Spaces:
Build error
Build error
| import streamlit as st | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| # Load the model and tokenizer | |
| def load_model(): | |
| tokenizer = AutoTokenizer.from_pretrained("Izza-shahzad-13/recipe-generator") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("Izza-shahzad-13/recipe-generator") | |
| return tokenizer, model | |
| tokenizer, model = load_model() | |
| # Streamlit App | |
| st.title("π³ Recipe Generator App") | |
| st.markdown("Generate delicious recipes by entering the ingredients you have!") | |
| # Input ingredients | |
| ingredients = st.text_area( | |
| "Enter ingredients (comma-separated):", | |
| placeholder="e.g., chicken, onion, garlic, tomatoes", | |
| ) | |
| # Generate recipe button | |
| if st.button("Generate Recipe"): | |
| if ingredients: | |
| with st.spinner("Generating your recipe... π²"): | |
| # Prepare input for the model | |
| inputs = tokenizer(f"Ingredients: {ingredients}", return_tensors="pt") | |
| # Generate recipe | |
| outputs = model.generate(inputs["input_ids"], max_length=150, num_beams=5, early_stopping=True) | |
| recipe = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Display the recipe | |
| st.success("Here's your recipe:") | |
| st.write(recipe) | |
| else: | |
| st.warning("Please enter some ingredients!") | |
| # Footer | |
| st.markdown("---") | |
| st.markdown("Built with β€οΈ using Streamlit and Hugging Face π€") | |