Jaward's picture
Update app.py
bc6ee15 verified
raw
history blame
42.8 kB
import os
import json
import re
import gradio as gr
import asyncio
import logging
import torch
import random
import tempfile
import zipfile
from serpapi import GoogleSearch
from pydantic import BaseModel
from autogen_agentchat.agents import AssistantAgent
from autogen_agentchat.conditions import HandoffTermination, TextMentionTermination
from autogen_agentchat.teams import Swarm
from autogen_agentchat.ui import Console
from autogen_agentchat.messages import TextMessage, HandoffMessage, StructuredMessage
from autogen_ext.models.anthropic import AnthropicChatCompletionClient
from autogen_ext.models.openai import OpenAIChatCompletionClient
from autogen_ext.models.ollama import OllamaChatCompletionClient
from markdown_pdf import MarkdownPdf, Section
import traceback
import soundfile as sf
import shutil
from pydub import AudioSegment
from TTS.api import TTS
from gradio_pdf import PDF
# Set up logging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s - %(levelname)s - %(message)s",
handlers=[
logging.FileHandler("lecture_generation.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Set up environment
os.environ["COQUI_TOS_AGREED"] = "1"
# Define Pydantic model for slide data
class Slide(BaseModel):
title: str
content: str
class SlidesOutput(BaseModel):
slides: list[Slide]
# Define search_web tool using SerpApi
def search_web(query: str, serpapi_key: str) -> str:
try:
params = {
"q": query,
"engine": "google",
"api_key": serpapi_key,
"num": 5
}
search = GoogleSearch(params)
results = search.get_dict()
if "error" in results:
logger.error("SerpApi error: %s", results["error"])
return f"Error during search: {results['error']}"
if "organic_results" not in results or not results["organic_results"]:
logger.info("No search results found for query: %s", query)
return f"No results found for query: {query}"
formatted_results = []
for item in results["organic_results"][:5]:
title = item.get("title", "No title")
snippet = item.get("snippet", "No snippet")
link = item.get("link", "No link")
formatted_results.append(f"Title: {title}\nSnippet: {snippet}\nLink: {link}\n")
formatted_output = "\n".join(formatted_results)
logger.info("Successfully retrieved search results for query: %s", query)
return f"Search results for {query}:\n{formatted_output}"
except Exception as e:
logger.error("Unexpected error during search: %s", str(e))
return f"Unexpected error during search: {str(e)}"
# Function to get model client based on selected service
def get_model_client(service, api_key):
if service == "OpenAI-gpt-4o-2024-08-06":
return OpenAIChatCompletionClient(model="gpt-4o-2024-08-06", api_key=api_key)
elif service == "Anthropic-claude-3-sonnet-20240229":
return AnthropicChatCompletionClient(model="claude-3-sonnet-20240229", api_key=api_key)
elif service == "Google-gemini-1.5-flash":
return OpenAIChatCompletionClient(model="gemini-1.5-flash", api_key=api_key)
elif service == "Ollama-llama3.2":
return OllamaChatCompletionClient(model="llama3.2")
else:
raise ValueError("Invalid service")
# Helper function to clean script text and make it natural
def clean_script_text(script):
if not script or not isinstance(script, str):
logger.error("Invalid script input: %s", script)
return None
# Minimal cleaning to preserve natural language
script = re.sub(r"\*\*Slide \d+:.*?\*\*", "", script) # Remove slide headers
script = re.sub(r"\[.*?\]", "", script) # Remove bracketed content
script = re.sub(r"Title:.*?\n|Content:.*?\n", "", script) # Remove metadata
script = script.replace("humanlike", "human-like").replace("problemsolving", "problem-solving")
script = re.sub(r"\s+", " ", script).strip() # Normalize whitespace
# Convert bullet points to spoken cues
script = re.sub(r"^\s*-\s*", "So, ", script, flags=re.MULTILINE)
