Spaces:
Sleeping
Sleeping
File size: 11,807 Bytes
435fcc1 67e1f99 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 4969b87 435fcc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
from __future__ import annotations
import os
import re
import time
import html
from typing import List, Optional
from urllib.parse import urlencode
import httpx
from pydantic import BaseModel, Field, HttpUrl
from fastmcp import FastMCP
mcp = FastMCP(
name="linkedin-jobs",
host="0.0.0.0",
port=7860,
)
class JobPosting(BaseModel):
title: str = Field(..., description="Job title")
company: Optional[str] = Field(None, description="Company name if available")
location: Optional[str] = Field(None, description="Job location if available")
url: HttpUrl = Field(..., description="Direct link to the LinkedIn job page")
job_id: Optional[str] = Field(None, description="LinkedIn job ID parsed from URL, if found")
listed_text: Optional[str] = Field(None, description="Human-readable posted time text, e.g., '3 days ago'")
def _default_headers(cookie: Optional[str]) -> dict:
headers = {
"User-Agent": (
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) "
"AppleWebKit/537.36 (KHTML, like Gecko) "
"Chrome/125.0.0.0 Safari/537.36"
),
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.9",
"Cache-Control": "no-cache",
"Pragma": "no-cache",
"Connection": "keep-alive",
"Referer": "https://www.linkedin.com/jobs/",
}
if cookie:
headers["Cookie"] = cookie
return headers
def _ensure_absolute_url(href: str) -> str:
if href.startswith("http://") or href.startswith("https://"):
return href
if href.startswith("/"):
return f"https://www.linkedin.com{href}"
return f"https://www.linkedin.com/{href}"
def _parse_jobs_from_html(html_text: str) -> list[JobPosting]:
try:
from selectolax.parser import HTMLParser
except Exception:
raise RuntimeError(
"selectolax is required. Ensure it is listed in requirements.txt and installed."
)
tree = HTMLParser(html_text)
jobs: list[JobPosting] = []
# Prefer list items with data-occludable-job-id when available
cards = tree.css("li[data-occludable-job-id], .base-search-card, .job-search-card")
for card in cards:
job_id = card.attributes.get("data-occludable-job-id")
# Link: any anchor pointing to /jobs/view/
link_el = card.css_first("a[href*='/jobs/view/']") or card.css_first(
"a.base-card__full-link, a.hidden-nested-link, a"
)
url = (link_el.attributes.get("href") if link_el else None) or ""
if url:
url = _ensure_absolute_url(url)
if not job_id:
job_id_match = re.search(r"/jobs/view/(\d+)", url)
if job_id_match:
job_id = job_id_match.group(1)
# Title
title_el = (
card.css_first("h3.base-search-card__title")
or card.css_first(".base-search-card__title")
or card.css_first(".job-card-list__title")
or card.css_first(".sr-only")
or card.css_first("a[href*='/jobs/view/']")
)
title = (title_el.text(strip=True) if title_el else "").strip()
# Company
company_el = (
card.css_first("h4.base-search-card__subtitle")
or card.css_first(".base-search-card__subtitle")
or card.css_first(".job-search-card__subtitle")
or card.css_first(".hidden-nested-link+div")
or card.css_first(".job-card-container__company-name")
or card.css_first(".job-card-container__primary-description")
)
company = (company_el.text(strip=True) if company_el else None)
# Location
location_el = (
card.css_first(".job-search-card__location")
or card.css_first(".base-search-card__metadata > .job-search-card__location")
or card.css_first(".job-card-container__metadata-item")
)
location = (location_el.text(strip=True) if location_el else None)
# Time listed
time_el = card.css_first("time, .job-search-card__listdate, .job-search-card__listdate--new")
listed_text = (time_el.text(strip=True) if time_el else None)
if not url or not title:
continue
# Clean up HTML entities and whitespace
title = html.unescape(re.sub(r"\s+", " ", title))
if company:
company = html.unescape(re.sub(r"\s+", " ", company))
if location:
location = html.unescape(re.sub(r"\s+", " ", location))
if listed_text:
listed_text = html.unescape(re.sub(r"\s+", " ", listed_text))
try:
jobs.append(
JobPosting(
title=title,
company=company,
location=location,
url=url, # type: ignore[arg-type]
job_id=job_id,
listed_text=listed_text,
)
)
except Exception:
continue
# Fallback: grab anchors if no structured cards were detected
if not jobs:
anchors = tree.css("a[href*='/jobs/view/']")
seen_ids: set[str] = set()
for a in anchors:
href = a.attributes.get("href") or ""
if not href:
continue
url = _ensure_absolute_url(href)
job_id_match = re.search(r"/jobs/view/(\d+)", url)
job_id = job_id_match.group(1) if job_id_match else None
if job_id and job_id in seen_ids:
continue
title = a.text(strip=True)
if not title:
title = "LinkedIn Job"
try:
jobs.append(
JobPosting(
