Spaces:
Sleeping
Sleeping
Deploying SHL chatbot to Hugging Face Spaces
Browse files- .devcontainer/devcontainer.json +33 -0
- .gitattributes +0 -0
- .gitignore +0 -0
- README.md +2 -13
- Web_Scraper.py +121 -0
- all-MiniLM-L6-v2/.gitattributes +28 -0
- all-MiniLM-L6-v2/1_Pooling/config.json +7 -0
- all-MiniLM-L6-v2/README.md +173 -0
- all-MiniLM-L6-v2/config.json +24 -0
- all-MiniLM-L6-v2/config_sentence_transformers.json +7 -0
- all-MiniLM-L6-v2/data_config.json +1452 -0
- all-MiniLM-L6-v2/model.safetensors +3 -0
- all-MiniLM-L6-v2/modules.json +20 -0
- all-MiniLM-L6-v2/onnx/model.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_O1.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_O2.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_O3.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_O4.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_qint8_arm64.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_qint8_avx512.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_qint8_avx512_vnni.onnx +3 -0
- all-MiniLM-L6-v2/onnx/model_quint8_avx2.onnx +3 -0
- all-MiniLM-L6-v2/openvino/openvino_model.bin +3 -0
- all-MiniLM-L6-v2/openvino/openvino_model.xml +0 -0
- all-MiniLM-L6-v2/openvino/openvino_model_qint8_quantized.bin +3 -0
- all-MiniLM-L6-v2/openvino/openvino_model_qint8_quantized.xml +0 -0
- all-MiniLM-L6-v2/pytorch_model.bin +3 -0
- all-MiniLM-L6-v2/rust_model.ot +3 -0
- all-MiniLM-L6-v2/sentence_bert_config.json +4 -0
- all-MiniLM-L6-v2/special_tokens_map.json +1 -0
- all-MiniLM-L6-v2/tf_model.h5 +3 -0
- all-MiniLM-L6-v2/tokenizer.json +0 -0
- all-MiniLM-L6-v2/tokenizer_config.json +1 -0
- all-MiniLM-L6-v2/train_script.py +344 -0
- all-MiniLM-L6-v2/vocab.txt +0 -0
- endpoint.py +231 -0
- main.py +199 -0
- requirements.txt +12 -0
- shl_assessments.csv +101 -0
- storage/default__vector_store.json +0 -0
- storage/docstore.json +0 -0
- storage/graph_store.json +1 -0
- storage/image__vector_store.json +1 -0
- storage/index_store.json +1 -0
.devcontainer/devcontainer.json
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "Python 3",
|
| 3 |
+
// Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
|
| 4 |
+
"image": "mcr.microsoft.com/devcontainers/python:1-3.11-bullseye",
|
| 5 |
+
"customizations": {
|
| 6 |
+
"codespaces": {
|
| 7 |
+
"openFiles": [
|
| 8 |
+
"README.md",
|
| 9 |
+
"main.py"
|
| 10 |
+
]
|
| 11 |
+
},
|
| 12 |
+
"vscode": {
|
| 13 |
+
"settings": {},
|
| 14 |
+
"extensions": [
|
| 15 |
+
"ms-python.python",
|
| 16 |
+
"ms-python.vscode-pylance"
|
| 17 |
+
]
|
| 18 |
+
}
|
| 19 |
+
},
|
| 20 |
+
"updateContentCommand": "[ -f packages.txt ] && sudo apt update && sudo apt upgrade -y && sudo xargs apt install -y <packages.txt; [ -f requirements.txt ] && pip3 install --user -r requirements.txt; pip3 install --user streamlit; echo '✅ Packages installed and Requirements met'",
|
| 21 |
+
"postAttachCommand": {
|
| 22 |
+
"server": "streamlit run main.py --server.enableCORS false --server.enableXsrfProtection false"
|
| 23 |
+
},
|
| 24 |
+
"portsAttributes": {
|
| 25 |
+
"8501": {
|
| 26 |
+
"label": "Application",
|
| 27 |
+
"onAutoForward": "openPreview"
|
| 28 |
+
}
|
| 29 |
+
},
|
| 30 |
+
"forwardPorts": [
|
| 31 |
+
8501
|
| 32 |
+
]
|
| 33 |
+
}
|
.gitattributes
CHANGED
|
Binary files a/.gitattributes and b/.gitattributes differ
|
|
|
.gitignore
ADDED
|
Binary file (196 Bytes). View file
|
|
|
README.md
CHANGED
|
@@ -1,13 +1,2 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
emoji: 👁
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: yellow
|
| 6 |
-
sdk: streamlit
|
| 7 |
-
sdk_version: 1.44.1
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: mit
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
+
This is a prototype chatbot.
|
| 2 |
+
To run it you need to create .env file with your GROQ_API_KEY and OPEN_API_KEY
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Web_Scraper.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from selenium import webdriver
|
| 2 |
+
from selenium.webdriver.chrome.service import Service
|
| 3 |
+
from selenium.webdriver.chrome.options import Options
|
| 4 |
+
from selenium.webdriver.common.by import By
|
| 5 |
+
from selenium.webdriver.support.ui import WebDriverWait
|
| 6 |
+
from selenium.webdriver.support import expected_conditions as EC
|
| 7 |
+
from selenium.common.exceptions import TimeoutException, NoSuchElementException
|
| 8 |
+
from webdriver_manager.chrome import ChromeDriverManager
|
| 9 |
+
import pandas as pd
|
| 10 |
+
import time
|
| 11 |
+
from urllib.parse import urljoin
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def scrape_shl_products():
|
| 15 |
+
# Configure Chrome options
|
| 16 |
+
chrome_options = Options()
|
| 17 |
+
chrome_options.add_argument("--headless") # Optional: Run in background
|
| 18 |
+
chrome_options.add_argument("--disable-blink-features=AutomationControlled")
|
| 19 |
+
chrome_options.add_argument(
|
| 20 |
+
"user-agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
# Set up driver
|
| 24 |
+
service = Service(ChromeDriverManager().install())
|
| 25 |
+
driver = webdriver.Chrome(service=service, options=chrome_options)
|
| 26 |
+
|
| 27 |
+
base_url = "https://www.shl.com"
|
| 28 |
+
catalog_url = "https://www.shl.com/solutions/products/product-catalog/"
|
| 29 |
+
|
| 30 |
+
try:
|
| 31 |
+
print("Loading SHL product catalog...")
|
| 32 |
+
driver.get(catalog_url)
|
| 33 |
+
|
| 34 |
+
# Wait for products to load
|
| 35 |
+
WebDriverWait(driver, 15).until(
|
| 36 |
+
EC.presence_of_element_located((By.CSS_SELECTOR, ".product-card"))
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Scroll to load all products
|
| 40 |
+
print("Scrolling to load all products...")
|
| 41 |
+
last_height = driver.execute_script("return document.body.scrollHeight")
|
| 42 |
+
while True:
|
| 43 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
|
| 44 |
+
time.sleep(2)
|
| 45 |
+
new_height = driver.execute_script("return document.body.scrollHeight")
|
| 46 |
+
if new_height == last_height:
|
| 47 |
+
break
|
| 48 |
+
last_height = new_height
|
| 49 |
+
|
| 50 |
+
product_cards = driver.find_elements(By.CSS_SELECTOR, ".product-card")
|
| 51 |
+
print(f"Found {len(product_cards)} products.")
|
| 52 |
+
|
| 53 |
+
products = []
|
| 54 |
+
|
| 55 |
+
for card in product_cards:
|
| 56 |
+
try:
|
| 57 |
+
product = {
|
| 58 |
+
'Assessment Name': 'Not found',
|
| 59 |
+
'URL': 'Not found',
|
| 60 |
+
'Remote Testing Support': 'No',
|
| 61 |
+
'Adaptive/IRT Support': 'No',
|
| 62 |
+
'Duration': 'Not specified',
|
| 63 |
+
'Test Type': 'Not specified'
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
# Name
|
| 67 |
+
name_element = card.find_element(By.CSS_SELECTOR, ".product-card__title")
|
| 68 |
+
product['Assessment Name'] = name_element.text
|
| 69 |
+
|
| 70 |
+
# URL
|
| 71 |
+
link_element = card.find_element(By.CSS_SELECTOR, "a[href]")
|
| 72 |
+
product['URL'] = urljoin(base_url, link_element.get_attribute("href"))
|
| 73 |
+
|
| 74 |
+
# Metadata
|
| 75 |
+
meta_items = card.find_elements(By.CSS_SELECTOR, ".product-card__meta-item")
|
| 76 |
+
for item in meta_items:
|
| 77 |
+
try:
|
| 78 |
+
label = item.find_element(By.CSS_SELECTOR, ".product-card__meta-label").text.lower()
|
| 79 |
+
value = item.find_element(By.CSS_SELECTOR, ".product-card__meta-value").text
|
| 80 |
+
|
| 81 |
+
if 'remote' in label:
|
| 82 |
+
product['Remote Testing Support'] = 'Yes' if 'yes' in value.lower() else 'No'
|
| 83 |
+
elif 'adaptive' in label or 'irt' in label:
|
| 84 |
+
product['Adaptive/IRT Support'] = 'Yes' if 'yes' in value.lower() else 'No'
|
| 85 |
+
elif 'duration' in label:
|
| 86 |
+
product['Duration'] = value
|
| 87 |
+
elif 'type' in label:
|
| 88 |
+
product['Test Type'] = value
|
| 89 |
+
except NoSuchElementException:
|
| 90 |
+
continue
|
| 91 |
+
|
| 92 |
+
products.append(product)
|
| 93 |
+
|
| 94 |
+
except Exception as e:
|
| 95 |
+
print(f"Error processing a product card: {str(e)}")
|
| 96 |
+
continue
|
| 97 |
+
|
| 98 |
+
# Save data
|
| 99 |
+
df = pd.DataFrame(products)
|
| 100 |
+
df.to_csv('shl_products.csv', index=False)
|
| 101 |
+
print("Data saved to shl_products.csv")
|
| 102 |
+
|
| 103 |
+
return df
|
| 104 |
+
|
| 105 |
+
except TimeoutException:
|
| 106 |
+
print("Timeout loading the page.")
|
| 107 |
+
except Exception as e:
|
| 108 |
+
print(f"An error occurred: {str(e)}")
|
| 109 |
+
finally:
|
| 110 |
+
driver.quit()
|
| 111 |
+
print("Browser closed.")
