Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -2,13 +2,13 @@ import os
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import logging
|
|
|
|
| 5 |
from pydub import AudioSegment
|
| 6 |
from pydub.exceptions import CouldntDecodeError
|
| 7 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 8 |
from pathlib import Path
|
| 9 |
from tempfile import NamedTemporaryFile
|
| 10 |
from datetime import timedelta
|
| 11 |
-
import time
|
| 12 |
|
| 13 |
# Setup logging
|
| 14 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
@@ -21,6 +21,16 @@ DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
|
| 21 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 22 |
SUPPORTED_FORMATS = {".wav", ".mp3", ".m4a"}
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
# Initialize model and pipeline
|
| 25 |
def initialize_pipeline():
|
| 26 |
try:
|
|
@@ -46,38 +56,43 @@ def initialize_pipeline():
|
|
| 46 |
# Convert audio if needed
|
| 47 |
def convert_to_wav(audio_path: str) -> str:
|
| 48 |
try:
|
|
|
|
|
|
|
| 49 |
ext = str(Path(audio_path).suffix).lower()
|
| 50 |
if ext not in SUPPORTED_FORMATS:
|
| 51 |
raise ValueError(f"Unsupported audio format: {ext}. Supported formats: {', '.join(SUPPORTED_FORMATS)}")
|
| 52 |
if ext != ".wav":
|
|
|
|
| 53 |
audio = AudioSegment.from_file(audio_path)
|
| 54 |
wav_path = str(Path(audio_path).with_suffix(".converted.wav"))
|
| 55 |
audio.export(wav_path, format="wav")
|
|
|
|
| 56 |
return wav_path
|
| 57 |
return audio_path
|
| 58 |
except CouldntDecodeError:
|
| 59 |
-
logger.error(f"Failed to decode
|
| 60 |
-
raise ValueError("
|
| 61 |
except OSError as e:
|
| 62 |
logger.error(f"OS error during audio conversion: {str(e)}")
|
| 63 |
-
raise ValueError("Failed to process
|
| 64 |
except Exception as e:
|
| 65 |
-
logger.error(f"Unexpected error during
|
| 66 |
-
raise ValueError("An unexpected error occurred while converting the
|
| 67 |
|
| 68 |
# Split audio into chunks
|
| 69 |
def split_audio(audio_path: str) -> list:
|
| 70 |
try:
|
| 71 |
audio = AudioSegment.from_file(audio_path)
|
| 72 |
if len(audio) == 0:
|
| 73 |
-
raise ValueError("
|
|
|
|
| 74 |
return [audio[i:i + CHUNK_DURATION_MS] for i in range(0, len(audio), CHUNK_DURATION_MS)]
|
| 75 |
except CouldntDecodeError:
|
| 76 |
logger.error(f"Failed to decode audio for splitting: {audio_path}")
|
| 77 |
-
raise ValueError("
|
| 78 |
except Exception as e:
|
| 79 |
logger.error(f"Failed to split audio: {str(e)}")
|
| 80 |
-
raise ValueError(f"Failed to process
|
| 81 |
|
| 82 |
# Helper to compute chunk start time
|
| 83 |
def get_chunk_time(index: int, chunk_duration_ms: int) -> str:
|
|
@@ -89,7 +104,7 @@ def transcribe(audio_path: str, include_timestamps: bool = False, progress=gr.Pr
|
|
| 89 |
try:
|
| 90 |
if not audio_path or not os.path.exists(audio_path):
|
| 91 |
logger.warning("Invalid or missing audio file path.")
