Spaces:
Runtime error
Runtime error
| import os | |
| import time | |
| from pydantic import BaseModel | |
| from fastapi import FastAPI, HTTPException, Query, Request | |
| from fastapi.responses import FileResponse | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from langchain.chains import LLMChain | |
| from langchain.prompts import PromptTemplate | |
| from TextGen.suno import custom_generate_audio, get_audio_information | |
| from langchain_google_genai import ( | |
| ChatGoogleGenerativeAI, | |
| HarmBlockThreshold, | |
| HarmCategory, | |
| ) | |
| from TextGen import app | |
| from gradio_client import Client | |
| class Message(BaseModel): | |
| npc: str | None = None | |
| input: str | None = None | |
| song_base_api=os.environ["VERCEL_API"] | |
| my_hf_token=os.environ["HF_TOKEN"] | |
| tts_client = Client("https://jofthomas-xtts.hf.space/",hf_token=my_hf_token) | |
| class Generate(BaseModel): | |
| text:str | |
| def generate_text(prompt: str): | |
| if prompt == "": | |
| return {"detail": "Please provide a prompt."} | |
| else: | |
| prompt = PromptTemplate(template=prompt, input_variables=['Prompt']) | |
| # Initialize the LLM | |
| llm = ChatGoogleGenerativeAI( | |
| model="gemini-pro", | |
| safety_settings={ | |
| HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE, | |
| }, | |
| ) | |
| llmchain = LLMChain( | |
| prompt=prompt, | |
| llm=llm | |
| ) | |
| llm_response = llmchain.run({"Prompt": prompt}) | |
| return Generate(text=llm_response) | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_credentials=True, | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| ) | |
| def api_home(): | |
| return {'detail': 'Welcome to FastAPI TextGen Tutorial!'} | |
| def inference(message: Message): | |
| return generate_text(prompt=message.input) | |
| async def generate_wav(text: str, language: str = "en",voice:str="./voices/blacksmith.mp3"): | |
| try: | |
| # Use the Gradio client to generate the wav file | |
| result = tts_client.predict( | |
| text, # str in 'Text Prompt' Textbox component | |
| language, # str in 'Language' Dropdown component | |
| voice, # str (filepath on your computer (or URL) of file) in 'Reference Audio' Audio component | |
| voice, # str (filepath on your computer (or URL) of file) in 'Use Microphone for Reference' Audio component | |
| False, # bool in 'Use Microphone' Checkbox component | |
| False, # bool in 'Cleanup Reference Voice' Checkbox component | |
| False, # bool in 'Do not use language auto-detect' Checkbox component | |
| True, # bool in 'Agree' Checkbox component | |
| fn_index=1 | |
| ) | |
| # Get the path of the generated wav file | |
| wav_file_path = result[1] | |
| # Return the generated wav file as a response | |
| return FileResponse(wav_file_path, media_type="audio/wav", filename="output.wav") | |
| except Exception as e: | |
| raise HTTPException(status_code=500, detail=str(e)) | |
| async def generate_song(text: str): | |
| try: | |
| data = custom_generate_audio({ | |
| "prompt": f"{text}", | |
| "make_instrumental": False, | |
| "wait_audio": False | |
| }) | |
| ids = f"{data[0]['id']},{data[1]['id']}" | |
| print(f"ids: {ids}") | |
| for _ in range(60): | |
| data = get_audio_information(ids) | |
| if data[0]["status"] == 'streaming': | |
| print(f"{data[0]['id']} ==> {data[0]['audio_url']}") | |
| print(f"{data[1]['id']} ==> {data[1]['audio_url']}") | |
| break | |
| # sleep 5s | |
| time.sleep(5) | |
| except: | |
| print("Error") |