from __future__ import annotations import os import re import time import html from typing import List, Optional from urllib.parse import urlencode import httpx from pydantic import BaseModel, Field, HttpUrl from fastmcp import FastMCP mcp = FastMCP( name="linkedin-jobs", host="0.0.0.0", port=7861, ) class JobPosting(BaseModel): title: str = Field(..., description="Job title") company: Optional[str] = Field(None, description="Company name if available") location: Optional[str] = Field(None, description="Job location if available") url: HttpUrl = Field(..., description="Direct link to the LinkedIn job page") job_id: Optional[str] = Field(None, description="LinkedIn job ID parsed from URL, if found") listed_text: Optional[str] = Field(None, description="Human-readable posted time text, e.g., '3 days ago'") def _default_headers(cookie: Optional[str]) -> dict: headers = { "User-Agent": ( "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) " "AppleWebKit/537.36 (KHTML, like Gecko) " "Chrome/125.0.0.0 Safari/537.36" ), "Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8", "Accept-Language": "en-US,en;q=0.9", "Cache-Control": "no-cache", "Pragma": "no-cache", "Connection": "keep-alive", } if cookie: headers["Cookie"] = cookie return headers def _parse_jobs_from_html(html_text: str) -> list[JobPosting]: try: from selectolax.parser import HTMLParser except Exception: raise RuntimeError( "selectolax is required. Ensure it is listed in requirements.txt and installed." ) tree = HTMLParser(html_text) jobs: list[JobPosting] = [] # LinkedIn search uses job cards with these classes for card in tree.css(".base-search-card, .job-search-card"): link_el = card.css_first("a.base-card__full-link, a.hidden-nested-link, a") title_el = card.css_first("h3.base-search-card__title, .base-search-card__title, .sr-only") company_el = card.css_first( "h4.base-search-card__subtitle, .base-search-card__subtitle, .job-search-card__subtitle, .hidden-nested-link+div" ) location_el = card.css_first(".job-search-card__location, .base-search-card__metadata > .job-search-card__location") time_el = card.css_first("time, .job-search-card__listdate, .job-search-card__listdate--new") url = (link_el.attributes.get("href") if link_el else None) or "" title = (title_el.text(strip=True) if title_el else "").strip() company = (company_el.text(strip=True) if company_el else None) location = (location_el.text(strip=True) if location_el else None) listed_text = (time_el.text(strip=True) if time_el else None) if not url or not title: continue # Clean up HTML entities and whitespace title = html.unescape(re.sub(r"\s+", " ", title)) if company: company = html.unescape(re.sub(r"\s+", " ", company)) if location: location = html.unescape(re.sub(r"\s+", " ", location)) if listed_text: listed_text = html.unescape(re.sub(r"\s+", " ", listed_text)) # Derive job id from URL if present: /jobs/view// job_id_match = re.search(r"/jobs/view/(\d+)", url) job_id = job_id_match.group(1) if job_id_match else None try: jobs.append( JobPosting( title=title, company=company, location=location, url=url, # type: ignore[arg-type] job_id=job_id, listed_text=listed_text, ) ) except Exception: # Skip malformed entries gracefully continue return jobs def _search_page(client: httpx.Client, query: str, location: Optional[str], start: int) -> list[JobPosting]: params = { "keywords": query, "start": start, } if location: params["location"] = location # First request the main search page (richer HTML for the first 25 results) url = "https://www.linkedin.com/jobs/search/?" + urlencode(params) resp = client.get(url, follow_redirects=True, timeout=20.0) resp.raise_for_status() jobs = _parse_jobs_from_html(resp.text) # For subsequent starts (>0), LinkedIn often uses this fragment endpoint if start > 0 and len(jobs) == 0: fragment_url = ( "https://www.linkedin.com/jobs-guest/jobs/api/seeMoreJobPostings/search?" + urlencode(params) ) frag_resp = client.get(fragment_url, follow_redirects=True, timeout=20.0) if frag_resp.status_code == 200: jobs = _parse_jobs_from_html(frag_resp.text) return jobs @mcp.tool(description="Search LinkedIn job listings and return structured job postings. Optionally set LINKEDIN_COOKIE env for authenticated scraping.") def search_linkedin_jobs(query: str, location: Optional[str] = None, limit: int = 25, pages: int = 1) -> List[JobPosting]: """ - query: Search keywords, e.g. "machine learning engineer" - location: Optional location filter, e.g. "Paris, Île-de-France, France" - limit: Maximum number of jobs to return (<= 200) - pages: Number of pages to fetch (each page is ~25 results) Note: LinkedIn may throttle or require authentication. You can set the environment variable LINKEDIN_COOKIE to a valid cookie string (e.g., including li_at) for better results. """ cookie = os.environ.get("LINKEDIN_COOKIE") max_items = max(1, min(limit, 200)) pages = max(1, min(pages, 8)) headers = _default_headers(cookie) all_jobs: list[JobPosting] = [] with httpx.Client(headers=headers) as client: start = 0 for page in range(pages): try: jobs = _search_page(client, query=query, location=location, start=start) except httpx.HTTPStatusError as e: # If unauthorized or blocked, break early status = e.response.status_code if status in (401, 403, 429): break raise except Exception: # transient errors: move to next page jobs = [] if not jobs: # If no jobs were parsed, stop to avoid hammering break all_jobs.extend(jobs) if len(all_jobs) >= max_items: break start += 25 # Be polite to avoid rate-limiting time.sleep(0.8) return all_jobs[:max_items] if __name__ == "__main__": mcp.run(transport="http")