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
print("Starting SHL scraper...") # Debug print
|
| 116 |
+
df = scrape_shl_products()
|
| 117 |
+
if df is not None and not df.empty:
|
| 118 |
+
print("\nFirst 5 results:")
|
| 119 |
+
print(df.head())
|
| 120 |
+
else:
|
| 121 |
+
print("No data scraped.")
|
all-MiniLM-L6-v2/.gitattributes
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
model.safetensors filter=lfs diff=lfs merge=lfs -text
|
all-MiniLM-L6-v2/1_Pooling/config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
| 7 |
+
}
|
all-MiniLM-L6-v2/README.md
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
library_name: sentence-transformers
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- feature-extraction
|
| 8 |
+
- sentence-similarity
|
| 9 |
+
- transformers
|
| 10 |
+
datasets:
|
| 11 |
+
- s2orc
|
| 12 |
+
- flax-sentence-embeddings/stackexchange_xml
|
| 13 |
+
- ms_marco
|
| 14 |
+
- gooaq
|
| 15 |
+
- yahoo_answers_topics
|
| 16 |
+
- code_search_net
|
| 17 |
+
- search_qa
|
| 18 |
+
- eli5
|
| 19 |
+
- snli
|
| 20 |
+
- multi_nli
|
| 21 |
+
- wikihow
|
| 22 |
+
- natural_questions
|
| 23 |
+
- trivia_qa
|
| 24 |
+
- embedding-data/sentence-compression
|
| 25 |
+
- embedding-data/flickr30k-captions
|
| 26 |
+
- embedding-data/altlex
|
| 27 |
+
- embedding-data/simple-wiki
|
| 28 |
+
- embedding-data/QQP
|
| 29 |
+
- embedding-data/SPECTER
|
| 30 |
+
- embedding-data/PAQ_pairs
|
| 31 |
+
- embedding-data/WikiAnswers
|
| 32 |
+
pipeline_tag: sentence-similarity
|
| 33 |
+
---
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
# all-MiniLM-L6-v2
|
| 37 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
| 38 |
+
|
| 39 |
+
## Usage (Sentence-Transformers)
|
| 40 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 41 |
+
|
| 42 |
+
```
|
| 43 |
+
pip install -U sentence-transformers
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
Then you can use the model like this:
|
| 47 |
+
```python
|
| 48 |
+
from sentence_transformers import SentenceTransformer
|
| 49 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 50 |
+
|
| 51 |
+
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
| 52 |
+
embeddings = model.encode(sentences)
|
| 53 |
+
print(embeddings)
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
## Usage (HuggingFace Transformers)
|
| 57 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
from transformers import AutoTokenizer, AutoModel
|
| 61 |
+
import torch
|
| 62 |
+
import torch.nn.functional as F
|
| 63 |
+
|
| 64 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
| 65 |
+
def mean_pooling(model_output, attention_mask):
|
| 66 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
| 67 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 68 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Sentences we want sentence embeddings for
|
| 72 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
| 73 |
+
|
| 74 |
+
# Load model from HuggingFace Hub
|
| 75 |
+
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 76 |
+
model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
| 77 |
+
|
| 78 |
+
# Tokenize sentences
|
| 79 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
| 80 |
+
|
| 81 |
+
# Compute token embeddings
|
| 82 |
+
with torch.no_grad():
|
| 83 |
+
model_output = model(**encoded_input)
|
| 84 |
+
|
| 85 |
+
# Perform pooling
|
| 86 |
+
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
| 87 |
+
|
| 88 |
+
# Normalize embeddings
|
| 89 |
+
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
| 90 |
+
|
| 91 |
+
print("Sentence embeddings:")
|
| 92 |
+
print(sentence_embeddings)
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
------
|
| 96 |
+
|
| 97 |
+
## Background
|
| 98 |
+
|
| 99 |
+
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised
|
| 100 |
+
contrastive learning objective. We used the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model and fine-tuned in on a
|
| 101 |
+
1B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
|
| 102 |
+
|
| 103 |
+
We developed this model during the
|
| 104 |
+
[Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104),
|
| 105 |
+
organized by Hugging Face. We developed this model as part of the project:
|
| 106 |
+
[Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks.
|
| 107 |
+
|
| 108 |
+
## Intended uses
|
| 109 |
+
|
| 110 |
+
Our model is intended to be used as a sentence and short paragraph encoder. Given an input text, it outputs a vector which captures
|
| 111 |
+
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks.
|
| 112 |
+
|
| 113 |
+
By default, input text longer than 256 word pieces is truncated.
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
## Training procedure
|
| 117 |
+
|
| 118 |
+
### Pre-training
|
| 119 |
+
|
| 120 |
+
We use the pretrained [`nreimers/MiniLM-L6-H384-uncased`](https://huggingface.co/nreimers/MiniLM-L6-H384-uncased) model. Please refer to the model card for more detailed information about the pre-training procedure.
|
| 121 |
+
|
| 122 |
+
### Fine-tuning
|
| 123 |
+
|
| 124 |
+
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each possible sentence pairs from the batch.
|
| 125 |
+
We then apply the cross entropy loss by comparing with true pairs.
|
| 126 |
+
|
| 127 |
+
#### Hyper parameters
|
| 128 |
+
|
| 129 |
+
We trained our model on a TPU v3-8. We train the model during 100k steps using a batch size of 1024 (128 per TPU core).
|
| 130 |
+
We use a learning rate warm up of 500. The sequence length was limited to 128 tokens. We used the AdamW optimizer with
|
| 131 |
+
a 2e-5 learning rate. The full training script is accessible in this current repository: `train_script.py`.
|
| 132 |
+
|
| 133 |
+
#### Training data
|
| 134 |
+
|
| 135 |
+
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is above 1 billion sentences.
|
| 136 |
+
We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file.
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
| Dataset | Paper | Number of training tuples |
|
| 140 |
+
|--------------------------------------------------------|:----------------------------------------:|:--------------------------:|
|
| 141 |
+
| [Reddit comments (2015-2018)](https://github.com/PolyAI-LDN/conversational-datasets/tree/master/reddit) | [paper](https://arxiv.org/abs/1904.06472) | 726,484,430 |
|
| 142 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Abstracts) | [paper](https://aclanthology.org/2020.acl-main.447/) | 116,288,806 |
|
| 143 |
+
| [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs | [paper](https://doi.org/10.1145/2623330.2623677) | 77,427,422 |
|
| 144 |
+
| [PAQ](https://github.com/facebookresearch/PAQ) (Question, Answer) pairs | [paper](https://arxiv.org/abs/2102.07033) | 64,371,441 |
|
| 145 |
+
| [S2ORC](https://github.com/allenai/s2orc) Citation pairs (Titles) | [paper](https://aclanthology.org/2020.acl-main.447/) | 52,603,982 |
|
| 146 |
+
| [S2ORC](https://github.com/allenai/s2orc) (Title, Abstract) | [paper](https://aclanthology.org/2020.acl-main.447/) | 41,769,185 |
|
| 147 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs | - | 25,316,456 |
|
| 148 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title+Body, Answer) pairs | - | 21,396,559 |