# Add non-verbal words randomly (e.g., "um," "you know," "like")
non_verbal = ["um, ", "you know, ", "like, "]
words = script.split()
for i in range(len(words) - 1, -1, -1):
if random.random() < 0.1: # 10% chance per word
words.insert(i, random.choice(non_verbal))
script = " ".join(words)
# Basic validation
if len(script) < 10:
logger.error("Cleaned script too short (%d characters): %s", len(script), script)
return None
logger.info("Cleaned and naturalized script: %s", script)
return script
# Helper function to validate and convert speaker audio (MP3 or WAV)
async def validate_and_convert_speaker_audio(speaker_audio, temp_dir):
if not os.path.exists(speaker_audio):
logger.error("Speaker audio file does not exist: %s", speaker_audio)
return None
try:
# Check file extension
ext = os.path.splitext(speaker_audio)[1].lower()
if ext == ".mp3":
logger.info("Converting MP3 to WAV: %s", speaker_audio)
audio = AudioSegment.from_mp3(speaker_audio)
# Convert to mono, 22050 Hz
audio = audio.set_channels(1).set_frame_rate(22050)
speaker_wav = os.path.join(temp_dir, "speaker_converted.wav")
audio.export(speaker_wav, format="wav")
elif ext == ".wav":
speaker_wav = speaker_audio
else:
logger.error("Unsupported audio format: %s", ext)
return None
# Validate WAV file
data, samplerate = sf.read(speaker_wav)
if samplerate < 16000 or samplerate > 48000:
logger.error("Invalid sample rate for %s: %d Hz", speaker_wav, samplerate)
return None
if len(data) < 16000:
logger.error("Speaker audio too short: %d frames", len(data))
return None
if data.ndim == 2:
logger.info("Converting stereo WAV to mono: %s", speaker_wav)
data = data.mean(axis=1)
mono_wav = os.path.join(temp_dir, "speaker_mono.wav")
sf.write(mono_wav, data, samplerate)
speaker_wav = mono_wav
logger.info("Validated speaker audio: %s", speaker_wav)
return speaker_wav
except Exception as e:
logger.error("Failed to validate or convert speaker audio %s: %s", speaker_audio, str(e))
return None
# Helper function to generate audio using Coqui TTS API
def generate_xtts_audio(tts, text, speaker_wav, output_path):
if not tts:
logger.error("TTS model not initialized")
return False
try:
tts.tts_to_file(text=text, speaker_wav=speaker_wav, language="en", file_path=output_path)
logger.info("Generated audio for %s", output_path)
return True
except Exception as e:
logger.error("Failed to generate audio for %s: %s", output_path, str(e))
return False
# Helper function to extract JSON from messages
def extract_json_from_message(message):
if isinstance(message, TextMessage):
content = message.content
logger.debug("Extracting JSON from TextMessage: %s", content)
if not isinstance(content, str):
logger.warning("TextMessage content is not a string: %s", content)
return None
# Try standard JSON block
pattern = r"```json\s*(.*?)\s*```"
match = re.search(pattern, content, re.DOTALL)
if match:
try:
return json.loads(match.group(1))
except json.JSONDecodeError as e:
logger.error("Failed to parse JSON from TextMessage: %s, Content: %s", e, content)
# Fallback: Try raw JSON array
json_pattern = r"\[\s*\{.*?\}\s*\]"
match = re.search(json_pattern, content, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError as e:
logger.error("Failed to parse fallback JSON from TextMessage: %s, Content: %s", e, content)
# Fallback: Try any JSON-like structure
try:
parsed = json.loads(content)
if isinstance(parsed, (list, dict)):
logger.info("Parsed JSON from raw content: %s", parsed)
return parsed
except json.JSONDecodeError:
pass
logger.warning("No JSON found in TextMessage content: %s", content)
return None
elif isinstance(message, StructuredMessage):
content = message.content
logger.debug("Extracting JSON from StructuredMessage: %s", content)
try:
if isinstance(content, BaseModel):
content_dict = content.dict()
return content_dict.get("slides", content_dict)
return content
