Spaces:
Paused
Paused
Upload 3 files
Browse files- README.md +4 -2
- app.py +18 -12
- externalmod.py +26 -25
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🛕🛕
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
|
@@ -7,7 +7,9 @@ sdk: gradio
|
|
| 7 |
sdk_version: 4.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
duplicated_from:
|
|
|
|
|
|
|
| 11 |
short_description: Compare up to 6 image models!
|
| 12 |
---
|
| 13 |
|
|
|
|
| 1 |
---
|
| 2 |
+
title: 800+ AI Art Models 6 Outputs (Gradio 4.x, Single Gallery) (Huggingface Diffusion)
|
| 3 |
emoji: 🛕🛕
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: blue
|
|
|
|
| 7 |
sdk_version: 4.42.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
duplicated_from:
|
| 11 |
+
- Yntec/Diffusion80XX
|
| 12 |
+
- Yntec/HuggingfaceDiffusion
|
| 13 |
short_description: Compare up to 6 image models!
|
| 14 |
---
|
| 15 |
|
app.py
CHANGED
|
@@ -38,13 +38,13 @@ def extend_choices(choices):
|
|
| 38 |
|
| 39 |
def update_imgbox(choices):
|
| 40 |
choices_plus = extend_choices(choices[:num_models])
|
| 41 |
-
return [gr.Image(None, label
|
| 42 |
|
| 43 |
|
| 44 |
def random_choices():
|
| 45 |
import random
|
| 46 |
random.seed()
|
| 47 |
-
return random.choices(models, k
|
| 48 |
|
| 49 |
|
| 50 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
|
@@ -67,12 +67,18 @@ async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=No
|
|
| 67 |
await asyncio.sleep(0)
|
| 68 |
try:
|
| 69 |
result = await asyncio.wait_for(task, timeout=timeout)
|
| 70 |
-
except
|
| 71 |
print(e)
|
| 72 |
print(f"Task timed out: {model_str}")
|
| 73 |
if not task.done(): task.cancel()
|
| 74 |
result = None
|
| 75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
with lock:
|
| 77 |
png_path = "image.png"
|
| 78 |
result.save(png_path)
|
|
@@ -82,8 +88,6 @@ async def infer(model_str, prompt, nprompt="", height=None, width=None, steps=No
|
|
| 82 |
|
| 83 |
|
| 84 |
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
| 85 |
-
if model_str == 'NA':
|
| 86 |
-
return None
|
| 87 |
try:
|
| 88 |
loop = asyncio.new_event_loop()
|
| 89 |
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
|
@@ -92,6 +96,7 @@ def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, c
|
|
| 92 |
print(e)
|
| 93 |
print(f"Task aborted: {model_str}")
|
| 94 |
result = None
|
|
|
|
| 95 |
finally:
|
| 96 |
loop.close()
|
| 97 |
return result
|
|
@@ -106,11 +111,12 @@ def add_gallery(image, model_str, gallery):
|
|
| 106 |
|
| 107 |
CSS="""
|
| 108 |
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
|
| 109 |
-
.output { width=112px; height=112px; !important; }
|
| 110 |
-
.gallery {
|
| 111 |
.guide { text-align: center; !important; }
|
| 112 |
"""
|
| 113 |
|
|
|
|
| 114 |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
| 115 |
with gr.Tab('The Dream'):
|
| 116 |
with gr.Column(scale=2):
|
|
@@ -126,9 +132,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
| 126 |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
| 127 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 128 |
with gr.Row():
|
| 129 |
-
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', scale=3)
|
| 130 |
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
| 131 |
-
stop_button = gr.Button('Stop', variant='
|
| 132 |
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
| 133 |
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
|
| 134 |
|
|
@@ -174,8 +180,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
|
| 174 |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 175 |
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
| 176 |
with gr.Row():
|
| 177 |
-
gen_button2 = gr.Button('Generate', scale=2)
|
| 178 |
-
stop_button2 = gr.Button('Stop', variant='
|
| 179 |
gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
| 180 |
|
| 181 |
with gr.Column(scale=1):
|
|
|
|
| 38 |
|
| 39 |
def update_imgbox(choices):
|
| 40 |
choices_plus = extend_choices(choices[:num_models])
|
| 41 |
+
return [gr.Image(None, label=m, visible=(m!='NA')) for m in choices_plus]
|
| 42 |
|
| 43 |
|
| 44 |
def random_choices():
|
| 45 |
import random
|
| 46 |
random.seed()
|
| 47 |
+
return random.choices(models, k=num_models)
|
| 48 |
|
| 49 |
|
| 50 |
# https://huggingface.co/docs/api-inference/detailed_parameters
|
|
|
|
| 67 |
await asyncio.sleep(0)
|
| 68 |