|
| 149 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs | - | 21,396,559 |
|
| 150 |
+
| [MS MARCO](https://microsoft.github.io/msmarco/) triplets | [paper](https://doi.org/10.1145/3404835.3462804) | 9,144,553 |
|
| 151 |
+
| [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) | [paper](https://arxiv.org/pdf/2104.08727.pdf) | 3,012,496 |
|
| 152 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 1,198,260 |
|
| 153 |
+
| [Code Search](https://huggingface.co/datasets/code_search_net) | - | 1,151,414 |
|
| 154 |
+
| [COCO](https://cocodataset.org/#home) Image captions | [paper](https://link.springer.com/chapter/10.1007%2F978-3-319-10602-1_48) | 828,395|
|
| 155 |
+
| [SPECTER](https://github.com/allenai/specter) citation triplets | [paper](https://doi.org/10.18653/v1/2020.acl-main.207) | 684,100 |
|
| 156 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 681,164 |
|
| 157 |
+
| [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) | [paper](https://proceedings.neurips.cc/paper/2015/hash/250cf8b51c773f3f8dc8b4be867a9a02-Abstract.html) | 659,896 |
|
| 158 |
+
| [SearchQA](https://huggingface.co/datasets/search_qa) | [paper](https://arxiv.org/abs/1704.05179) | 582,261 |
|
| 159 |
+
| [Eli5](https://huggingface.co/datasets/eli5) | [paper](https://doi.org/10.18653/v1/p19-1346) | 325,475 |
|
| 160 |
+
| [Flickr 30k](https://shannon.cs.illinois.edu/DenotationGraph/) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/229/33) | 317,695 |
|
| 161 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles) | | 304,525 |
|
| 162 |
+
| AllNLI ([SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) | [paper SNLI](https://doi.org/10.18653/v1/d15-1075), [paper MultiNLI](https://doi.org/10.18653/v1/n18-1101) | 277,230 |
|
| 163 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (bodies) | | 250,519 |
|
| 164 |
+
| [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions (titles+bodies) | | 250,460 |
|
| 165 |
+
| [Sentence Compression](https://github.com/google-research-datasets/sentence-compression) | [paper](https://www.aclweb.org/anthology/D13-1155/) | 180,000 |
|
| 166 |
+
| [Wikihow](https://github.com/pvl/wikihow_pairs_dataset) | [paper](https://arxiv.org/abs/1810.09305) | 128,542 |
|
| 167 |
+
| [Altlex](https://github.com/chridey/altlex/) | [paper](https://aclanthology.org/P16-1135.pdf) | 112,696 |
|
| 168 |
+
| [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) | - | 103,663 |
|
| 169 |
+
| [Simple Wikipedia](https://cs.pomona.edu/~dkauchak/simplification/) | [paper](https://www.aclweb.org/anthology/P11-2117/) | 102,225 |
|
| 170 |
+
| [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) | [paper](https://transacl.org/ojs/index.php/tacl/article/view/1455) | 100,231 |
|
| 171 |
+
| [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) | [paper](https://aclanthology.org/P18-2124.pdf) | 87,599 |
|
| 172 |
+
| [TriviaQA](https://huggingface.co/datasets/trivia_qa) | - | 73,346 |
|
| 173 |
+
| **Total** | | **1,170,060,424** |
|
all-MiniLM-L6-v2/config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "nreimers/MiniLM-L6-H384-uncased",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"gradient_checkpointing": false,
|
| 8 |
+
"hidden_act": "gelu",
|
| 9 |
+
"hidden_dropout_prob": 0.1,
|
| 10 |
+
"hidden_size": 384,
|
| 11 |
+
"initializer_range": 0.02,
|
| 12 |
+
"intermediate_size": 1536,
|
| 13 |
+
"layer_norm_eps": 1e-12,
|
| 14 |
+
"max_position_embeddings": 512,
|
| 15 |
+
"model_type": "bert",
|
| 16 |
+
"num_attention_heads": 12,
|
| 17 |
+
"num_hidden_layers": 6,
|
| 18 |
+
"pad_token_id": 0,
|
| 19 |
+
"position_embedding_type": "absolute",
|
| 20 |
+
"transformers_version": "4.8.2",
|
| 21 |
+
"type_vocab_size": 2,
|
| 22 |
+
"use_cache": true,
|
| 23 |
+
"vocab_size": 30522
|
| 24 |
+
}
|
all-MiniLM-L6-v2/config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "2.0.0",
|
| 4 |
+
"transformers": "4.6.1",
|
| 5 |
+
"pytorch": "1.8.1"
|
| 6 |
+
}
|
| 7 |
+
}
|
all-MiniLM-L6-v2/data_config.json
ADDED
|
@@ -0,0 +1,1452 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"name": "stackexchange_title_body/skeptics.stackexchange.com.jsonl.gz",
|
| 4 |
+
"lines": 10009,
|
| 5 |
+
"weight": 1
|
| 6 |
+
},
|
| 7 |
+
{
|
| 8 |
+
"name": "stackexchange_TitleBody_Answer/islam.stackexchange.com.jsonl.gz",
|
| 9 |
+
"lines": 10052,
|
| 10 |
+
"weight": 1
|
| 11 |
+
},
|
| 12 |
+
{
|
| 13 |
+
"name": "stackexchange_Title_Answer/islam.stackexchange.com.jsonl.gz",
|
| 14 |
+
"lines": 10052,
|
| 15 |
+
"weight": 1
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"name": "stackexchange_TitleBody_Answer/anime.stackexchange.com.jsonl.gz",
|
| 19 |
+
"lines": 10131,
|
| 20 |
+
"weight": 1
|
| 21 |
+
},
|
| 22 |
+
{
|
| 23 |
+
"name": "stackexchange_Title_Answer/anime.stackexchange.com.jsonl.gz",
|
| 24 |
+
"lines": 10131,
|
| 25 |
+
"weight": 1
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"name": "stackexchange_title_body/writers.stackexchange.com.jsonl.gz",
|
| 29 |
+
"lines": 10157,
|
| 30 |
+
"weight": 1
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"name": "stackexchange_title_body/astronomy.stackexchange.com.jsonl.gz",
|
| 34 |
+
"lines": 10462,
|
| 35 |
+
"weight": 1
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"name": "stackexchange_title_body/vi.stackexchange.com.jsonl.gz",
|
| 39 |
+
"lines": 10551,
|
| 40 |
+
"weight": 1
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"name": "stackexchange_TitleBody_Answer/french.stackexchange.com.jsonl.gz",
|
| 44 |
+
"lines": 10578,
|
| 45 |
+
"weight": 1
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"name": "stackexchange_Title_Answer/french.stackexchange.com.jsonl.gz",
|
| 49 |
+
"lines": 10578,
|
| 50 |
+
"weight": 1
|
| 51 |
+
},
|
| 52 |
+
{
|
| 53 |
+
"name": "stackexchange_title_body/cstheory.stackexchange.com.jsonl.gz",
|
| 54 |
+
"lines": 10642,
|
| 55 |
+
"weight": 1
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"name": "stackexchange_TitleBody_Answer/civicrm.stackexchange.com.jsonl.gz",
|
| 59 |
+
"lines": 10648,
|
| 60 |
+
"weight": 1
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"name": "stackexchange_Title_Answer/civicrm.stackexchange.com.jsonl.gz",
|
| 64 |
+
"lines": 10648,
|
| 65 |
+
"weight": 1
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"name": "stackexchange_TitleBody_Answer/expressionengine.stackexchange.com.jsonl.gz",
|
| 69 |
+
"lines": 10742,
|
| 70 |
+
"weight": 1
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"name": "stackexchange_Title_Answer/expressionengine.stackexchange.com.jsonl.gz",
|
| 74 |
+
"lines": 10742,
|
| 75 |
+
"weight": 1
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"name": "stackexchange_title_body/engineering.stackexchange.com.jsonl.gz",
|
| 79 |
+
"lines": 10753,
|
| 80 |
+
"weight": 1
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"name": "stackexchange_TitleBody_Answer/history.stackexchange.com.jsonl.gz",
|
| 84 |
+
"lines": 10766,
|
| 85 |
+
"weight": 1
|
| 86 |
+
},
|
| 87 |
+
{
|
| 88 |
+
"name": "stackexchange_Title_Answer/history.stackexchange.com.jsonl.gz",
|
| 89 |
+
"lines": 10766,
|
| 90 |
+
"weight": 1