except Exception as e:
logger.error("Failed to extract JSON from StructuredMessage: %s, Content: %s", e, content)
return None
elif isinstance(message, HandoffMessage):
logger.debug("Extracting JSON from HandoffMessage context")
for ctx_msg in message.context:
if hasattr(ctx_msg, "content"):
content = ctx_msg.content
logger.debug("Handoff context message content: %s", content)
if isinstance(content, str):
pattern = r"```json\s*(.*?)\s*```"
match = re.search(pattern, content, re.DOTALL)
if match:
try:
return json.loads(match.group(1))
except json.JSONDecodeError as e:
logger.error("Failed to parse JSON from HandoffMessage context: %s, Content: %s", e, content)
json_pattern = r"\[\s*\{.*?\}\s*\]"
match = re.search(json_pattern, content, re.DOTALL)
if match:
try:
return json.loads(match.group(0))
except json.JSONDecodeError as e:
logger.error("Failed to parse fallback JSON from HandoffMessage context: %s, Content: %s", e, content)
try:
parsed = json.loads(content)
if isinstance(parsed, (list, dict)):
logger.info("Parsed JSON from raw HandoffMessage context: %s", parsed)
return parsed
except json.JSONDecodeError:
pass
elif isinstance(content, dict):
return content.get("slides", content)
logger.warning("No JSON found in HandoffMessage context")
return None
logger.warning("Unsupported message type for JSON extraction: %s", type(message))
return None
# Function to generate Markdown and convert to PDF (portrait, centered)
def generate_slides_pdf(slides, temp_dir):
pdf = MarkdownPdf()
for slide in slides:
content_lines = slide['content'].replace('\n', '\n\n')
markdown_content = f"""
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center; height: 100%; text-align: center; padding: 20px;">
# {slide['title']}
*Prof. AI Feynman*
*Princeton University, April 26th, 2025*
{content_lines}
</div>
---
"""
pdf.add_section(Section(markdown_content, toc=False))
pdf_file = os.path.join(temp_dir, "slides.pdf")
pdf.save(pdf_file)
logger.info("Generated PDF slides (portrait): %s", pdf_file)
return pdf_file
# Helper function to create ZIP file of outputs
def create_outputs_zip(temp_dir, slides, audio_files, scripts):
zip_path = os.path.join(temp_dir, "lecture_outputs.zip")
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
# Add slides PDF
pdf_file = os.path.join(temp_dir, "slides.pdf")
if os.path.exists(pdf_file):
zipf.write(pdf_file, "slides.pdf")
# Add audio files
for i, audio_file in enumerate(audio_files):
if audio_file and os.path.exists(audio_file):
zipf.write(audio_file, f"slide_{i+1}.wav")
# Add raw and cleaned scripts
for i in range(len(slides)):
raw_script_file = os.path.join(temp_dir, f"slide_{i+1}_raw_script.txt")
cleaned_script_file = os.path.join(temp_dir, f"slide_{i+1}_script.txt")
if os.path.exists(raw_script_file):
zipf.write(raw_script_file, f"slide_{i+1}_raw_script.txt")
if os.path.exists(cleaned_script_file):
zipf.write(cleaned_script_file, f"slide_{i+1}_script.txt")
logger.info("Created ZIP file: %s", zip_path)
return zip_path
# Helper function for progress HTML
def html_with_progress(label, progress):
return f"""
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center; height: 100%; min-height: 700px; padding: 20px; text-align: center; border: 1px solid #ddd; border-radius: 8px;">
<div style="width: 100%; background-color: #FFFFFF; border-radius: 10px; overflow: hidden; margin-bottom: 20px;">
<div style="width: {progress}%; height: 30px; background-color: #4CAF50; border-radius: 10px;"></div>
</div>
<h2 style="font-style: italic; color: #555;">{label}</h2>
</div>
"""
# Async function to update audio preview
async def update_audio_preview(audio_file):
if audio_file:
logger.info("Updating audio preview for file: %s", audio_file)
return audio_file
return None
# Async function to generate lecture materials and audio
async def on_generate(api_service, api_key, serpapi_key, title, topic, instructions, lecture_type, speaker_audio, num_slides):
