docs: add new parser
Browse files- docs/adding_new_parser.md +199 -0
- llmdataparser/__init__.py +2 -2
- llmdataparser/base_parser.py +2 -9
docs/adding_new_parser.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adding a New Dataset Parser
|
| 2 |
+
|
| 3 |
+
This guide explains how to add a new dataset parser to the llmdataparser library. The library is designed to make it easy to add support for new datasets while maintaining consistent interfaces and functionality.
|
| 4 |
+
|
| 5 |
+
## Step-by-Step Guide
|
| 6 |
+
|
| 7 |
+
### 1. Create a New Parser Class
|
| 8 |
+
|
| 9 |
+
Create a new file `your_dataset_parser.py` in the `llmdataparser` folder. Your parser should inherit from `HuggingFaceDatasetParser[T]` where T is your custom entry type.
|
| 10 |
+
|
| 11 |
+
```python
|
| 12 |
+
from llmdataparser.base_parser import (
|
| 13 |
+
DatasetDescription,
|
| 14 |
+
EvaluationMetric,
|
| 15 |
+
HuggingFaceDatasetParser,
|
| 16 |
+
HuggingFaceParseEntry,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
@dataclass(frozen=True, kw_only=True, slots=True)
|
| 20 |
+
class YourDatasetParseEntry(HuggingFaceParseEntry):
|
| 21 |
+
"""Custom entry class for your dataset."""
|
| 22 |
+
# Add any additional fields specific to your dataset
|
| 23 |
+
custom_field: str
|
| 24 |
+
|
| 25 |
+
@classmethod
|
| 26 |
+
def create(cls, prompt: str, answer: str, raw_question: str,
|
| 27 |
+
raw_answer: str, task_name: str, custom_field: str) -> "YourDatasetParseEntry":
|
| 28 |
+
return cls(
|
| 29 |
+
prompt=prompt,
|
| 30 |
+
answer=answer,
|
| 31 |
+
raw_question=raw_question,
|
| 32 |
+
raw_answer=raw_answer,
|
| 33 |
+
task_name=task_name,
|
| 34 |
+
custom_field=custom_field
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
class YourDatasetParser(HuggingFaceDatasetParser[YourDatasetParseEntry]):
|
| 38 |
+
"""Parser for your dataset."""
|
| 39 |
+
|
| 40 |
+
# Required class variables
|
| 41 |
+
_data_source = "huggingface/your-dataset"
|
| 42 |
+
_default_task = "default"
|
| 43 |
+
_task_names = ["task1", "task2", "task3"]
|
| 44 |
+
_default_system_prompt = YOUR_SYSTEM_PROMPT
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
### 2. Define System Prompt
|
| 48 |
+
|
| 49 |
+
Add your system prompt to `llmdataparser/prompts.py`:
|
| 50 |
+
|
| 51 |
+
```python
|
| 52 |
+
YOUR_SYSTEM_PROMPT: Final[str] = textwrap.dedent(
|
| 53 |
+
"""\
|
| 54 |
+
You are an expert in [your domain]. Your task is to [describe the task].
|
| 55 |
+
|
| 56 |
+
Instructions:
|
| 57 |
+
1. [First instruction]
|
| 58 |
+
2. [Second instruction]
|
| 59 |
+
...
|
| 60 |
+
"""
|
| 61 |
+
)
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
### 3. Implement Required Methods
|
| 65 |
+
|
| 66 |
+
Your parser needs to implement these key methods:
|
| 67 |
+
|
| 68 |
+
```python
|
| 69 |
+
def process_entry(
|
| 70 |
+
self,
|
| 71 |
+
row: dict[str, Any],
|
| 72 |
+
task_name: str | None = None,
|
| 73 |
+
**kwargs: Any
|
| 74 |
+
) -> YourDatasetParseEntry:
|
| 75 |
+
"""Process a single dataset entry."""
|
| 76 |
+
# Extract data from the row
|
| 77 |
+
raw_question = row["question"]
|
| 78 |
+
raw_answer = row["answer"]
|
| 79 |
+
task = task_name or self._get_current_task(row)
|
| 80 |
+
|
| 81 |
+
# Format the prompt
|
| 82 |
+
prompt = f"{self._system_prompt}\nQuestion: {raw_question}\nAnswer:"
|
| 83 |
+
|
| 84 |
+
return YourDatasetParseEntry.create(
|
| 85 |
+
prompt=prompt,
|
| 86 |
+
answer=raw_answer,
|
| 87 |
+
raw_question=raw_question,
|
| 88 |
+
raw_answer=raw_answer,
|
| 89 |
+
task_name=task,
|
| 90 |
+
custom_field=row["custom_field"]
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
def get_dataset_description(self) -> DatasetDescription:
|
| 94 |
+
"""Returns description of your dataset."""