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"name": "stackexchange_title_body/french.stackexchange.com.jsonl.gz",
|
| 94 |
+
"lines": 10794,
|
| 95 |
+
"weight": 1
|
| 96 |
+
},
|
| 97 |
+
{
|
| 98 |
+
"name": "stackexchange_TitleBody_Answer/politics.stackexchange.com.jsonl.gz",
|
| 99 |
+
"lines": 11047,
|
| 100 |
+
"weight": 1
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"name": "stackexchange_Title_Answer/politics.stackexchange.com.jsonl.gz",
|
| 104 |
+
"lines": 11047,
|
| 105 |
+
"weight": 1
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"name": "stackexchange_title_body/economics.stackexchange.com.jsonl.gz",
|
| 109 |
+
"lines": 11115,
|
| 110 |
+
"weight": 1
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"name": "stackexchange_TitleBody_Answer/craftcms.stackexchange.com.jsonl.gz",
|
| 114 |
+
"lines": 11236,
|
| 115 |
+
"weight": 1
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"name": "stackexchange_Title_Answer/craftcms.stackexchange.com.jsonl.gz",
|
| 119 |
+
"lines": 11236,
|
| 120 |
+
"weight": 1
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "stackexchange_title_body/anime.stackexchange.com.jsonl.gz",
|
| 124 |
+
"lines": 11444,
|
| 125 |
+
"weight": 1
|
| 126 |
+
},
|
| 127 |
+
{
|
| 128 |
+
"name": "stackexchange_TitleBody_Answer/christianity.stackexchange.com.jsonl.gz",
|
| 129 |
+
"lines": 11498,
|
| 130 |
+
"weight": 1
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"name": "stackexchange_Title_Answer/christianity.stackexchange.com.jsonl.gz",
|
| 134 |
+
"lines": 11498,
|
| 135 |
+
"weight": 1
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"name": "stackexchange_TitleBody_Answer/softwarerecs.stackexchange.com.jsonl.gz",
|
| 139 |
+
"lines": 11761,
|
| 140 |
+
"weight": 1
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"name": "stackexchange_Title_Answer/softwarerecs.stackexchange.com.jsonl.gz",
|
| 144 |
+
"lines": 11761,
|
| 145 |
+
"weight": 1
|
| 146 |
+
},
|
| 147 |
+
{
|
| 148 |
+
"name": "stackexchange_TitleBody_Answer/boardgames.stackexchange.com.jsonl.gz",
|
| 149 |
+
"lines": 11805,
|
| 150 |
+
"weight": 1
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"name": "stackexchange_Title_Answer/boardgames.stackexchange.com.jsonl.gz",
|
| 154 |
+
"lines": 11805,
|
| 155 |
+
"weight": 1
|
| 156 |
+
},
|
| 157 |
+
{
|
| 158 |
+
"name": "stackexchange_title_body/islam.stackexchange.com.jsonl.gz",
|
| 159 |
+
"lines": 11853,
|
| 160 |
+
"weight": 1
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"name": "stackexchange_title_body/expressionengine.stackexchange.com.jsonl.gz",
|
| 164 |
+
"lines": 11866,
|
| 165 |
+
"weight": 1
|
| 166 |
+
},
|
| 167 |
+
{
|
| 168 |
+
"name": "stackexchange_title_body/politics.stackexchange.com.jsonl.gz",
|
| 169 |
+
"lines": 11894,
|
| 170 |
+
"weight": 1
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"name": "stackexchange_title_body/history.stackexchange.com.jsonl.gz",
|
| 174 |
+
"lines": 12021,
|
| 175 |
+
"weight": 1
|
| 176 |
+
},
|
| 177 |
+
{
|
| 178 |
+
"name": "stackexchange_title_body/christianity.stackexchange.com.jsonl.gz",
|
| 179 |
+
"lines": 12108,
|
| 180 |
+
"weight": 1
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"name": "stackexchange_title_body/boardgames.stackexchange.com.jsonl.gz",
|
| 184 |
+
"lines": 12149,
|
| 185 |
+
"weight": 1
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"name": "flickr30k_captions.jsonl.gz",
|
| 189 |
+
"lines": 317695,
|
| 190 |
+
"weight": 1
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"name": "coco_captions.jsonl.gz",
|
| 194 |
+
"lines": 828395,
|
| 195 |
+
"weight": 1
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"name": "codesearchnet.jsonl.gz",
|
| 199 |
+
"lines": 1151414,
|
| 200 |
+
"weight": 1
|
| 201 |
+
},
|
| 202 |
+
{
|
| 203 |
+
"name": "stackexchange_title_body/civicrm.stackexchange.com.jsonl.gz",
|
| 204 |
+
"lines": 12543,
|
| 205 |
+
"weight": 2
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"name": "stackexchange_title_body/craftcms.stackexchange.com.jsonl.gz",
|
| 209 |
+
"lines": 12574,
|
| 210 |
+
"weight": 2
|
| 211 |
+
},
|
| 212 |
+
{
|
| 213 |
+
"name": "stackexchange_TitleBody_Answer/networkengineering.stackexchange.com.jsonl.gz",
|
| 214 |
+
"lines": 12590,
|
| 215 |
+
"weight": 2
|
| 216 |
+
},
|
| 217 |
+
{
|
| 218 |
+
"name": "stackexchange_Title_Answer/networkengineering.stackexchange.com.jsonl.gz",
|
| 219 |
+
"lines": 12590,
|
| 220 |
+
"weight": 2
|
| 221 |
+
},
|
| 222 |
+
{
|
| 223 |
+
"name": "stackexchange_TitleBody_Answer/space.stackexchange.com.jsonl.gz",
|
| 224 |
+
"lines": 12893,
|
| 225 |
+
"weight": 2
|
| 226 |
+
},
|
| 227 |
+
{
|
| 228 |
+
"name": "stackexchange_Title_Answer/space.stackexchange.com.jsonl.gz",
|
| 229 |
+
"lines": 12893,
|
| 230 |
+
"weight": 2
|
| 231 |
+
},
|
| 232 |
+
{
|
| 233 |
+
"name": "stackexchange_TitleBody_Answer/quant.stackexchange.com.jsonl.gz",
|
| 234 |
+
"lines": 12933,
|
| 235 |
+
"weight": 2
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"name": "stackexchange_Title_Answer/quant.stackexchange.com.jsonl.gz",
|
| 239 |
+
"lines": 12933,
|
| 240 |
+
"weight": 2
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"name": "stackexchange_TitleBody_Answer/philosophy.stackexchange.com.jsonl.gz",
|
| 244 |
+
"lines": 13114,
|
| 245 |
+
"weight": 2
|
| 246 |
+
},
|
| 247 |
+
{
|
| 248 |
+
"name": "stackexchange_Title_Answer/philosophy.stackexchange.com.jsonl.gz",
|
| 249 |
+
"lines": 13114,
|
| 250 |
+
"weight": 2
|
| 251 |
+
},
|
| 252 |
+
{
|
| 253 |
+
"name": "stackexchange_TitleBody_Answer/gardening.stackexchange.com.jsonl.gz",
|
| 254 |
+
"lines": 13246,
|
| 255 |
+
"weight": 2
|
| 256 |
+
},
|
| 257 |
+
{
|
| 258 |
+
"name": "stackexchange_Title_Answer/gardening.stackexchange.com.jsonl.gz",
|
| 259 |
+
"lines": 13246,
|
| 260 |
+
"weight": 2
|
| 261 |
+
},
|
| 262 |
+
{
|
| 263 |
+
"name": "stackexchange_title_body/hinduism.stackexchange.com.jsonl.gz",
|
| 264 |
+
"lines": 13450,
|
| 265 |
+
"weight": 2
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"name": "stackexchange_title_body/networkengineering.stackexchange.com.jsonl.gz",
|
| 269 |
+
"lines": 13454,
|
| 270 |
+
"weight": 2
|
| 271 |
+
},
|
| 272 |
+
{
|
| 273 |
+
"name": "stackexchange_TitleBody_Answer/german.stackexchange.com.jsonl.gz",
|
| 274 |
+
"lines": 13733,
|
| 275 |
+
"weight": 2
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"name": "stackexchange_Title_Answer/german.stackexchange.com.jsonl.gz",
|
| 279 |
+
"lines": 13733,
|
| 280 |
+
"weight": 2
|
| 281 |
+
},
|
| 282 |
+
{
|
| 283 |
+
"name": "stackexchange_title_body/german.stackexchange.com.jsonl.gz",
|
| 284 |
+
"lines": 13950,
|
| 285 |
+
"weight": 2
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"name": "stackexchange_title_body/philosophy.stackexchange.com.jsonl.gz",
|
| 289 |
+
"lines": 14829,
|
| 290 |
+
"weight": 2
|
| 291 |
+
},
|
| 292 |
+
{
|
| 293 |
+
"name": "stackexchange_title_body/gardening.stackexchange.com.jsonl.gz",
|
| 294 |
+
"lines": 15136,
|
| 295 |
+
"weight": 2
|
| 296 |
+
},
|
| 297 |
+
{
|
| 298 |
+
"name": "stackexchange_title_body/space.stackexchange.com.jsonl.gz",
|
| 299 |
+
"lines": 15142,
|
| 300 |
+
"weight": 2
|
| 301 |
+
},
|
| 302 |
+
{
|
| 303 |
+