if not serpapi_key:
yield html_with_progress("SerpApi key required. Please provide a valid key.", 0)
return
# Create temporary directory
with tempfile.TemporaryDirectory() as temp_dir:
# Initialize TTS model
tts = None
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v2").to(device)
logger.info("TTS model initialized on %s", device)
except Exception as e:
logger.error("Failed to initialize TTS model: %s", str(e))
yield html_with_progress(f"TTS model initialization failed: {str(e)}", 0)
return
model_client = get_model_client(api_service, api_key)
research_agent = AssistantAgent(
name="research_agent",
model_client=model_client,
handoffs=["slide_agent"],
system_message="You are a Research Agent. Use the search_web tool to gather information on the topic and keywords from the initial message. Summarize the findings concisely in a single message, then use the handoff_to_slide_agent tool to pass the task to the Slide Agent. Do not produce any other output.",
tools=[search_web]
)
slide_agent = AssistantAgent(
name="slide_agent",
model_client=model_client,
handoffs=["script_agent"],
system_message=f"""
You are a Slide Agent. Using the research from the conversation history, generate EXACTLY {num_slides} content slides on the topic, plus 1 quiz slide, 1 assignment slide, and 1 thank-you slide, for a TOTAL of {num_slides + 3} slides. Output ONLY a JSON array wrapped in ```json ... ``` in a TextMessage, with each slide as an object with 'title' and 'content' keys. Ensure the JSON is valid and contains precisely {num_slides + 3} slides. If the slide count is incorrect, adjust the output to meet this requirement before proceeding. Do not include explanatory text or comments. After outputting the JSON, use the handoff_to_script_agent tool.
Example for 2 content slides:
```json
[
{{"title": "Slide 1", "content": "Content for slide 1"}},
{{"title": "Slide 2", "content": "Content for slide 2"}},
{{"title": "Quiz", "content": "Quiz questions"}},
{{"title": "Assignment", "content": "Assignment details"}},
{{"title": "Thank You", "content": "Thank you message"}}
]
```""",
output_content_type=None,
reflect_on_tool_use=False
)
script_agent = AssistantAgent(
name="script_agent",
model_client=model_client,
handoffs=["feynman_agent"],
system_message=f"""
You are a Script Agent. Access the JSON array of {num_slides + 3} slides from the conversation history. Generate a narration script (1-2 sentences) for each of the {num_slides + 3} slides, summarizing its content in a natural, conversational tone as a speaker would, including occasional non-verbal words (e.g., "um," "you know," "like"). Output ONLY a JSON array wrapped in ```json ... ``` with exactly {num_slides + 3} strings, one script per slide, in the same order. Ensure the JSON is valid and complete. After outputting, use the handoff_to_feynman_agent tool. If scripts cannot be generated, retry once.
Example for 1 content slide:
```json
[
"So, this slide, um, covers the main topic in a fun way.",
"Alright, you know, answer these quiz questions.",
"Here's your, like, assignment to complete.",
"Thanks for, um, attending today!"
]
```""",
output_content_type=None,
reflect_on_tool_use=False
)
feynman_agent = AssistantAgent(
name="feynman_agent",
model_client=model_client,
handoffs=[],
system_message=f"""
You are Agent Feynman. Review the slides and scripts from the conversation history to ensure coherence, completeness, and that exactly {num_slides + 3} slides and {num_slides + 3} scripts are received. Output a confirmation message summarizing the number of slides and scripts received. If slides or scripts are missing, invalid, or do not match the expected count ({num_slides + 3}), report the issue clearly. Use 'TERMINATE' to signal completion.
