Update app.py
Browse files
app.py
CHANGED
|
@@ -20,8 +20,21 @@ def retrieve_embedding(user_query):
|
|
| 20 |
headers = {
|
| 21 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
| 22 |
}
|
|
|
|
|
|
|
| 23 |
response = requests.post(f"{GROQ_API_URL}/embedding", json=payload, headers=headers)
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
# Function to perform response generation using FLAN-T5 via Groq API
|
| 27 |
def generate_response(context):
|
|
@@ -32,8 +45,21 @@ def generate_response(context):
|
|
| 32 |
headers = {
|
| 33 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
| 34 |
}
|
|
|
|
|
|
|
| 35 |
response = requests.post(f"{GROQ_API_URL}/generate", json=payload, headers=headers)
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
# Load the counseling conversations dataset
|
| 39 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
|
@@ -43,8 +69,9 @@ dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
|
| 43 |
def embed_dataset(_dataset):
|
| 44 |
embeddings = []
|
| 45 |
for entry in _dataset:
|
| 46 |
-
embedding = retrieve_embedding(entry["
|
| 47 |
-
|
|
|
|
| 48 |
return embeddings
|
| 49 |
|
| 50 |
dataset_embeddings = embed_dataset(dataset)
|
|
@@ -52,12 +79,16 @@ dataset_embeddings = embed_dataset(dataset)
|
|
| 52 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
| 53 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
| 54 |
query_embedding = retrieve_embedding(user_query)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|
| 56 |
top_indices = np.argsort(cos_scores)[-k:][::-1]
|
| 57 |
|
| 58 |
retrieved_responses = []
|
| 59 |
for idx in top_indices:
|
| 60 |
-
retrieved_responses.append(dataset[idx]["
|
| 61 |
return retrieved_responses
|
| 62 |
|
| 63 |
# Streamlit app UI
|
|
@@ -71,11 +102,17 @@ if user_query:
|
|
| 71 |
# Retrieve similar responses from the dataset
|
| 72 |
retrieved_responses = retrieve_response(user_query, dataset, dataset_embeddings)
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
headers = {
|
| 21 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
| 22 |
}
|
| 23 |
+
|
| 24 |
+
# Make the API request
|
| 25 |
response = requests.post(f"{GROQ_API_URL}/embedding", json=payload, headers=headers)
|
| 26 |
+
|
| 27 |
+
# Check for errors and return the embedding if available
|
| 28 |
+
if response.status_code == 200:
|
| 29 |
+
json_response = response.json()
|
| 30 |
+
if "embedding" in json_response:
|
| 31 |
+
return json_response["embedding"]
|
| 32 |
+
else:
|
| 33 |
+
st.error("The response from the API did not contain an embedding. Please check the API.")
|
| 34 |
+
return None
|
| 35 |
+
else:
|
| 36 |
+
st.error(f"Failed to retrieve embedding. Status code: {response.status_code}")
|
| 37 |
+
return None
|
| 38 |
|
| 39 |
# Function to perform response generation using FLAN-T5 via Groq API
|
| 40 |
def generate_response(context):
|
|
|
|
| 45 |
headers = {
|
| 46 |
"Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}"
|
| 47 |
}
|
| 48 |
+
|
| 49 |
+
# Make the API request
|
| 50 |
response = requests.post(f"{GROQ_API_URL}/generate", json=payload, headers=headers)
|
| 51 |
+
|
| 52 |
+
# Check for errors and return the response text if available
|
| 53 |
+
if response.status_code == 200:
|
| 54 |
+
json_response = response.json()
|
| 55 |
+
if "text" in json_response:
|
| 56 |
+
return json_response["text"]
|
| 57 |
+
else:
|
| 58 |
+
st.error("The response from the API did not contain a 'text' key.")
|
| 59 |
+
return None
|
| 60 |
+
else:
|
| 61 |
+
st.error(f"Failed to generate response. Status code: {response.status_code}")
|
| 62 |
+
return None
|
| 63 |
|
| 64 |
# Load the counseling conversations dataset
|
| 65 |
dataset = load_dataset("Amod/mental_health_counseling_conversations")["train"]
|
|
|
|
| 69 |
def embed_dataset(_dataset):
|
| 70 |
embeddings = []
|
| 71 |
for entry in _dataset:
|
| 72 |
+
embedding = retrieve_embedding(entry["response"])
|
| 73 |
+
if embedding is not None:
|
| 74 |
+
embeddings.append(embedding)
|
| 75 |
return embeddings
|
| 76 |
|
| 77 |
dataset_embeddings = embed_dataset(dataset)
|
|
|
|
| 79 |
# Function to retrieve closest responses from the dataset using cosine similarity
|
| 80 |
def retrieve_response(user_query, dataset, dataset_embeddings, k=5):
|
| 81 |
query_embedding = retrieve_embedding(user_query)
|
| 82 |
+
if query_embedding is None:
|
| 83 |
+
st.error("Could not retrieve an embedding for the query.")
|
| 84 |
+
return []
|
| 85 |
+
|
| 86 |
cos_scores = cosine_similarity([query_embedding], dataset_embeddings)[0]
|
| 87 |
top_indices = np.argsort(cos_scores)[-k:][::-1]
|
| 88 |
|
| 89 |
retrieved_responses = []
|
| 90 |
for idx in top_indices:
|
| 91 |
+
retrieved_responses.append(dataset[idx]["response"])
|
| 92 |
return retrieved_responses
|
| 93 |
|
| 94 |
# Streamlit app UI
|
|
|
|
| 102 |
# Retrieve similar responses from the dataset
|
| 103 |
retrieved_responses = retrieve_response(user_query, dataset, dataset_embeddings)
|
| 104 |
|
| 105 |
+
if retrieved_responses:
|
| 106 |
+
# Join retrieved responses to create a supportive context
|
| 107 |
+
context = " ".join(retrieved_responses)
|
| 108 |
+
|
| 109 |
+
# Generate a supportive response using FLAN-T5 via Groq API
|
| 110 |
+
supportive_response = generate_response(context)
|
| 111 |
+
|
| 112 |
+
if supportive_response:
|
| 113 |
+
st.write("Here's some advice or support for you:")
|
| 114 |
+
st.write(supportive_response)
|
| 115 |
+
else:
|
| 116 |
+
st.write("Sorry, I couldn't generate a response at the moment.")
|
| 117 |
+
else:
|
| 118 |
+
st.write("Sorry, I couldn't find any relevant responses.")
|