"name": "stackexchange_TitleBody_Answer/bicycles.stackexchange.com.jsonl.gz",
|
| 304 |
+
"lines": 15708,
|
| 305 |
+
"weight": 2
|
| 306 |
+
},
|
| 307 |
+
{
|
| 308 |
+
"name": "stackexchange_Title_Answer/bicycles.stackexchange.com.jsonl.gz",
|
| 309 |
+
"lines": 15708,
|
| 310 |
+
"weight": 2
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"name": "stackexchange_TitleBody_Answer/law.stackexchange.com.jsonl.gz",
|
| 314 |
+
"lines": 16133,
|
| 315 |
+
"weight": 2
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"name": "stackexchange_Title_Answer/law.stackexchange.com.jsonl.gz",
|
| 319 |
+
"lines": 16133,
|
| 320 |
+
"weight": 2
|
| 321 |
+
},
|
| 322 |
+
{
|
| 323 |
+
"name": "stackexchange_TitleBody_Answer/arduino.stackexchange.com.jsonl.gz",
|
| 324 |
+
"lines": 16281,
|
| 325 |
+
"weight": 2
|
| 326 |
+
},
|
| 327 |
+
{
|
| 328 |
+
"name": "stackexchange_Title_Answer/arduino.stackexchange.com.jsonl.gz",
|
| 329 |
+
"lines": 16281,
|
| 330 |
+
"weight": 2
|
| 331 |
+
},
|
| 332 |
+
{
|
| 333 |
+
"name": "stackexchange_title_body/bicycles.stackexchange.com.jsonl.gz",
|
| 334 |
+
"lines": 16353,
|
| 335 |
+
"weight": 2
|
| 336 |
+
},
|
| 337 |
+
{
|
| 338 |
+
"name": "stackexchange_TitleBody_Answer/emacs.stackexchange.com.jsonl.gz",
|
| 339 |
+
"lines": 16830,
|
| 340 |
+
"weight": 2
|
| 341 |
+
},
|
| 342 |
+
{
|
| 343 |
+
"name": "stackexchange_Title_Answer/emacs.stackexchange.com.jsonl.gz",
|
| 344 |
+
"lines": 16830,
|
| 345 |
+
"weight": 2
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"name": "stackexchange_title_body/quant.stackexchange.com.jsonl.gz",
|
| 349 |
+
"lines": 17261,
|
| 350 |
+
"weight": 2
|
| 351 |
+
},
|
| 352 |
+
{
|
| 353 |
+
"name": "stackexchange_TitleBody_Answer/dsp.stackexchange.com.jsonl.gz",
|
| 354 |
+
"lines": 17430,
|
| 355 |
+
"weight": 2
|
| 356 |
+
},
|
| 357 |
+
{
|
| 358 |
+
"name": "stackexchange_Title_Answer/dsp.stackexchange.com.jsonl.gz",
|
| 359 |
+
"lines": 17430,
|
| 360 |
+
"weight": 2
|
| 361 |
+
},
|
| 362 |
+
{
|
| 363 |
+
"name": "stackexchange_TitleBody_Answer/puzzling.stackexchange.com.jsonl.gz",
|
| 364 |
+
"lines": 17448,
|
| 365 |
+
"weight": 2
|
| 366 |
+
},
|
| 367 |
+
{
|
| 368 |
+
"name": "stackexchange_Title_Answer/puzzling.stackexchange.com.jsonl.gz",
|
| 369 |
+
"lines": 17448,
|
| 370 |
+
"weight": 2
|
| 371 |
+
},
|
| 372 |
+
{
|
| 373 |
+
"name": "stackexchange_title_body/puzzling.stackexchange.com.jsonl.gz",
|
| 374 |
+
"lines": 17851,
|
| 375 |
+
"weight": 2
|
| 376 |
+
},
|
| 377 |
+
{
|
| 378 |
+
"name": "stackexchange_title_body/law.stackexchange.com.jsonl.gz",
|
| 379 |
+
"lines": 17941,
|
| 380 |
+
"weight": 2
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"name": "stackexchange_TitleBody_Answer/movies.stackexchange.com.jsonl.gz",
|
| 384 |
+
"lines": 18243,
|
| 385 |
+
"weight": 2
|
| 386 |
+
},
|
| 387 |
+
{
|
| 388 |
+
"name": "stackexchange_Title_Answer/movies.stackexchange.com.jsonl.gz",
|
| 389 |
+
"lines": 18243,
|
| 390 |
+
"weight": 2
|
| 391 |
+
},
|
| 392 |
+
{
|
| 393 |
+
"name": "stackexchange_TitleBody_Answer/mechanics.stackexchange.com.jsonl.gz",
|
| 394 |
+
"lines": 18613,
|
| 395 |
+
"weight": 2
|
| 396 |
+
},
|
| 397 |
+
{
|
| 398 |
+
"name": "stackexchange_Title_Answer/mechanics.stackexchange.com.jsonl.gz",
|
| 399 |
+
"lines": 18613,
|
| 400 |
+
"weight": 2
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"name": "stackexchange_TitleBody_Answer/aviation.stackexchange.com.jsonl.gz",
|
| 404 |
+
"lines": 18755,
|
| 405 |
+
"weight": 2
|
| 406 |
+
},
|
| 407 |
+
{
|
| 408 |
+
"name": "stackexchange_Title_Answer/aviation.stackexchange.com.jsonl.gz",
|
| 409 |
+
"lines": 18755,
|
| 410 |
+
"weight": 2
|
| 411 |
+
},
|
| 412 |
+
{
|
| 413 |
+
"name": "stackexchange_TitleBody_Answer/biology.stackexchange.com.jsonl.gz",
|
| 414 |
+
"lines": 19277,
|
| 415 |
+
"weight": 2
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"name": "stackexchange_Title_Answer/biology.stackexchange.com.jsonl.gz",
|
| 419 |
+
"lines": 19277,
|
| 420 |
+
"weight": 2
|
| 421 |
+
},
|
| 422 |
+
{
|
| 423 |
+
"name": "stackexchange_TitleBody_Answer/crypto.stackexchange.com.jsonl.gz",
|
| 424 |
+
"lines": 19404,
|
| 425 |
+
"weight": 2
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"name": "stackexchange_Title_Answer/crypto.stackexchange.com.jsonl.gz",
|
| 429 |
+
"lines": 19404,
|
| 430 |
+
"weight": 2
|
| 431 |
+
},
|
| 432 |
+
{
|
| 433 |
+
"name": "stackexchange_title_body/arduino.stackexchange.com.jsonl.gz",
|
| 434 |
+
"lines": 19553,
|
| 435 |
+
"weight": 2
|
| 436 |
+
},
|
| 437 |
+
{
|
| 438 |
+
"name": "stackexchange_TitleBody_Answer/music.stackexchange.com.jsonl.gz",
|
| 439 |
+
"lines": 19936,
|
| 440 |
+
"weight": 2
|
| 441 |
+
},
|
| 442 |
+
{
|
| 443 |
+
"name": "stackexchange_Title_Answer/music.stackexchange.com.jsonl.gz",
|
| 444 |
+
"lines": 19936,
|
| 445 |
+
"weight": 2
|
| 446 |
+
},
|
| 447 |
+
{
|
| 448 |
+
"name": "stackexchange_title_body/aviation.stackexchange.com.jsonl.gz",
|
| 449 |
+
"lines": 20139,
|
| 450 |
+
"weight": 2
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"name": "stackexchange_title_body/softwarerecs.stackexchange.com.jsonl.gz",
|
| 454 |
+
"lines": 20142,
|
| 455 |
+
"weight": 2
|
| 456 |
+
},
|
| 457 |
+
{
|
| 458 |
+
"name": "stackexchange_title_body/movies.stackexchange.com.jsonl.gz",
|
| 459 |
+
"lines": 20181,
|
| 460 |
+
"weight": 2
|
| 461 |
+
},
|
| 462 |
+
{
|
| 463 |
+
"name": "stackexchange_TitleBody_Answer/datascience.stackexchange.com.jsonl.gz",
|
| 464 |
+
"lines": 20503,
|
| 465 |
+
"weight": 2
|
| 466 |
+
},
|
| 467 |
+
{
|
| 468 |
+
"name": "stackexchange_Title_Answer/datascience.stackexchange.com.jsonl.gz",
|
| 469 |
+
"lines": 20503,
|
| 470 |
+
"weight": 2
|
| 471 |
+
},
|
| 472 |
+
{
|
| 473 |
+
"name": "stackexchange_title_body/music.stackexchange.com.jsonl.gz",
|
| 474 |
+
"lines": 20636,
|
| 475 |
+
"weight": 2
|
| 476 |
+
},
|
| 477 |
+
{
|
| 478 |
+
"name": "stackexchange_TitleBody_Answer/japanese.stackexchange.com.jsonl.gz",
|
| 479 |
+
"lines": 20948,
|
| 480 |
+
"weight": 2
|
| 481 |
+
},
|
| 482 |
+
{
|
| 483 |
+
"name": "stackexchange_Title_Answer/japanese.stackexchange.com.jsonl.gz",
|
| 484 |
+
"lines": 20948,
|
| 485 |
+
"weight": 2
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"name": "stackexchange_title_body/emacs.stackexchange.com.jsonl.gz",
|
| 489 |
+
"lines": 21055,
|
| 490 |
+
"weight": 2
|
| 491 |
+
},
|
| 492 |
+
{
|
| 493 |
+
"name": "stackexchange_title_body/dsp.stackexchange.com.jsonl.gz",
|
| 494 |
+
"lines": 21252,
|
| 495 |
+
"weight": 2
|
| 496 |
+
},
|
| 497 |
+
{
|
| 498 |
+
"name": "stackexchange_title_body/japanese.stackexchange.com.jsonl.gz",
|
| 499 |
+
"lines": 22056,
|
| 500 |
+
"weight": 2
|
| 501 |
+
},
|
| 502 |
+
{
|
| 503 |
+
"name": "stackexchange_TitleBody_Answer/bitcoin.stackexchange.com.jsonl.gz",
|
| 504 |
+
"lines": 22474,
|
| 505 |
+
"weight": 2
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"name": "stackexchange_Title_Answer/bitcoin.stackexchange.com.jsonl.gz",
|
| 509 |
+
"lines": 22474,
|
| 510 |
+
"weight": 2
|
| 511 |
+
},
|
| 512 |
+
{
|
| 513 |
+
"name": "stackexchange_TitleBody_Answer/cooking.stackexchange.com.jsonl.gz",
|
| 514 |
+
"lines": 22641,
|
| 515 |
+
"weight": 2
|
| 516 |