try:
|
| 69 |
result = await asyncio.wait_for(task, timeout=timeout)
|
| 70 |
+
except asyncio.TimeoutError as e:
|
| 71 |
print(e)
|
| 72 |
print(f"Task timed out: {model_str}")
|
| 73 |
if not task.done(): task.cancel()
|
| 74 |
result = None
|
| 75 |
+
raise Exception(f"Task timed out: {model_str}")
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(e)
|
| 78 |
+
if not task.done(): task.cancel()
|
| 79 |
+
result = None
|
| 80 |
+
raise Exception(e)
|
| 81 |
+
if task.done() and result is not None and not isinstance(result, tuple):
|
| 82 |
with lock:
|
| 83 |
png_path = "image.png"
|
| 84 |
result.save(png_path)
|
|
|
|
| 88 |
|
| 89 |
|
| 90 |
def gen_fn(model_str, prompt, nprompt="", height=None, width=None, steps=None, cfg=None, seed=-1):
|
|
|
|
|
|
|
| 91 |
try:
|
| 92 |
loop = asyncio.new_event_loop()
|
| 93 |
result = loop.run_until_complete(infer(model_str, prompt, nprompt,
|
|
|
|
| 96 |
print(e)
|
| 97 |
print(f"Task aborted: {model_str}")
|
| 98 |
result = None
|
| 99 |
+
raise gr.Error(f"Task aborted: {model_str}, Error: {e}")
|
| 100 |
finally:
|
| 101 |
loop.close()
|
| 102 |
return result
|
|
|
|
| 111 |
|
| 112 |
CSS="""
|
| 113 |
.gradio-container { max-width: 1200px; margin: 0 auto; !important; }
|
| 114 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
| 115 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
| 116 |
.guide { text-align: center; !important; }
|
| 117 |
"""
|
| 118 |
|
| 119 |
+
|
| 120 |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=CSS) as demo:
|
| 121 |
with gr.Tab('The Dream'):
|
| 122 |
with gr.Column(scale=2):
|
|
|
|
| 132 |
cfg = gr.Slider(label="Guidance scale", info="If 0, the default value is used.", maximum=30.0, step=0.1, value=0)
|
| 133 |
seed = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 134 |
with gr.Row():
|
| 135 |
+
gen_button = gr.Button(f'Generate up to {int(num_models)} images in up to 3 minutes total', variant='primary', scale=3)
|
| 136 |
random_button = gr.Button(f'Random {int(num_models)} 🎲', variant='secondary', scale=1)
|
| 137 |
+
stop_button = gr.Button('Stop', variant='stop', interactive=False, scale=1)
|
| 138 |
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
| 139 |
gr.Markdown("Scroll down to see more images and select models.", elem_classes="guide")
|
| 140 |
|
|
|
|
| 180 |
seed2 = gr.Slider(label="Seed", info="Randomize Seed if -1.", minimum=-1, maximum=MAX_SEED, step=1, value=-1)
|
| 181 |
num_images = gr.Slider(1, max_images, value=max_images, step=1, label='Number of images')
|
| 182 |
with gr.Row():
|
| 183 |
+
gen_button2 = gr.Button('Generate', variant='primary', scale=2)
|
| 184 |
+
stop_button2 = gr.Button('Stop', variant='stop', interactive=False, scale=1)
|
| 185 |
gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
| 186 |
|
| 187 |
with gr.Column(scale=1):
|
externalmod.py
CHANGED
|
@@ -9,7 +9,7 @@ import re
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
-
from typing import TYPE_CHECKING, Callable
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
@@ -33,6 +33,7 @@ if TYPE_CHECKING:
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
|
|
|
| 36 |
server_timeout = 600
|
| 37 |
|
| 38 |
|
|
@@ -40,7 +41,7 @@ server_timeout = 600
|
|
| 40 |
def load(
|
| 41 |
name: str,
|
| 42 |
src: str | None = None,
|
| 43 |
-
hf_token: str | None = None,
|
| 44 |
alias: str | None = None,
|
| 45 |
**kwargs,
|
| 46 |
) -> Blocks:
|
|
@@ -51,7 +52,7 @@ def load(
|
|
| 51 |
Parameters:
|
| 52 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 53 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 54 |
-
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide
|
| 55 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 56 |
Returns:
|
| 57 |
a Gradio Blocks object for the given model
|
|
@@ -68,7 +69,7 @@ def load(
|
|
| 68 |
def load_blocks_from_repo(
|
| 69 |
name: str,
|
| 70 |
src: str | None = None,
|
| 71 |
-
hf_token: str | None = None,
|
| 72 |
alias: str | None = None,
|
| 73 |
**kwargs,
|
| 74 |
) -> Blocks:
|
|
@@ -92,7 +93,7 @@ def load_blocks_from_repo(
|
|
| 92 |
if src.lower() not in factory_methods:
|
| 93 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 94 |
|
| 95 |
-
if hf_token is not None:
|
| 96 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 97 |
warnings.warn(
|