|
| 95 |
+
return DatasetDescription.create(
|
| 96 |
+
name="Your Dataset Name",
|
| 97 |
+
purpose="Purpose of the dataset",
|
| 98 |
+
source="Dataset source/URL",
|
| 99 |
+
language="Dataset language",
|
| 100 |
+
format="Data format (e.g., multiple choice, free text)",
|
| 101 |
+
characteristics="Key characteristics of the dataset",
|
| 102 |
+
citation="Dataset citation if available"
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
| 106 |
+
"""Returns recommended evaluation metrics."""
|
| 107 |
+
return [
|
| 108 |
+
EvaluationMetric.create(
|
| 109 |
+
name="metric_name",
|
| 110 |
+
type="metric_type",
|
| 111 |
+
description="Metric description",
|
| 112 |
+
implementation="implementation_details",
|
| 113 |
+
primary=True
|
| 114 |
+
)
|
| 115 |
+
]
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
### 4. Add Example Usage
|
| 119 |
+
|
| 120 |
+
Add example usage at the bottom of your parser file:
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
+
if __name__ == "__main__":
|
| 124 |
+
# Example usage
|
| 125 |
+
parser = YourDatasetParser()
|
| 126 |
+
parser.load()
|
| 127 |
+
parser.parse()
|
| 128 |
+
|
| 129 |
+
# Get parsed data
|
| 130 |
+
parsed_data = parser.get_parsed_data
|
| 131 |
+
|
| 132 |
+
# Print example entry
|
| 133 |
+
if parsed_data:
|
| 134 |
+
example = parsed_data[0]
|
| 135 |
+
print("\nExample parsed entry:")
|
| 136 |
+
print(f"Question: {example.raw_question}")
|
| 137 |
+
print(f"Answer: {example.answer}")
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
### 5. Create Tests
|
| 141 |
+
|
| 142 |
+
Create a test file `tests/test_your_dataset_parser.py`:
|
| 143 |
+
|
| 144 |
+
```python
|
| 145 |
+
import pytest
|
| 146 |
+
from llmdataparser.your_dataset_parser import YourDatasetParser, YourDatasetParseEntry
|
| 147 |
+
|
| 148 |
+
def test_parser_initialization():
|
| 149 |
+
parser = YourDatasetParser()
|
| 150 |
+
assert parser._data_source == "huggingface/your-dataset"
|
| 151 |
+
assert parser._default_task == "default"
|
| 152 |
+
assert "task1" in parser._task_names
|
| 153 |
+
|
| 154 |
+
def test_process_entry():
|
| 155 |
+
parser = YourDatasetParser()
|
| 156 |
+
sample_row = {
|
| 157 |
+
"question": "Sample question",
|
| 158 |
+
"answer": "Sample answer",
|
| 159 |
+
"custom_field": "Custom value"
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
entry = parser.process_entry(sample_row)
|
| 163 |
+
assert isinstance(entry, YourDatasetParseEntry)
|
| 164 |
+
assert entry.raw_question == "Sample question"
|
| 165 |
+
assert entry.custom_field == "Custom value"
|
| 166 |
+
```
|
| 167 |
+
|
| 168 |
+
## Best Practices
|
| 169 |
+
|
| 170 |
+
1. **Type Safety**: Use type hints consistently and ensure your parser is properly typed.
|
| 171 |
+
1. **Documentation**: Add clear docstrings and comments explaining your parser's functionality.
|
| 172 |
+
1. **Error Handling**: Include appropriate error checking and validation.
|
| 173 |
+
1. **Testing**: Write comprehensive tests covering different scenarios.
|
| 174 |
+
1. **System Prompt**: Design your system prompt carefully to guide the model effectively.
|
| 175 |
+
|
| 176 |
+
## Examples
|
| 177 |
+
|
| 178 |
+
Look at existing parsers for reference:
|
| 179 |
+
|
| 180 |
+
- `mmlu_parser.py` for multiple-choice questions
|
| 181 |
+
- `gsm8k_parser.py` for math word problems
|
| 182 |
+
- `humaneval_parser.py` for code generation tasks
|
| 183 |
+
|
| 184 |
+
## Common Patterns
|
| 185 |
+
|
| 186 |
+
1. **Parse Entry Class**: Create a custom parse entry class if you need additional fields.