Example: 'Received {num_slides + 3} slides and {num_slides + 3} scripts. Lecture is coherent. TERMINATE'
""")
swarm = Swarm(
participants=[research_agent, slide_agent, script_agent, feynman_agent],
termination_condition=HandoffTermination(target="user") | TextMentionTermination("TERMINATE")
)
progress = 0
label = "Research: in progress..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
initial_message = f"""
Lecture Title: {title}
Topic: {topic}
Additional Instructions: {instructions}
Audience: {lecture_type}
Number of Content Slides: {num_slides}
Please start by researching the topic.
"""
logger.info("Starting lecture generation for topic: %s", topic)
slides = None
scripts = None
max_slide_retries = 2
slide_retry_count = 0
while slide_retry_count <= max_slide_retries:
try:
logger.info("Research Agent starting (Slide attempt %d/%d)", slide_retry_count + 1, max_slide_retries)
task_result = await Console(swarm.run_stream(task=initial_message))
logger.info("Swarm execution completed")
script_retry_count = 0
max_script_retries = 2
for message in task_result.messages:
source = getattr(message, 'source', getattr(message, 'sender', None))
logger.debug("Processing message from %s, type: %s, content: %s", source, type(message), message.to_text() if hasattr(message, 'to_text') else str(message))
if isinstance(message, HandoffMessage):
logger.info("Handoff from %s to %s, Context: %s", source, message.target, message.context)
if source == "research_agent" and message.target == "slide_agent":
progress = 25
label = "Slides: generating..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
elif source == "slide_agent" and message.target == "script_agent":
if slides is None:
logger.warning("Slide Agent handoff without slides JSON")
extracted_json = extract_json_from_message(message)
if extracted_json:
slides = extracted_json
logger.info("Extracted slides JSON from HandoffMessage context: %s", slides)
if slides is None:
label = "Slides: failed to generate..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
progress = 50
label = "Scripts: generating..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
elif source == "script_agent" and message.target == "feynman_agent":
if scripts is None:
logger.warning("Script Agent handoff without scripts JSON")
extracted_json = extract_json_from_message(message)
if extracted_json:
scripts = extracted_json
logger.info("Extracted scripts JSON from HandoffMessage context: %s", scripts)
progress = 75
label = "Review: in progress..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
elif source == "research_agent" and isinstance(message, TextMessage) and "handoff_to_slide_agent" in message.content:
logger.info("Research Agent completed research")
progress = 25
label = "Slides: generating..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
elif source == "slide_agent" and isinstance(message, (TextMessage, StructuredMessage)):
logger.debug("Slide Agent message received: %s", message.to_text())
extracted_json = extract_json_from_message(message)
if extracted_json:
slides = extracted_json
logger.info("Slide Agent generated %d slides: %s", len(slides), slides)
expected_slide_count = num_slides + 3
if len(slides) != expected_slide_count:
logger.warning("Generated %d slides, expected %d. Retrying...", len(slides), expected_slide_count)
slide_retry_count += 1
if slide_retry_count <= max_slide_retries:
# Re-prompt slide agent
retry_message = TextMessage(
content=f"Please generate EXACTLY {num_slides} content slides plus 1 quiz, 1 assignment, and 1 thank-you slide (total {num_slides + 3}).",
source="user",
recipient="slide_agent"
)
task_result.messages.append(retry_message)
slides = None
continue
else:
yield html_with_progress(f"Failed to generate correct number of slides after {max_slide_retries} retries. Expected {expected_slide_count}, got {len(slides)}.", progress)
return
# Save slide content to individual files
for i, slide in enumerate(slides):
content_file = os.path.join(temp_dir, f"slide_{i+1}_content.txt")
try:
with open(content_file, "w", encoding="utf-8") as f:
f.write(slide["content"])
logger.info("Saved slide content to %s: %s", content_file, slide["content"])
except Exception as e:
logger.error("Error saving slide content to %s: %s", content_file, str(e))
progress = 50
label = "Scripts: generating..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
else:
logger.warning("No JSON extracted from slide_agent message: %s", message.to_text())