| 98 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
@@ -103,12 +104,16 @@ def load_blocks_from_repo(
|
|
| 103 |
return blocks
|
| 104 |
|
| 105 |
|
| 106 |
-
def from_model(
|
|
|
|
|
|
|
| 107 |
model_url = f"https://huggingface.co/{model_name}"
|
| 108 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 109 |
print(f"Fetching model from: {model_url}")
|
| 110 |
|
| 111 |
-
headers =
|
|
|
|
|
|
|
| 112 |
response = httpx.request("GET", api_url, headers=headers)
|
| 113 |
if response.status_code != 200:
|
| 114 |
raise ModelNotFoundError(
|
|
@@ -371,7 +376,11 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 371 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 372 |
if preprocess is not None:
|
| 373 |
data = preprocess(*data)
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
if postprocess is not None:
|
| 376 |
data = postprocess(data) # type: ignore
|
| 377 |
return data
|
|
@@ -383,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 383 |
"inputs": inputs,
|
| 384 |
"outputs": outputs,
|
| 385 |
"title": model_name,
|
| 386 |
-
|
| 387 |
}
|
| 388 |
|
| 389 |
kwargs = dict(interface_info, **kwargs)
|
|
@@ -394,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
| 394 |
def from_spaces(
|
| 395 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 396 |
) -> Blocks:
|
| 397 |
-
client = Client(
|
| 398 |
-
space_name,
|
| 399 |
-
hf_token=hf_token,
|
| 400 |
-
download_files=False,
|
| 401 |
-
_skip_components=False,
|
| 402 |
-
)
|
| 403 |
-
|
| 404 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 405 |
|
| 406 |
print(f"Fetching Space from: {space_url}")
|
| 407 |
|
| 408 |
headers = {}
|
| 409 |
-
if hf_token
|
| 410 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 411 |
|
| 412 |
iframe_url = (
|
|
@@ -443,8 +445,7 @@ def from_spaces(
|
|
| 443 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 444 |
"https://gradio.app/using_blocks_like_functions/"
|
| 445 |
)
|
| 446 |
-
|
| 447 |
-
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
| 448 |
|
| 449 |
|
| 450 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
@@ -489,7 +490,7 @@ def from_spaces_interface(
|
|
| 489 |
config = external_utils.streamline_spaces_interface(config)
|
| 490 |
api_url = f"{iframe_url}/api/predict/"
|
| 491 |
headers = {"Content-Type": "application/json"}
|
| 492 |
-
if hf_token
|
| 493 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 494 |
|
| 495 |
# The function should call the API with preprocessed data
|
|
@@ -529,7 +530,7 @@ def gr_Interface_load(
|
|
| 529 |
src: str | None = None,
|
| 530 |
hf_token: str | None = None,
|
| 531 |
alias: str | None = None,
|
| 532 |
-
**kwargs,
|
| 533 |
) -> Blocks:
|
| 534 |
try:
|
| 535 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
@@ -543,8 +544,8 @@ def list_uniq(l):
|
|
| 543 |
|
| 544 |
|
| 545 |
def get_status(model_name: str):
|
| 546 |
-
from huggingface_hub import
|
| 547 |
-
client =
|
| 548 |
return client.get_model_status(model_name)
|
| 549 |
|
| 550 |
|
|
@@ -563,7 +564,7 @@ def is_loadable(model_name: str, force_gpu: bool = False):
|
|
| 563 |
|
| 564 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 565 |
from huggingface_hub import HfApi
|
| 566 |
-
api = HfApi()
|
| 567 |
default_tags = ["diffusers"]
|
| 568 |
if not sort: sort = "last_modified"
|
| 569 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
|
@@ -576,7 +577,7 @@ def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="l
|
|
| 576 |
print(e)
|
| 577 |
return models
|
| 578 |
for model in model_infos:
|
| 579 |
-
if not model.private and not model.gated:
|
| 580 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 581 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 582 |
models.append(model.id)
|
|
|
|
| 9 |
import tempfile
|
| 10 |
import warnings
|
| 11 |
from pathlib import Path
|
| 12 |
+
from typing import TYPE_CHECKING, Callable, Literal
|
| 13 |
|
| 14 |
import httpx
|
| 15 |
import huggingface_hub
|
|
|
|
| 33 |
from gradio.interface import Interface
|
| 34 |
|
| 35 |
|
| 36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
| 37 |
server_timeout = 600
|
| 38 |
|
| 39 |
|
|
|
|
| 41 |
def load(
|
| 42 |
name: str,
|
| 43 |
src: str | None = None,
|
| 44 |
+
hf_token: str | Literal[False] | None = None,
|
| 45 |
alias: str | None = None,
|
| 46 |
**kwargs,
|
| 47 |
) -> Blocks:
|
|
|
|