|
| 187 |
+
1. **Task Names**: Define all available tasks in `_task_names`.
|
| 188 |
+
1. **System Prompt**: Write clear instructions in the system prompt.
|
| 189 |
+
1. **Process Entry**: Handle data extraction and formatting in `process_entry`.
|
| 190 |
+
1. **Dataset Description**: Provide comprehensive dataset information.
|
| 191 |
+
1. **Evaluation Metrics**: Define appropriate metrics for your dataset.
|
| 192 |
+
|
| 193 |
+
## Testing Your Parser
|
| 194 |
+
|
| 195 |
+
1. Run the example usage code to verify basic functionality
|
| 196 |
+
1. Run pytest to execute your test cases
|
| 197 |
+
1. Try different dataset splits and tasks
|
| 198 |
+
1. Verify the parsed output format
|
| 199 |
+
1. Check error handling with invalid inputs
|
llmdataparser/__init__.py
CHANGED
|
@@ -10,7 +10,7 @@ from .math_parser import MATHDatasetParser
|
|
| 10 |
from .mbpp_parser import MBPPDatasetParser
|
| 11 |
from .mgsm_parser import MGSMDatasetParser
|
| 12 |
from .mmlu_parser import (
|
| 13 |
-
|
| 14 |
MMLUProDatasetParser,
|
| 15 |
MMLUReduxDatasetParser,
|
| 16 |
TMMLUPlusDatasetParser,
|
|
@@ -44,7 +44,7 @@ class ParserRegistry:
|
|
| 44 |
|
| 45 |
|
| 46 |
# Register parsers
|
| 47 |
-
ParserRegistry.register_parser("mmlu",
|
| 48 |
ParserRegistry.register_parser("mmlupro", MMLUProDatasetParser)
|
| 49 |
ParserRegistry.register_parser("mmluredux", MMLUReduxDatasetParser)
|
| 50 |
ParserRegistry.register_parser("tmmluplus", TMMLUPlusDatasetParser)
|
|
|
|
| 10 |
from .mbpp_parser import MBPPDatasetParser
|
| 11 |
from .mgsm_parser import MGSMDatasetParser
|
| 12 |
from .mmlu_parser import (
|
| 13 |
+
BaseMMLUDatasetParser,
|
| 14 |
MMLUProDatasetParser,
|
| 15 |
MMLUReduxDatasetParser,
|
| 16 |
TMMLUPlusDatasetParser,
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
# Register parsers
|
| 47 |
+
ParserRegistry.register_parser("mmlu", BaseMMLUDatasetParser)
|
| 48 |
ParserRegistry.register_parser("mmlupro", MMLUProDatasetParser)
|
| 49 |
ParserRegistry.register_parser("mmluredux", MMLUReduxDatasetParser)
|
| 50 |
ParserRegistry.register_parser("tmmluplus", TMMLUPlusDatasetParser)
|
llmdataparser/base_parser.py
CHANGED
|
@@ -119,20 +119,13 @@ class DatasetParser(Generic[T], ABC):
|
|
| 119 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
| 120 |
"""
|
| 121 |
|
|
|
|
| 122 |
def get_dataset_description(self) -> DatasetDescription:
|
| 123 |
"""Returns a standardized description of the dataset."""
|
| 124 |
-
return DatasetDescription(
|
| 125 |
-
name="Unknown",
|
| 126 |
-
purpose="Not specified",
|
| 127 |
-
source="Not specified",
|
| 128 |
-
language="Not specified",
|
| 129 |
-
format="Not specified",
|
| 130 |
-
characteristics="Not specified",
|
| 131 |
-
)
|
| 132 |
|
|
|
|
| 133 |
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
| 134 |
"""Returns the recommended evaluation metrics for the dataset."""
|
| 135 |
-
return []
|
| 136 |
|
| 137 |
|
| 138 |
@dataclass(frozen=True, kw_only=True, slots=True)
|
|
|
|
| 119 |
T: The processed entry, typically an instance of a subclass of ParseEntry.
|
| 120 |
"""
|
| 121 |
|
| 122 |
+
@abstractmethod
|
| 123 |
def get_dataset_description(self) -> DatasetDescription:
|
| 124 |
"""Returns a standardized description of the dataset."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
@abstractmethod
|
| 127 |
def get_evaluation_metrics(self) -> list[EvaluationMetric]:
|
| 128 |
"""Returns the recommended evaluation metrics for the dataset."""
|
|
|
|
| 129 |
|
| 130 |
|
| 131 |
@dataclass(frozen=True, kw_only=True, slots=True)
|