|
| 92 |
-
return "Please upload a valid
|
| 93 |
|
| 94 |
# Convert to WAV if needed
|
| 95 |
wav_path = convert_to_wav(audio_path)
|
|
@@ -110,7 +125,7 @@ def transcribe(audio_path: str, include_timestamps: bool = False, progress=gr.Pr
|
|
| 110 |
result = PIPELINE(temp_file.name,
|
| 111 |
generate_kwargs={"task": "transcribe", "language": "sv"})
|
| 112 |
text = result["text"].strip()
|
| 113 |
-
if text:
|
| 114 |
transcript.append(text)
|
| 115 |
if include_timestamps:
|
| 116 |
timestamp = get_chunk_time(i, CHUNK_DURATION_MS)
|
|
@@ -168,7 +183,7 @@ def transcribe(audio_path: str, include_timestamps: bool = False, progress=gr.Pr
|
|
| 168 |
return str(e), None
|
| 169 |
except Exception as e:
|
| 170 |
logger.error(f"Unexpected error during transcription: {str(e)}")
|
| 171 |
-
return f"An unexpected error occurred: {str(e)}. Please
|
| 172 |
|
| 173 |
# Initialize pipeline globally
|
| 174 |
try:
|
|
@@ -181,11 +196,11 @@ except RuntimeError as e:
|
|
| 181 |
def create_interface():
|
| 182 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 183 |
gr.Markdown("# Swedish Whisper Transcriber")
|
| 184 |
-
gr.Markdown("Upload
|
| 185 |
|
| 186 |
with gr.Row():
|
| 187 |
with gr.Column():
|
| 188 |
-
audio_input = gr.Audio(type="filepath", label="Upload Audio")
|
| 189 |
timestamp_toggle = gr.Checkbox(label="Include Timestamps in Download", value=False)
|
| 190 |
transcribe_btn = gr.Button("Transcribe")
|
| 191 |
|
|
@@ -203,6 +218,9 @@ def create_interface():
|
|
| 203 |
|
| 204 |
if __name__ == "__main__":
|
| 205 |
try:
|
|
|
|
|
|
|
|
|
|
| 206 |
create_interface().launch()
|
| 207 |
except Exception as e:
|
| 208 |
logger.critical(f"Failed to launch Gradio interface: {str(e)}")
|
|
|
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
import logging
|
| 5 |
+
import subprocess
|
| 6 |
from pydub import AudioSegment
|
| 7 |
from pydub.exceptions import CouldntDecodeError
|
| 8 |
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
|
| 9 |
from pathlib import Path
|
| 10 |
from tempfile import NamedTemporaryFile
|
| 11 |
from datetime import timedelta
|
|
|
|
| 12 |
|
| 13 |
# Setup logging
|
| 14 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
| 21 |
TORCH_DTYPE = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 22 |
SUPPORTED_FORMATS = {".wav", ".mp3", ".m4a"}
|
| 23 |
|
| 24 |
+
# Check for ffmpeg availability
|
| 25 |
+
def check_ffmpeg():
|
| 26 |
+
try:
|
| 27 |
+
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
|
| 28 |
+
logger.info("ffmpeg is installed and accessible.")
|
| 29 |
+
return True
|
| 30 |
+
except (subprocess.CalledProcessError, FileNotFoundError):
|
| 31 |
+
logger.error("ffmpeg is not installed or not found in PATH.")
|
| 32 |
+
return False
|
| 33 |
+
|
| 34 |
# Initialize model and pipeline
|
| 35 |
def initialize_pipeline():
|
| 36 |
try:
|
|
|
|
| 56 |
# Convert audio if needed
|
| 57 |
def convert_to_wav(audio_path: str) -> str:
|
| 58 |
try:
|
| 59 |
+
if not check_ffmpeg():
|
| 60 |
+
raise RuntimeError("ffmpeg is required to process .m4a files. Please install ffmpeg and ensure it's in your PATH.")
|
| 61 |
ext = str(Path(audio_path).suffix).lower()
|
| 62 |
if ext not in SUPPORTED_FORMATS:
|
| 63 |
raise ValueError(f"Unsupported audio format: {ext}. Supported formats: {', '.join(SUPPORTED_FORMATS)}")
|
| 64 |
if ext != ".wav":
|
| 65 |
+
logger.info(f"Converting {ext} file to WAV: {audio_path}")
|
| 66 |
audio = AudioSegment.from_file(audio_path)
|
| 67 |
wav_path = str(Path(audio_path).with_suffix(".converted.wav"))
|
| 68 |
audio.export(wav_path, format="wav")
|
| 69 |
+
logger.info(f"Conversion successful: {wav_path}")
|
| 70 |
return wav_path
|
| 71 |
return audio_path
|
| 72 |
except CouldntDecodeError:
|
| 73 |
+
logger.error(f"Failed to decode .m4a file: {audio_path}")
|
| 74 |
+
raise ValueError("The .m4a file is corrupted or not supported. Ensure it's a valid iPhone recording and ffmpeg is installed.")