+
},
|
| 517 |
+
{
|
| 518 |
+
"name": "stackexchange_Title_Answer/cooking.stackexchange.com.jsonl.gz",
|
| 519 |
+
"lines": 22641,
|
| 520 |
+
"weight": 2
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"name": "stackexchange_title_body/mechanics.stackexchange.com.jsonl.gz",
|
| 524 |
+
"lines": 22868,
|
| 525 |
+
"weight": 2
|
| 526 |
+
},
|
| 527 |
+
{
|
| 528 |
+
"name": "stackexchange_TitleBody_Answer/photo.stackexchange.com.jsonl.gz",
|
| 529 |
+
"lines": 23204,
|
| 530 |
+
"weight": 2
|
| 531 |
+
},
|
| 532 |
+
{
|
| 533 |
+
"name": "stackexchange_Title_Answer/photo.stackexchange.com.jsonl.gz",
|
| 534 |
+
"lines": 23204,
|
| 535 |
+
"weight": 2
|
| 536 |
+
},
|
| 537 |
+
{
|
| 538 |
+
"name": "stackexchange_title_body/crypto.stackexchange.com.jsonl.gz",
|
| 539 |
+
"lines": 23231,
|
| 540 |
+
"weight": 2
|
| 541 |
+
},
|
| 542 |
+
{
|
| 543 |
+
"name": "stackexchange_title_body/cooking.stackexchange.com.jsonl.gz",
|
| 544 |
+
"lines": 23705,
|
| 545 |
+
"weight": 2
|
| 546 |
+
},
|
| 547 |
+
{
|
| 548 |
+
"name": "stackexchange_title_body/photo.stackexchange.com.jsonl.gz",
|
| 549 |
+
"lines": 23753,
|
| 550 |
+
"weight": 2
|
| 551 |
+
},
|
| 552 |
+
{
|
| 553 |
+
"name": "stackexchange_TitleBody_Answer/workplace.stackexchange.com.jsonl.gz",
|
| 554 |
+
"lines": 24012,
|
| 555 |
+
"weight": 2
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"name": "stackexchange_Title_Answer/workplace.stackexchange.com.jsonl.gz",
|
| 559 |
+
"lines": 24012,
|
| 560 |
+
"weight": 2
|
| 561 |
+
},
|
| 562 |
+
{
|
| 563 |
+
"name": "stackexchange_TitleBody_Answer/meta.stackoverflow.com.jsonl.gz",
|
| 564 |
+
"lines": 24044,
|
| 565 |
+
"weight": 2
|
| 566 |
+
},
|
| 567 |
+
{
|
| 568 |
+
"name": "stackexchange_Title_Answer/meta.stackoverflow.com.jsonl.gz",
|
| 569 |
+
"lines": 24044,
|
| 570 |
+
"weight": 2
|
| 571 |
+
},
|
| 572 |
+
{
|
| 573 |
+
"name": "stackexchange_TitleBody_Answer/raspberrypi.stackexchange.com.jsonl.gz",
|
| 574 |
+
"lines": 24143,
|
| 575 |
+
"weight": 2
|
| 576 |
+
},
|
| 577 |
+
{
|
| 578 |
+
"name": "stackexchange_Title_Answer/raspberrypi.stackexchange.com.jsonl.gz",
|
| 579 |
+
"lines": 24143,
|
| 580 |
+
"weight": 2
|
| 581 |
+
},
|
| 582 |
+
{
|
| 583 |
+
"name": "stackexchange_title_body/workplace.stackexchange.com.jsonl.gz",
|
| 584 |
+
"lines": 24189,
|
| 585 |
+
"weight": 2
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"name": "stackexchange_title_body/biology.stackexchange.com.jsonl.gz",
|
| 589 |
+
"lines": 24447,
|
| 590 |
+
"weight": 3
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"name": "stackexchange_TitleBody_Answer/webapps.stackexchange.com.jsonl.gz",
|
| 594 |
+
"lines": 24867,
|
| 595 |
+
"weight": 3
|
| 596 |
+
},
|
| 597 |
+
{
|
| 598 |
+
"name": "stackexchange_Title_Answer/webapps.stackexchange.com.jsonl.gz",
|
| 599 |
+
"lines": 24867,
|
| 600 |
+
"weight": 3
|
| 601 |
+
},
|
| 602 |
+
{
|
| 603 |
+
"name": "stackexchange_title_body/bitcoin.stackexchange.com.jsonl.gz",
|
| 604 |
+
"lines": 25374,
|
| 605 |
+
"weight": 3
|
| 606 |
+
},
|
| 607 |
+
{
|
| 608 |
+
"name": "stackexchange_TitleBody_Answer/judaism.stackexchange.com.jsonl.gz",
|
| 609 |
+
"lines": 26085,
|
| 610 |
+
"weight": 3
|
| 611 |
+
},
|
| 612 |
+
{
|
| 613 |
+
"name": "stackexchange_Title_Answer/judaism.stackexchange.com.jsonl.gz",
|
| 614 |
+
"lines": 26085,
|
| 615 |
+
"weight": 3
|
| 616 |
+
},
|
| 617 |
+
{
|
| 618 |
+
"name": "stackexchange_TitleBody_Answer/ethereum.stackexchange.com.jsonl.gz",
|
| 619 |
+
"lines": 26124,
|
| 620 |
+
"weight": 3
|
| 621 |
+
},
|
| 622 |
+
{
|
| 623 |
+
"name": "stackexchange_Title_Answer/ethereum.stackexchange.com.jsonl.gz",
|
| 624 |
+
"lines": 26124,
|
| 625 |
+
"weight": 3
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"name": "stackexchange_TitleBody_Answer/worldbuilding.stackexchange.com.jsonl.gz",
|
| 629 |
+
"lines": 26210,
|
| 630 |
+
"weight": 3
|
| 631 |
+
},
|
| 632 |
+
{
|
| 633 |
+
"name": "stackexchange_Title_Answer/worldbuilding.stackexchange.com.jsonl.gz",
|
| 634 |
+
"lines": 26210,
|
| 635 |
+
"weight": 3
|
| 636 |
+
},
|
| 637 |
+
{
|
| 638 |
+
"name": "stackexchange_title_body/worldbuilding.stackexchange.com.jsonl.gz",
|
| 639 |
+
"lines": 26763,
|
| 640 |
+
"weight": 3
|
| 641 |
+
},
|
| 642 |
+
{
|
| 643 |
+
"name": "stackexchange_TitleBody_Answer/chemistry.stackexchange.com.jsonl.gz",
|
| 644 |
+
"lines": 27061,
|
| 645 |
+
"weight": 3
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"name": "stackexchange_Title_Answer/chemistry.stackexchange.com.jsonl.gz",
|
| 649 |
+
"lines": 27061,
|
| 650 |
+
"weight": 3
|
| 651 |
+
},
|
| 652 |
+
{
|
| 653 |
+
"name": "stackexchange_title_body/datascience.stackexchange.com.jsonl.gz",
|
| 654 |
+
"lines": 27397,
|
| 655 |
+
"weight": 3
|
| 656 |
+
},
|
| 657 |
+
{
|
| 658 |
+
"name": "stackexchange_TitleBody_Answer/graphicdesign.stackexchange.com.jsonl.gz",
|
| 659 |
+
"lines": 28083,
|
| 660 |
+
"weight": 3
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"name": "stackexchange_Title_Answer/graphicdesign.stackexchange.com.jsonl.gz",
|
| 664 |
+
"lines": 28083,
|
| 665 |
+
"weight": 3
|
| 666 |
+
},
|
| 667 |
+
{
|
| 668 |
+
"name": "stackexchange_TitleBody_Answer/ux.stackexchange.com.jsonl.gz",
|
| 669 |
+
"lines": 28901,
|
| 670 |
+
"weight": 3
|
| 671 |
+
},
|
| 672 |
+
{
|
| 673 |
+
"name": "stackexchange_Title_Answer/ux.stackexchange.com.jsonl.gz",
|
| 674 |
+
"lines": 28901,
|
| 675 |
+
"weight": 3
|
| 676 |
+
},
|
| 677 |
+
{
|
| 678 |
+
"name": "stackexchange_title_body/ux.stackexchange.com.jsonl.gz",
|
| 679 |
+
"lines": 29403,
|
| 680 |
+
"weight": 3
|
| 681 |
+
},
|
| 682 |
+
{
|
| 683 |
+
"name": "stackexchange_TitleBody_Answer/money.stackexchange.com.jsonl.gz",
|
| 684 |
+
"lines": 29404,
|
| 685 |
+
"weight": 3
|
| 686 |
+
},
|
| 687 |
+
{
|
| 688 |
+
"name": "stackexchange_Title_Answer/money.stackexchange.com.jsonl.gz",
|
| 689 |
+
"lines": 29404,
|
| 690 |
+
"weight": 3
|
| 691 |
+
},
|
| 692 |
+
{
|
| 693 |
+
"name": "stackexchange_title_body/webapps.stackexchange.com.jsonl.gz",
|
| 694 |
+
"lines": 29697,
|
| 695 |
+
"weight": 3
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"name": "stackexchange_TitleBody_Answer/cs.stackexchange.com.jsonl.gz",
|
| 699 |
+
"lines": 30010,
|
| 700 |
+
"weight": 3
|
| 701 |
+
},
|
| 702 |
+
{
|
| 703 |
+
"name": "stackexchange_Title_Answer/cs.stackexchange.com.jsonl.gz",
|
| 704 |
+
"lines": 30010,
|
| 705 |
+
"weight": 3
|
| 706 |
+
},
|
| 707 |
+
{
|
| 708 |
+
"name": "stackexchange_title_body/graphicdesign.stackexchange.com.jsonl.gz",
|
| 709 |
+
"lines": 30233,
|
| 710 |
+
"weight": 3
|
| 711 |
+
},
|
| 712 |
+
{
|
| 713 |
+
"name": "stackexchange_TitleBody_Answer/webmasters.stackexchange.com.jsonl.gz",
|
| 714 |
+
"lines": 30370,
|
| 715 |
+
"weight": 3
|
| 716 |
+
},
|
| 717 |
+
{
|
| 718 |
+
"name": "stackexchange_Title_Answer/webmasters.stackexchange.com.jsonl.gz",
|
| 719 |
+
"lines": 30370,
|
| 720 |
+
"weight": 3
|
| 721 |
+
},
|
| 722 |
+
{
|
| 723 |
+
"name": "stackexchange_title_body/raspberrypi.stackexchange.com.jsonl.gz",
|
| 724 |
+
"lines": 30625,
|
| 725 |
+
"weight": 3
|
| 726 |
+
},
|
| 727 |
+
{
|
| 728 |
+
"name": "stackexchange_title_body/money.stackexchange.com.jsonl.gz",