elif source == "script_agent" and isinstance(message, (TextMessage, StructuredMessage)):
logger.debug("Script Agent message received: %s", message.to_text())
extracted_json = extract_json_from_message(message)
if extracted_json:
scripts = extracted_json
logger.info("Script Agent generated scripts for %d slides: %s", len(scripts), scripts)
# Save raw scripts to individual files
for i, script in enumerate(scripts):
script_file = os.path.join(temp_dir, f"slide_{i+1}_raw_script.txt")
try:
with open(script_file, "w", encoding="utf-8") as f:
f.write(script)
logger.info("Saved raw script to %s: %s", script_file, script)
except Exception as e:
logger.error("Error saving raw script to %s: %s", script_file, str(e))
progress = 75
label = "Scripts generated and saved. Reviewing..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
else:
logger.warning("No JSON extracted from script_agent message: %s", message.to_text())
if script_retry_count < max_script_retries:
script_retry_count += 1
logger.info("Retrying script generation (attempt %d/%d)", script_retry_count, max_script_retries)
# Re-prompt script agent
retry_message = TextMessage(
content="Please generate scripts for the slides as per your instructions.",
source="user",
recipient="script_agent"
)
task_result.messages.append(retry_message)
continue
elif source == "feynman_agent" and isinstance(message, TextMessage) and "TERMINATE" in message.content:
logger.info("Feynman Agent completed lecture review: %s", message.content)
progress = 90
label = "Lecture materials ready. Generating audio..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
logger.info("Slides state: %s", "Generated" if slides else "None")
logger.info("Scripts state: %s", "Generated" if scripts else "None")
if not slides or not scripts:
error_message = f"Failed to generate {'slides and scripts' if not slides and not scripts else 'slides' if not slides else 'scripts'}"
error_message += f". Received {len(slides) if slides else 0} slides and {len(scripts) if scripts else 0} scripts."
logger.error("%s", error_message)
yield html_with_progress(error_message, progress)
return
expected_slide_count = num_slides + 3
if len(slides) != expected_slide_count:
logger.error("Final validation failed: Expected %d slides, received %d", expected_slide_count, len(slides))
yield html_with_progress(f"Incorrect number of slides. Expected {expected_slide_count}, got {len(slides)}.", progress)
return
if not isinstance(scripts, list) or not all(isinstance(s, str) for s in scripts):
logger.error("Scripts are not a list of strings: %s", scripts)
yield html_with_progress("Invalid script format. Scripts must be a list of strings.", progress)
return
if len(scripts) != expected_slide_count:
logger.error("Mismatch between number of slides (%d) and scripts (%d)", len(slides), len(scripts))
yield html_with_progress(f"Mismatch in slides and scripts. Generated {len(slides)} slides but {len(scripts)} scripts.", progress)
return
# Generate PDF from slides
pdf_file = generate_slides_pdf(slides, temp_dir)
audio_files = []
speaker_audio = speaker_audio if speaker_audio else "feynman.mp3"
validated_speaker_wav = await validate_and_convert_speaker_audio(speaker_audio, temp_dir)
if not validated_speaker_wav:
logger.error("Invalid speaker audio after conversion, skipping TTS")
yield html_with_progress("Invalid speaker audio. Please upload a valid MP3 or WAV file.", progress)
return
# Process audio generation sequentially with retries
for i, script in enumerate(scripts):
cleaned_script = clean_script_text(script)
audio_file = os.path.join(temp_dir, f"slide_{i+1}.wav")
script_file = os.path.join(temp_dir, f"slide_{i+1}_script.txt")
# Save cleaned script
try:
with open(script_file, "w", encoding="utf-8") as f:
f.write(cleaned_script or "")
logger.info("Saved cleaned script to %s: %s", script_file, cleaned_script)
except Exception as e:
logger.error("Error saving cleaned script to %s: %s", script_file, str(e))
if not cleaned_script:
logger.error("Skipping audio for slide %d due to empty or invalid script", i + 1)
audio_files.append(None)
progress = 90 + ((i + 1) / len(scripts)) * 10
label = f"Generated audio for slide {i + 1}/{len(scripts)}..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
continue
max_retries = 2
for attempt in range(max_retries + 1):
try:
current_text = cleaned_script
if attempt > 0:
sentences = re.split(r"[.!?]+", cleaned_script)
sentences = [s.strip() for s in sentences if s.strip()][:2]
current_text = ". ".join(sentences) + "."