| 52 |
Parameters:
|
| 53 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
| 54 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
| 55 |
+
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
|
| 56 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
| 57 |
Returns:
|
| 58 |
a Gradio Blocks object for the given model
|
|
|
|
| 69 |
def load_blocks_from_repo(
|
| 70 |
name: str,
|
| 71 |
src: str | None = None,
|
| 72 |
+
hf_token: str | Literal[False] | None = None,
|
| 73 |
alias: str | None = None,
|
| 74 |
**kwargs,
|
| 75 |
) -> Blocks:
|
|
|
|
| 93 |
if src.lower() not in factory_methods:
|
| 94 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
| 95 |
|
| 96 |
+
if hf_token is not None and hf_token is not False:
|
| 97 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
| 98 |
warnings.warn(
|
| 99 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
|
|
| 104 |
return blocks
|
| 105 |
|
| 106 |
|
| 107 |
+
def from_model(
|
| 108 |
+
model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
|
| 109 |
+
):
|
| 110 |
model_url = f"https://huggingface.co/{model_name}"
|
| 111 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
| 112 |
print(f"Fetching model from: {model_url}")
|
| 113 |
|
| 114 |
+
headers = (
|
| 115 |
+
{} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
|
| 116 |
+
)
|
| 117 |
response = httpx.request("GET", api_url, headers=headers)
|
| 118 |
if response.status_code != 200:
|
| 119 |
raise ModelNotFoundError(
|
|
|
|
| 376 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
| 377 |
if preprocess is not None:
|
| 378 |
data = preprocess(*data)
|
| 379 |
+
try:
|
| 380 |
+
data = fn(*data, **kwargs) # type: ignore
|
| 381 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
| 382 |
+
if "429" in str(e):
|
| 383 |
+
raise TooManyRequestsError() from e
|
| 384 |
if postprocess is not None:
|
| 385 |
data = postprocess(data) # type: ignore
|
| 386 |
return data
|
|
|
|
| 392 |
"inputs": inputs,
|
| 393 |
"outputs": outputs,
|
| 394 |
"title": model_name,
|
| 395 |
+
#"examples": examples,
|
| 396 |
}
|
| 397 |
|
| 398 |
kwargs = dict(interface_info, **kwargs)
|
|
|
|
| 403 |
def from_spaces(
|
| 404 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
| 405 |
) -> Blocks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
| 407 |
|
| 408 |
print(f"Fetching Space from: {space_url}")
|
| 409 |
|
| 410 |
headers = {}
|
| 411 |
+
if hf_token not in [False, None]:
|
| 412 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 413 |
|
| 414 |
iframe_url = (
|
|
|
|
| 445 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
| 446 |
"https://gradio.app/using_blocks_like_functions/"
|
| 447 |
)
|
| 448 |
+
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
|
|
|
| 449 |
|
| 450 |
|
| 451 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
|
|
| 490 |
config = external_utils.streamline_spaces_interface(config)
|
| 491 |
api_url = f"{iframe_url}/api/predict/"
|
| 492 |
headers = {"Content-Type": "application/json"}
|
| 493 |
+
if hf_token not in [False, None]:
|
| 494 |
headers["Authorization"] = f"Bearer {hf_token}"
|
| 495 |
|
| 496 |
# The function should call the API with preprocessed data
|
|
|
|
| 530 |
src: str | None = None,
|
| 531 |
hf_token: str | None = None,
|
| 532 |
alias: str | None = None,
|
| 533 |
+
**kwargs, # ignore
|
| 534 |
) -> Blocks:
|
| 535 |
try:
|
| 536 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
|
|
| 544 |
|
| 545 |
|
| 546 |
def get_status(model_name: str):
|
| 547 |
+
from huggingface_hub import AsyncInferenceClient
|
| 548 |
+
client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
|
| 549 |
return client.get_model_status(model_name)
|
| 550 |
|
| 551 |
|
|
|
|
| 564 |
|
| 565 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
| 566 |
from huggingface_hub import HfApi
|
| 567 |
+
api = HfApi(token=HF_TOKEN)
|
| 568 |
default_tags = ["diffusers"]
|
| 569 |
if not sort: sort = "last_modified"
|
| 570 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
|
|
|
| 577 |
print(e)
|
| 578 |
return models
|
| 579 |
for model in model_infos:
|
| 580 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
| 581 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
| 582 |
if not_tag and not_tag in model.tags or not loadable: continue
|
| 583 |
models.append(model.id)
|