|
| 729 |
+
"lines": 32021,
|
| 730 |
+
"weight": 3
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"name": "stackexchange_title_body/judaism.stackexchange.com.jsonl.gz",
|
| 734 |
+
"lines": 32028,
|
| 735 |
+
"weight": 3
|
| 736 |
+
},
|
| 737 |
+
{
|
| 738 |
+
"name": "stackexchange_TitleBody_Answer/academia.stackexchange.com.jsonl.gz",
|
| 739 |
+
"lines": 32137,
|
| 740 |
+
"weight": 3
|
| 741 |
+
},
|
| 742 |
+
{
|
| 743 |
+
"name": "stackexchange_Title_Answer/academia.stackexchange.com.jsonl.gz",
|
| 744 |
+
"lines": 32137,
|
| 745 |
+
"weight": 3
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"name": "stackexchange_title_body/ethereum.stackexchange.com.jsonl.gz",
|
| 749 |
+
"lines": 32760,
|
| 750 |
+
"weight": 3
|
| 751 |
+
},
|
| 752 |
+
{
|
| 753 |
+
"name": "stackexchange_title_body/academia.stackexchange.com.jsonl.gz",
|
| 754 |
+
"lines": 34331,
|
| 755 |
+
"weight": 3
|
| 756 |
+
},
|
| 757 |
+
{
|
| 758 |
+
"name": "stackexchange_title_body/chemistry.stackexchange.com.jsonl.gz",
|
| 759 |
+
"lines": 34506,
|
| 760 |
+
"weight": 3
|
| 761 |
+
},
|
| 762 |
+
{
|
| 763 |
+
"name": "stackexchange_title_body/webmasters.stackexchange.com.jsonl.gz",
|
| 764 |
+
"lines": 34559,
|
| 765 |
+
"weight": 3
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"name": "stackexchange_title_body/meta.stackoverflow.com.jsonl.gz",
|
| 769 |
+
"lines": 36456,
|
| 770 |
+
"weight": 3
|
| 771 |
+
},
|
| 772 |
+
{
|
| 773 |
+
"name": "stackexchange_TitleBody_Answer/travel.stackexchange.com.jsonl.gz",
|
| 774 |
+
"lines": 36533,
|
| 775 |
+
"weight": 4
|
| 776 |
+
},
|
| 777 |
+
{
|
| 778 |
+
"name": "stackexchange_Title_Answer/travel.stackexchange.com.jsonl.gz",
|
| 779 |
+
"lines": 36533,
|
| 780 |
+
"weight": 4
|
| 781 |
+
},
|
| 782 |
+
{
|
| 783 |
+
"name": "stackexchange_TitleBody_Answer/android.stackexchange.com.jsonl.gz",
|
| 784 |
+
"lines": 38077,
|
| 785 |
+
"weight": 4
|
| 786 |
+
},
|
| 787 |
+
{
|
| 788 |
+
"name": "stackexchange_Title_Answer/android.stackexchange.com.jsonl.gz",
|
| 789 |
+
"lines": 38077,
|
| 790 |
+
"weight": 4
|
| 791 |
+
},
|
| 792 |
+
{
|
| 793 |
+
"name": "stackexchange_title_body/cs.stackexchange.com.jsonl.gz",
|
| 794 |
+
"lines": 38314,
|
| 795 |
+
"weight": 4
|
| 796 |
+
},
|
| 797 |
+
{
|
| 798 |
+
"name": "stackexchange_TitleBody_Answer/gamedev.stackexchange.com.jsonl.gz",
|
| 799 |
+
"lines": 40154,
|
| 800 |
+
"weight": 4
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"name": "stackexchange_Title_Answer/gamedev.stackexchange.com.jsonl.gz",
|
| 804 |
+
"lines": 40154,
|
| 805 |
+
"weight": 4
|
| 806 |
+
},
|
| 807 |
+
{
|
| 808 |
+
"name": "stackexchange_TitleBody_Answer/rpg.stackexchange.com.jsonl.gz",
|
| 809 |
+
"lines": 40435,
|
| 810 |
+
"weight": 4
|
| 811 |
+
},
|
| 812 |
+
{
|
| 813 |
+
"name": "stackexchange_Title_Answer/rpg.stackexchange.com.jsonl.gz",
|
| 814 |
+
"lines": 40435,
|
| 815 |
+
"weight": 4
|
| 816 |
+
},
|
| 817 |
+
{
|
| 818 |
+
"name": "stackexchange_title_body/travel.stackexchange.com.jsonl.gz",
|
| 819 |
+
"lines": 41227,
|
| 820 |
+
"weight": 4
|
| 821 |
+
},
|
| 822 |
+
{
|
| 823 |
+
"name": "stackexchange_TitleBody_Answer/codereview.stackexchange.com.jsonl.gz",
|
| 824 |
+
"lines": 41748,
|
| 825 |
+
"weight": 4
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"name": "stackexchange_Title_Answer/codereview.stackexchange.com.jsonl.gz",
|
| 829 |
+
"lines": 41748,
|
| 830 |
+
"weight": 4
|
| 831 |
+
},
|
| 832 |
+
{
|
| 833 |
+
"name": "stackexchange_title_body/rpg.stackexchange.com.jsonl.gz",
|
| 834 |
+
"lines": 42303,
|
| 835 |
+
"weight": 4
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"name": "stackexchange_title_body/codereview.stackexchange.com.jsonl.gz",
|
| 839 |
+
"lines": 45765,
|
| 840 |
+
"weight": 4
|
| 841 |
+
},
|
| 842 |
+
{
|
| 843 |
+
"name": "stackexchange_title_body/gamedev.stackexchange.com.jsonl.gz",
|
| 844 |
+
"lines": 46485,
|
| 845 |
+
"weight": 4
|
| 846 |
+
},
|
| 847 |
+
{
|
| 848 |
+
"name": "stackexchange_TitleBody_Answer/softwareengineering.stackexchange.com.jsonl.gz",
|
| 849 |
+
"lines": 51326,
|
| 850 |
+
"weight": 5
|
| 851 |
+
},
|
| 852 |
+
{
|
| 853 |
+
"name": "stackexchange_Title_Answer/softwareengineering.stackexchange.com.jsonl.gz",
|
| 854 |
+
"lines": 51326,
|
| 855 |
+
"weight": 5
|
| 856 |
+
},
|
| 857 |
+
{
|
| 858 |
+
"name": "stackexchange_TitleBody_Answer/security.stackexchange.com.jsonl.gz",
|
| 859 |
+
"lines": 51355,
|
| 860 |
+
"weight": 5
|
| 861 |
+
},
|
| 862 |
+
{
|
| 863 |
+
"name": "stackexchange_Title_Answer/security.stackexchange.com.jsonl.gz",
|
| 864 |
+
"lines": 51355,
|
| 865 |
+
"weight": 5
|
| 866 |
+
},
|
| 867 |
+
{
|
| 868 |
+
"name": "stackexchange_title_body/android.stackexchange.com.jsonl.gz",
|
| 869 |
+
"lines": 51608,
|
| 870 |
+
"weight": 5
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"name": "stackexchange_TitleBody_Answer/diy.stackexchange.com.jsonl.gz",
|
| 874 |
+
"lines": 52896,
|
| 875 |
+
"weight": 5
|
| 876 |
+
},
|
| 877 |
+
{
|
| 878 |
+
"name": "stackexchange_Title_Answer/diy.stackexchange.com.jsonl.gz",
|
| 879 |
+
"lines": 52896,
|
| 880 |
+
"weight": 5
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"name": "stackexchange_title_body/softwareengineering.stackexchange.com.jsonl.gz",
|
| 884 |
+
"lines": 53942,
|
| 885 |
+
"weight": 5
|
| 886 |
+
},
|
| 887 |
+
{
|
| 888 |
+
"name": "stackexchange_TitleBody_Answer/blender.stackexchange.com.jsonl.gz",
|
| 889 |
+
"lines": 54153,
|
| 890 |
+
"weight": 5
|
| 891 |
+
},
|
| 892 |
+
{
|
| 893 |
+
"name": "stackexchange_Title_Answer/blender.stackexchange.com.jsonl.gz",
|
| 894 |
+
"lines": 54153,
|
| 895 |
+
"weight": 5
|
| 896 |
+
},
|
| 897 |
+
{
|
| 898 |
+
"name": "stackexchange_TitleBody_Answer/scifi.stackexchange.com.jsonl.gz",
|
| 899 |
+
"lines": 54805,
|
| 900 |
+
"weight": 5
|
| 901 |
+
},
|
| 902 |
+
{
|
| 903 |
+
"name": "stackexchange_Title_Answer/scifi.stackexchange.com.jsonl.gz",
|
| 904 |
+
"lines": 54805,
|
| 905 |
+
"weight": 5
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"name": "stackexchange_title_body/security.stackexchange.com.jsonl.gz",
|
| 909 |
+
"lines": 58000,
|
| 910 |
+
"weight": 5
|
| 911 |
+
},
|
| 912 |
+
{
|
| 913 |
+
"name": "stackexchange_TitleBody_Answer/mathematica.stackexchange.com.jsonl.gz",
|
| 914 |
+
"lines": 59895,
|
| 915 |
+
"weight": 5
|
| 916 |
+
},
|
| 917 |
+
{
|
| 918 |
+
"name": "stackexchange_Title_Answer/mathematica.stackexchange.com.jsonl.gz",
|
| 919 |
+
"lines": 59895,
|
| 920 |
+
"weight": 5
|
| 921 |
+
},
|
| 922 |
+
{
|
| 923 |
+
"name": "stackexchange_title_body/diy.stackexchange.com.jsonl.gz",
|
| 924 |
+
"lines": 60083,
|
| 925 |
+
"weight": 5
|
| 926 |
+
},
|
| 927 |
+
{
|
| 928 |
+
"name": "stackexchange_TitleBody_Answer/meta.stackexchange.com.jsonl.gz",
|
| 929 |
+
"lines": 60744,
|
| 930 |
+
"weight": 5
|
| 931 |
+
},
|
| 932 |
+
{
|
| 933 |
+
"name": "stackexchange_Title_Answer/meta.stackexchange.com.jsonl.gz",
|
| 934 |
+
"lines": 60744,
|
| 935 |
+
"weight": 5
|
| 936 |
+
},
|
| 937 |
+
{
|
| 938 |
+
"name": "stackexchange_title_body/scifi.stackexchange.com.jsonl.gz",
|
| 939 |
+
"lines": 61528,
|
| 940 |
+
"weight": 6