|
| 75 |
except OSError as e:
|
| 76 |
logger.error(f"OS error during audio conversion: {str(e)}")
|
| 77 |
+
raise ValueError("Failed to process the .m4a file due to a system error. Check file permissions or disk space.")
|
| 78 |
except Exception as e:
|
| 79 |
+
logger.error(f"Unexpected error during .m4a conversion: {str(e)}")
|
| 80 |
+
raise ValueError(f"An unexpected error occurred while converting the .m4a file: {str(e)}")
|
| 81 |
|
| 82 |
# Split audio into chunks
|
| 83 |
def split_audio(audio_path: str) -> list:
|
| 84 |
try:
|
| 85 |
audio = AudioSegment.from_file(audio_path)
|
| 86 |
if len(audio) == 0:
|
| 87 |
+
raise ValueError("The .m4a file is empty or invalid.")
|
| 88 |
+
logger.info(f"Splitting audio into {CHUNK_DURATION_MS/1000}-second chunks: {audio_path}")
|
| 89 |
return [audio[i:i + CHUNK_DURATION_MS] for i in range(0, len(audio), CHUNK_DURATION_MS)]
|
| 90 |
except CouldntDecodeError:
|
| 91 |
logger.error(f"Failed to decode audio for splitting: {audio_path}")
|
| 92 |
+
raise ValueError("The .m4a file is corrupted or not supported. Ensure it's a valid iPhone recording.")
|
| 93 |
except Exception as e:
|
| 94 |
logger.error(f"Failed to split audio: {str(e)}")
|
| 95 |
+
raise ValueError(f"Failed to process the .m4a file: {str(e)}")
|
| 96 |
|
| 97 |
# Helper to compute chunk start time
|
| 98 |
def get_chunk_time(index: int, chunk_duration_ms: int) -> str:
|
|
|
|
| 104 |
try:
|
| 105 |
if not audio_path or not os.path.exists(audio_path):
|
| 106 |
logger.warning("Invalid or missing audio file path.")
|
| 107 |
+
return "Please upload a valid .m4a file.", None
|
| 108 |
|
| 109 |
# Convert to WAV if needed
|
| 110 |
wav_path = convert_to_wav(audio_path)
|
|
|
|
| 125 |
result = PIPELINE(temp_file.name,
|
| 126 |
generate_kwargs={"task": "transcribe", "language": "sv"})
|
| 127 |
text = result["text"].strip()
|
| 128 |
+
if text:
|
| 129 |
transcript.append(text)
|
| 130 |
if include_timestamps:
|
| 131 |
timestamp = get_chunk_time(i, CHUNK_DURATION_MS)
|
|
|
|
| 183 |
return str(e), None
|
| 184 |
except Exception as e:
|
| 185 |
logger.error(f"Unexpected error during transcription: {str(e)}")
|
| 186 |
+
return f"An unexpected error occurred while processing the .m4a file: {str(e)}. Please ensure the file is a valid iPhone recording and try again.", None
|
| 187 |
|
| 188 |
# Initialize pipeline globally
|
| 189 |
try:
|
|
|
|
| 196 |
def create_interface():
|
| 197 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 198 |
gr.Markdown("# Swedish Whisper Transcriber")
|
| 199 |
+
gr.Markdown("Upload an .m4a file from your iPhone for real-time Swedish speech transcription.")
|
| 200 |
|
| 201 |
with gr.Row():
|
| 202 |
with gr.Column():
|
| 203 |
+
audio_input = gr.Audio(type="filepath", label="Upload .m4a Audio")
|
| 204 |
timestamp_toggle = gr.Checkbox(label="Include Timestamps in Download", value=False)
|
| 205 |
transcribe_btn = gr.Button("Transcribe")
|
| 206 |
|
|
|
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
try:
|
| 221 |
+
if not check_ffmpeg():
|
| 222 |
+
print("Error: ffmpeg is required to process .m4a files. Please install ffmpeg and ensure it's in your PATH.")
|
| 223 |
+
exit(1)
|
| 224 |
create_interface().launch()
|
| 225 |
except Exception as e:
|
| 226 |
logger.critical(f"Failed to launch Gradio interface: {str(e)}")
|