logger.info("Retry %d for slide %d with simplified text: %s", attempt, i + 1, current_text)
success = generate_xtts_audio(tts, current_text, validated_speaker_wav, audio_file)
if not success:
raise RuntimeError("TTS generation failed")
logger.info("Generated audio for slide %d: %s", i + 1, audio_file)
audio_files.append(audio_file)
progress = 90 + ((i + 1) / len(scripts)) * 10
label = f"Generated audio for slide {i + 1}/{len(scripts)}..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
break
except Exception as e:
logger.error("Error generating audio for slide %d (attempt %d): %s\n%s", i + 1, attempt, str(e), traceback.format_exc())
if attempt == max_retries:
logger.error("Max retries reached for slide %d, skipping", i + 1)
audio_files.append(None)
progress = 90 + ((i + 1) / len(scripts)) * 10
label = f"Generated audio for slide {i + 1}/{len(scripts)}..."
yield html_with_progress(label, progress)
await asyncio.sleep(0.1)
break
# Create ZIP file of all outputs
zip_path = create_outputs_zip(temp_dir, slides, audio_files, scripts)
# Prepare UI output
slides_info = json.dumps({"slides": [
{"title": slide["title"], "content": slide["content"]}
for slide in slides
], "audioFiles": audio_files})
html_output = f"""
<div id="lecture-container" style="height: 700px; border: 1px solid #ddd; border-radius: 8px; display: flex; flex-direction: column; justify-content: space-between;">
<div id="slide-content" style="flex: 1; overflow: auto;">
<div id="pdf-viewer"></div>
</div>
<div style="padding: 20px;">
<div id="progress-bar" style="width: 100%; height: 5px; background-color: #ddd; border-radius: 2px; margin-bottom: 10px;">
<div id="progress-fill" style="width: {(1/len(slides)*100)}%; height: 100%; background-color: #4CAF50; border-radius: 2px;"></div>
</div>
<div style="display: flex; justify-content: center; margin-bottom: 10px;">
<button onclick="prevSlide()" style="border-radius: 50%; width: 40px; height: 40px; margin: 0 5px; font-size: 1.2em; cursor: pointer;">⏮</button>
<button onclick="togglePlay()" style="border-radius: 50%; width: 40px; height: 40px; margin: 0 5px; font-size: 1.2em; cursor: pointer;">⏯</button>
<button onclick="nextSlide()" style="border-radius: 50%; width: 40px; height: 40px; margin: 0 5px; font-size: 1.2em; cursor: pointer;">⏭</button>
</div>
<p id="slide-counter" style="text-align: center;">Slide 1 of {len(slides)}</p>
</div>
</div>
<script>
const lectureData = {slides_info};
let currentSlide = 0;
const totalSlides = lectureData.slides.length;
const slideCounter = document.getElementById('slide-counter');
const progressFill = document.getElementById('progress-fill');
let audioElements = [];
let currentAudio = null;
for (let i = 0; i < totalSlides; i++) {{
if (lectureData.audioFiles && lectureData.audioFiles[i]) {{
const audio = new Audio('file://' + lectureData.audioFiles[i]);
audioElements.push(audio);
}} else {{
audioElements.push(null);
}}
}}
function updateSlide() {{
slideCounter.textContent = `Slide ${{currentSlide + 1}} of ${{totalSlides}}`;
progressFill.style.width = `${{(currentSlide + 1) / totalSlides * 100}}%`;
if (currentAudio) {{
currentAudio.pause();
currentAudio.currentTime = 0;
}}
if (audioElements[currentSlide]) {{