title=title,
company=None,
location=None,
url=url, # type: ignore[arg-type]
job_id=job_id,
listed_text=None,
)
)
if job_id:
seen_ids.add(job_id)
except Exception:
continue
return jobs
# Mapping helpers to align with common notebook tutorials/filters
_DATE_POSTED_TO_TPR = {
# keys accepted by our API → LinkedIn f_TPR values
"past_24_hours": "r86400",
"past_week": "r604800",
"past_month": "r2592000",
}
_EXPERIENCE_TO_E = {
"internship": "1",
"entry": "2",
"associate": "3",
"mid-senior": "4",
"director": "5",
"executive": "6",
}
_JOBTYPE_TO_JT = {
"full-time": "F",
"part-time": "P",
"contract": "C",
"temporary": "T",
"internship": "I",
"volunteer": "V",
"other": "O",
}
_REMOTE_TO_WRA = {
"on-site": "1",
"remote": "2",
"hybrid": "3",
}
def _build_search_params(
*,
keywords: str,
location: Optional[str],
start: int,
sort_by: str = "relevance",
date_posted: Optional[str] = None,
experience_levels: Optional[List[str]] = None,
job_types: Optional[List[str]] = None,
remote: Optional[str] = None,
geo_id: Optional[int] = None,
) -> dict:
params: dict = {
"keywords": keywords,
"start": start,
}
if location:
params["location"] = location
if geo_id is not None:
params["geoId"] = str(geo_id)
# Sort: relevance (R) or date (DD)
if sort_by and sort_by.lower() in {"relevance", "date"}:
params["sortBy"] = "R" if sort_by.lower() == "relevance" else "DD"
# Time posted
if date_posted:
tpr = _DATE_POSTED_TO_TPR.get(date_posted)
if tpr:
params["f_TPR"] = tpr
# Experience levels
if experience_levels:
codes = [code for key in experience_levels if (code := _EXPERIENCE_TO_E.get(key))]
if codes:
params["f_E"] = ",".join(codes)
# Job types
if job_types:
codes = [code for key in job_types if (code := _JOBTYPE_TO_JT.get(key))]
if codes:
params["f_JT"] = ",".join(codes)
# Workplace type (on-site / remote / hybrid)
if remote:
code = _REMOTE_TO_WRA.get(remote)
if code:
params["f_WRA"] = code
return params
def _search_page(
client: httpx.Client,
*,
params: dict,
) -> list[JobPosting]:
base_url = "https://www.linkedin.com/jobs/search/?" + urlencode(params)
resp = client.get(base_url, follow_redirects=True, timeout=20.0)
resp.raise_for_status()
jobs = _parse_jobs_from_html(resp.text)
# If nothing parsed, try the fragment endpoint as a fallback regardless of page
if len(jobs) == 0:
fragment_url = (
"https://www.linkedin.com/jobs-guest/jobs/api/seeMoreJobPostings/search?" + urlencode(params)
)
frag_resp = client.get(fragment_url, follow_redirects=True, timeout=20.0)
if frag_resp.status_code == 200:
jobs = _parse_jobs_from_html(frag_resp.text)
return jobs
@mcp.tool(description="Search LinkedIn job listings and return structured job postings.")
def search_linkedin_jobs(
query: str,
location: Optional[str] = None,
limit: int = 25,
pages: int = 1,
*,
sort_by: str = "relevance",
date_posted: Optional[str] = None,
experience_levels: Optional[List[str]] = None,
job_types: Optional[List[str]] = None,
remote: Optional[str] = None,
geo_id: Optional[int] = None,
) -> List[JobPosting]:
"""
- query: Search keywords, e.g. "machine learning engineer"
- location: Optional location filter, e.g. "Paris, Île-de-France, France"
- limit: Maximum number of jobs to return (<= 200)
- pages: Number of pages to fetch (each page is ~25 results)
- sort_by: "relevance" or "date" (maps to LinkedIn sortBy R/DD)
- date_posted: one of {"past_24_hours","past_week","past_month"}
- experience_levels: list of {"internship","entry","associate","mid-senior","director","executive"}
- job_types: list of {"full-time","part-time","contract","temporary","internship","volunteer","other"}
- remote: one of {"on-site","remote","hybrid"}
- geo_id: Optional numeric LinkedIn geoId for precise location targeting
Note: LinkedIn may throttle or require authentication. You can set the environment
variable LINKEDIN_COOKIE to a valid cookie string (e.g., including li_at) for better results.
"""
cookie = os.environ.get("LINKEDIN_COOKIE")
max_items = max(1, min(limit, 200))
pages = max(1, min(pages, 8))
headers = _default_headers(cookie)
all_jobs: list[JobPosting] = []
with httpx.Client(headers=headers) as client:
start = 0
for _page in range(pages):
active_params = _build_search_params(
keywords=query,
location=location,
start=start,
sort_by=sort_by,
date_posted=date_posted,
experience_levels=experience_levels,
job_types=job_types,
remote=remote,
geo_id=geo_id,
)
try:
jobs = _search_page(client, params=active_params)
except httpx.HTTPStatusError as e:
status = e.response.status_code
if status in (401, 403, 429):
break
raise
except Exception:
jobs = []
if not jobs:
break
all_jobs.extend(jobs)
if len(all_jobs) >= max_items:
break
start += 25
time.sleep(0.8)
return all_jobs[:max_items]
if __name__ == "__main__":
mcp.run(transport="http") |