cfg, device): |
|
|
codec_encoder = CodecEncoder(cfg=cfg.encoder) |
|
|
codec_decoder = CodecDecoder(cfg=cfg.decoder) |
|
|
codec_encoder.eval() |
|
|
codec_decoder.eval() |
|
|
codec_encoder.to(device) |
|
|
codec_decoder.to(device) |
|
|
return codec_encoder, codec_decoder |
|
|
|
|
|
|
|
|
class Inference_Pipeline(): |
|
|
def __init__( |
|
|
self, |
|
|
semantic_model, |
|
|
semantic_codec, |
|
|
semantic_mean, |
|
|
semantic_std, |
|
|
codec_encoder, |
|
|
codec_decoder, |
|
|
s2a_model_1layer, |
|
|
s2a_model_full, |
|
|
): |
|
|
self.semantic_model = semantic_model |
|
|
self.semantic_codec = semantic_codec |
|
|
self.semantic_mean = semantic_mean |
|
|
self.semantic_std = semantic_std |
|
|
|
|
|
self.codec_encoder = codec_encoder |
|
|
self.codec_decoder = codec_decoder |
|
|
self.s2a_model_1layer = s2a_model_1layer |
|
|
self.s2a_model_full = s2a_model_full |
|
|
|
|
|
@torch.no_grad() |
|
|
def get_emb(self, input_features, attention_mask): |
|
|
vq_emb = self.semantic_model( |
|
|
input_features=input_features, |
|
|
attention_mask=attention_mask, |
|
|
output_hidden_states=True, |
|
|
) |
|
|
feat = vq_emb.hidden_states[17] |
|
|
feat = (feat - self.semantic_mean.to(feat)) / self.semantic_std.to(feat) |
|
|
return feat |
|
|
|
|
|
@torch.no_grad() |
|
|
def extract_acoustic_code(self, speech): |
|
|
vq_emb = self.codec_encoder(speech.unsqueeze(1)) |
|
|
_, vq, _, _, _ = self.codec_decoder.quantizer(vq_emb) |
|
|
acoustic_code = vq.permute(1, 2, 0) |
|
|
return acoustic_code |
|
|
|
|
|
@torch.no_grad() |
|
|
def get_scode(self, inputs): |
|
|
semantic_code, feat = self.semantic_codec.quantize(inputs) |
|
|
|
|
|
|
|
|
return semantic_code |
|
|
|
|
|
@torch.no_grad() |
|
|
def semantic2acoustic( |
|
|
self, |
|
|
combine_semantic_code, |
|
|
acoustic_code, |
|
|
n_timesteps=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], |
|
|
cfg=2.5, |
|
|
rescale_cfg=0.75, |
|
|
): |
|
|
semantic_code = combine_semantic_code |
|
|
|
|
|
cond = self.s2a_model_1layer.cond_emb(semantic_code) |
|
|
prompt = acoustic_code[:, :, :] |
|
|
predict_1layer = self.s2a_model_1layer.reverse_diffusion( |
|
|
cond=cond, |
|
|
prompt=prompt, |
|
|
temp=1.5, |
|
|
filter_thres=0.98, |
|
|
n_timesteps=n_timesteps[:1], |
|
|
cfg=cfg, |
|
|
rescale_cfg=rescale_cfg, |
|
|
) |
|
|
|
|
|
cond = self.s2a_model_full.cond_emb(semantic_code) |
|
|
prompt = acoustic_code[:, :, :] |
|
|
predict_full = self.s2a_model_full.reverse_diffusion( |
|
|
cond=cond, |
|
|
prompt=prompt, |
|
|
temp=1.5, |
|
|
filter_thres=0.98, |
|
|
n_timesteps=n_timesteps, |
|
|
cfg=cfg, |
|
|
rescale_cfg=rescale_cfg, |
|
|
gt_code=predict_1layer, |
|
|
) |
|
|
|
|
|
vq_emb = self.codec_decoder.vq2emb( |
|
|
predict_full.permute(2, 0, 1), n_quantizers=12 |
|
|
) |
|
|
recovered_audio = self.codec_decoder(vq_emb) |
|
|
prompt_vq_emb = self.codec_decoder.vq2emb( |
|
|
prompt.permute(2, 0, 1), n_quantizers=12 |
|
|
) |
|
|
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb) |
|
|
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy() |
|
|
recovered_audio = recovered_audio[0][0].cpu().numpy() |
|
|
combine_audio = np.concatenate([recovered_prompt_audio, recovered_audio]) |
|
|
|
|
|
return combine_audio, recovered_audio |
|
|
|
|
|
def s2a_inference( |
|
|
self, |
|
|
prompt_speech_path, |
|
|
combine_semantic_code, |
|
|
cfg=2.5, |
|
|
n_timesteps_s2a=[25, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], |
|
|
cfg_s2a=2.5, |
|
|
rescale_cfg_s2a=0.75, |
|
|
): |
|
|
speech = librosa.load(prompt_speech_path, sr=24000)[0] |
|
|
acoustic_code = self.extract_acoustic_code( |
|
|
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device) |
|
|
) |
|
|
_, recovered_audio = self.semantic2acoustic( |
|
|
combine_semantic_code, |
|
|
acoustic_code, |
|
|
n_timesteps=n_timesteps_s2a, |
|
|
cfg=cfg_s2a, |
|
|
rescale_cfg=rescale_cfg_s2a, |
|
|
) |
|
|
|
|
|
return recovered_audio |
|
|
|
|
|
@torch.no_grad() |
|
|
def gt_inference( |
|
|
self, |
|
|
prompt_speech_path, |
|
|
combine_semantic_code, |
|
|
): |
|
|
speech = librosa.load(prompt_speech_path, sr=24000)[0] |
|
|
''' |
|
|
acoustic_code = self.extract_acoustic_code( |
|
|
torch.tensor(speech).unsqueeze(0).to(combine_semantic_code.device) |
|
|
) |
|
|
prompt = acoustic_code[:, :, :] |
|
|
prompt_vq_emb = self.codec_decoder.vq2emb( |
|
|
prompt.permute(2, 0, 1), n_quantizers=12 |
|
|
) |
|
|
''' |
|
|
|
|
|
prompt_vq_emb = self.codec_encoder(torch.tensor(speech).unsqueeze(0).unsqueeze(1).to(combine_semantic_code.device)) |
|
|
recovered_prompt_audio = self.codec_decoder(prompt_vq_emb) |
|
|
recovered_prompt_audio = recovered_prompt_audio[0][0].cpu().numpy() |
|
|
return recovered_prompt_audio |
|
|
|