currentAudio = audioElements[currentSlide];
currentAudio.play().catch(e => console.error('Audio play failed:', e));
}} else {{
currentAudio = null;
}}
}}
function prevSlide() {{
if (currentSlide > 0) {{
currentSlide--;
updateSlide();
}}
}}
function nextSlide() {{
if (currentSlide < totalSlides - 1) {{
currentSlide++;
updateSlide();
}}
}}
function togglePlay() {{
if (!audioElements[currentSlide]) return;
if (currentAudio.paused) {{
currentAudio.play().catch(e => console.error('Audio play failed:', e));
}} else {{
currentAudio.pause();
}}
}}
audioElements.forEach((audio, index) => {{
if (audio) {{
audio.addEventListener('ended', () => {{
if (index < totalSlides - 1) {{
nextSlide();
}}
}});
}}
}});
</script>
"""
yield {
"pdf": pdf_file,
"html": html_output,
"zip": zip_path
}
return
except Exception as e:
logger.error("Error during lecture generation: %s\n%s", str(e), traceback.format_exc())
yield html_with_progress(f"Error during lecture generation: {str(e)}", progress)
return
# Gradio interface
with gr.Blocks(title="Agent Feynman") as demo:
gr.Markdown("# <center>Learn Anything With Professor AI Feynman</center>")
with gr.Row():
with gr.Column(scale=1):
with gr.Group():
title = gr.Textbox(label="Lecture Title", placeholder="e.g. Introduction to AI")
topic = gr.Textbox(label="Topic", placeholder="e.g. Artificial Intelligence")
instructions = gr.Textbox(label="Additional Instructions", placeholder="e.g. Focus on recent advancements")
lecture_type = gr.Dropdown(["Conference", "University", "High school"], label="Audience", value="University")
api_service = gr.Dropdown(
choices=[
"OpenAI-gpt-4o-2024-08-06",
"Anthropic-claude-3-sonnet-20240229",
"Google-gemini-1.5-flash",
"Ollama-llama3.2"
],
label="Model",
value="Google-gemini-1.5-flash"
)
api_key = gr.Textbox(label="Model Provider API Key", type="password", placeholder="Not required for Ollama")
serpapi_key = gr.Textbox(label="SerpApi Key", type="password", placeholder="Enter your SerpApi key")
num_slides = gr.Slider(1, 20, step=1, label="Number of Content Slides", value=3)
speaker_audio = gr.Audio(label="Speaker sample audio (MP3 or WAV)", type="filepath", elem_id="speaker-audio")
generate_btn = gr.Button("Generate Lecture")
with gr.Column(scale=2):
default_slide_html = """
<div style="display: flex; flex-direction: column; justify-content: center; align-items: center; height: 100%; min-height: 700px; padding: 20px; text-align: center; border: 1px solid #ddd; border-radius: 8px;">
<h2 style="font-style: italic; color: #555;">Waiting for lecture content...</h2>
<p style="margin-top: 10px; font-size: 16px;">Please Generate lecture content via the form on the left first before lecture begins</p>
</div>
"""
slide_display = gr.HTML(label="Lecture Slides", value=default_slide_html)
pdf_display = gr.PDF(label="Lecture Slides PDF")
outputs_zip = gr.File(label="Download Outputs (PDF, Audio, Scripts)")
speaker_audio.change(
fn=update_audio_preview,
inputs=speaker_audio,
outputs=speaker_audio
)
generate_btn.click(
fn=on_generate,
inputs=[api_service, api_key, serpapi_key, title, topic, instructions, lecture_type, speaker_audio, num_slides],
outputs=[slide_display, pdf_display, outputs_zip]
)
if __name__ == "__main__":
demo.launch()