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"name": "stackexchange_TitleBody_Answer/drupal.stackexchange.com.jsonl.gz",
|
| 944 |
+
"lines": 67817,
|
| 945 |
+
"weight": 6
|
| 946 |
+
},
|
| 947 |
+
{
|
| 948 |
+
"name": "stackexchange_Title_Answer/drupal.stackexchange.com.jsonl.gz",
|
| 949 |
+
"lines": 67817,
|
| 950 |
+
"weight": 6
|
| 951 |
+
},
|
| 952 |
+
{
|
| 953 |
+
"name": "stackexchange_TitleBody_Answer/dba.stackexchange.com.jsonl.gz",
|
| 954 |
+
"lines": 71449,
|
| 955 |
+
"weight": 6
|
| 956 |
+
},
|
| 957 |
+
{
|
| 958 |
+
"name": "stackexchange_Title_Answer/dba.stackexchange.com.jsonl.gz",
|
| 959 |
+
"lines": 71449,
|
| 960 |
+
"weight": 6
|
| 961 |
+
},
|
| 962 |
+
{
|
| 963 |
+
"name": "stackexchange_title_body/mathematica.stackexchange.com.jsonl.gz",
|
| 964 |
+
"lines": 73131,
|
| 965 |
+
"weight": 7
|
| 966 |
+
},
|
| 967 |
+
{
|
| 968 |
+
"name": "stackexchange_TitleBody_Answer/ell.stackexchange.com.jsonl.gz",
|
| 969 |
+
"lines": 77892,
|
| 970 |
+
"weight": 7
|
| 971 |
+
},
|
| 972 |
+
{
|
| 973 |
+
"name": "stackexchange_Title_Answer/ell.stackexchange.com.jsonl.gz",
|
| 974 |
+
"lines": 77892,
|
| 975 |
+
"weight": 7
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"name": "stackexchange_TitleBody_Answer/magento.stackexchange.com.jsonl.gz",
|
| 979 |
+
"lines": 79241,
|
| 980 |
+
"weight": 7
|
| 981 |
+
},
|
| 982 |
+
{
|
| 983 |
+
"name": "stackexchange_Title_Answer/magento.stackexchange.com.jsonl.gz",
|
| 984 |
+
"lines": 79241,
|
| 985 |
+
"weight": 7
|
| 986 |
+
},
|
| 987 |
+
{
|
| 988 |
+
"name": "stackexchange_title_body/drupal.stackexchange.com.jsonl.gz",
|
| 989 |
+
"lines": 79717,
|
| 990 |
+
"weight": 7
|
| 991 |
+
},
|
| 992 |
+
{
|
| 993 |
+
"name": "stackexchange_TitleBody_Answer/sharepoint.stackexchange.com.jsonl.gz",
|
| 994 |
+
"lines": 80420,
|
| 995 |
+
"weight": 7
|
| 996 |
+
},
|
| 997 |
+
{
|
| 998 |
+
"name": "stackexchange_Title_Answer/sharepoint.stackexchange.com.jsonl.gz",
|
| 999 |
+
"lines": 80420,
|
| 1000 |
+
"weight": 7
|
| 1001 |
+
},
|
| 1002 |
+
{
|
| 1003 |
+
"name": "stackexchange_title_body/blender.stackexchange.com.jsonl.gz",
|
| 1004 |
+
"lines": 80766,
|
| 1005 |
+
"weight": 7
|
| 1006 |
+
},
|
| 1007 |
+
{
|
| 1008 |
+
"name": "stackexchange_title_body/dba.stackexchange.com.jsonl.gz",
|
| 1009 |
+
"lines": 81871,
|
| 1010 |
+
"weight": 7
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"name": "stackexchange_TitleBody_Answer/gaming.stackexchange.com.jsonl.gz",
|
| 1014 |
+
"lines": 82887,
|
| 1015 |
+
"weight": 7
|
| 1016 |
+
},
|
| 1017 |
+
{
|
| 1018 |
+
"name": "stackexchange_Title_Answer/gaming.stackexchange.com.jsonl.gz",
|
| 1019 |
+
"lines": 82887,
|
| 1020 |
+
"weight": 7
|
| 1021 |
+
},
|
| 1022 |
+
{
|
| 1023 |
+
"name": "stackexchange_title_body/ell.stackexchange.com.jsonl.gz",
|
| 1024 |
+
"lines": 83271,
|
| 1025 |
+
"weight": 7
|
| 1026 |
+
},
|
| 1027 |
+
{
|
| 1028 |
+
"name": "stackexchange_title_body/meta.stackexchange.com.jsonl.gz",
|
| 1029 |
+
"lines": 83510,
|
| 1030 |
+
"weight": 7
|
| 1031 |
+
},
|
| 1032 |
+
{
|
| 1033 |
+
"name": "stackexchange_TitleBody_Answer/wordpress.stackexchange.com.jsonl.gz",
|
| 1034 |
+
"lines": 83621,
|
| 1035 |
+
"weight": 7
|
| 1036 |
+
},
|
| 1037 |
+
{
|
| 1038 |
+
"name": "stackexchange_Title_Answer/wordpress.stackexchange.com.jsonl.gz",
|
| 1039 |
+
"lines": 83621,
|
| 1040 |
+
"weight": 7
|
| 1041 |
+
},
|
| 1042 |
+
{
|
| 1043 |
+
"name": "stackexchange_TitleBody_Answer/mathoverflow.net.jsonl.gz",
|
| 1044 |
+
"lines": 85289,
|
| 1045 |
+
"weight": 8
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"name": "stackexchange_Title_Answer/mathoverflow.net.jsonl.gz",
|
| 1049 |
+
"lines": 85289,
|
| 1050 |
+
"weight": 8
|
| 1051 |
+
},
|
| 1052 |
+
{
|
| 1053 |
+
"name": "stackexchange_TitleBody_Answer/salesforce.stackexchange.com.jsonl.gz",
|
| 1054 |
+
"lines": 87272,
|
| 1055 |
+
"weight": 8
|
| 1056 |
+
},
|
| 1057 |
+
{
|
| 1058 |
+
"name": "stackexchange_Title_Answer/salesforce.stackexchange.com.jsonl.gz",
|
| 1059 |
+
"lines": 87272,
|
| 1060 |
+
"weight": 8
|
| 1061 |
+
},
|
| 1062 |
+
{
|
| 1063 |
+
"name": "stackexchange_title_body/gaming.stackexchange.com.jsonl.gz",
|
| 1064 |
+
"lines": 88912,
|
| 1065 |
+
"weight": 8
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"name": "stackexchange_TitleBody_Answer/apple.stackexchange.com.jsonl.gz",
|
| 1069 |
+
"lines": 92487,
|
| 1070 |
+
"weight": 8
|
| 1071 |
+
},
|
| 1072 |
+
{
|
| 1073 |
+
"name": "stackexchange_Title_Answer/apple.stackexchange.com.jsonl.gz",
|
| 1074 |
+
"lines": 92487,
|
| 1075 |
+
"weight": 8
|
| 1076 |
+
},
|
| 1077 |
+
{
|
| 1078 |
+
"name": "stackexchange_title_body/sharepoint.stackexchange.com.jsonl.gz",
|
| 1079 |
+
"lines": 94011,
|
| 1080 |
+
"weight": 8
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"name": "stackexchange_title_body/magento.stackexchange.com.jsonl.gz",
|
| 1084 |
+
"lines": 99991,
|
| 1085 |
+
"weight": 9
|
| 1086 |
+
},
|
| 1087 |
+
{
|
| 1088 |
+
"name": "stackexchange_TitleBody_Answer/gis.stackexchange.com.jsonl.gz",
|
| 1089 |
+
"lines": 100254,
|
| 1090 |
+
"weight": 9
|
| 1091 |
+
},
|
| 1092 |
+
{
|
| 1093 |
+
"name": "stackexchange_Title_Answer/gis.stackexchange.com.jsonl.gz",
|
| 1094 |
+
"lines": 100254,
|
| 1095 |
+
"weight": 9
|
| 1096 |
+
},
|
| 1097 |
+
{
|
| 1098 |
+
"name": "stackexchange_title_body/wordpress.stackexchange.com.jsonl.gz",
|
| 1099 |
+
"lines": 100474,
|
| 1100 |
+
"weight": 9
|
| 1101 |
+
},
|
| 1102 |
+
{
|
| 1103 |
+
"name": "stackexchange_TitleBody_Answer/english.stackexchange.com.jsonl.gz",
|
| 1104 |
+
"lines": 100640,
|
| 1105 |
+
"weight": 9
|
| 1106 |
+
},
|
| 1107 |
+
{
|
| 1108 |
+
"name": "stackexchange_Title_Answer/english.stackexchange.com.jsonl.gz",
|
| 1109 |
+
"lines": 100640,
|
| 1110 |
+
"weight": 9
|
| 1111 |
+
},
|
| 1112 |
+
{
|
| 1113 |
+
"name": "stackexchange_title_body/salesforce.stackexchange.com.jsonl.gz",
|
| 1114 |
+
"lines": 105260,
|
| 1115 |
+
"weight": 9
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"name": "stackexchange_title_body/english.stackexchange.com.jsonl.gz",
|
| 1119 |
+
"lines": 109522,
|
| 1120 |
+
"weight": 10
|
| 1121 |
+
},
|
| 1122 |
+
{
|
| 1123 |
+
"name": "stackexchange_title_body/apple.stackexchange.com.jsonl.gz",
|
| 1124 |
+
"lines": 110622,
|
| 1125 |
+
"weight": 10
|
| 1126 |
+
},
|
| 1127 |
+
{
|
| 1128 |
+
"name": "stackexchange_TitleBody_Answer/stats.stackexchange.com.jsonl.gz",
|
| 1129 |
+
"lines": 115679,
|
| 1130 |
+
"weight": 10
|
| 1131 |
+
},
|
| 1132 |
+
{
|
| 1133 |
+
"name": "stackexchange_Title_Answer/stats.stackexchange.com.jsonl.gz",
|
| 1134 |
+
"lines": 115679,
|
| 1135 |
+
"weight": 10
|
| 1136 |
+
},
|
| 1137 |
+
{
|
| 1138 |
+
"name": "stackexchange_title_body/mathoverflow.net.jsonl.gz",
|
| 1139 |
+
"lines": 120851,
|
| 1140 |
+
"weight": 10
|
| 1141 |
+
},
|
| 1142 |
+
{
|
| 1143 |
+
"name": "stackexchange_TitleBody_Answer/electronics.stackexchange.com.jsonl.gz",
|
| 1144 |
+
"lines": 129494,
|
| 1145 |
+
"weight": 11
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"name": "stackexchange_Title_Answer/electronics.stackexchange.com.jsonl.gz",
|
| 1149 |
+
"lines": 129494,
|
| 1150 |
+
"weight": 11
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"name": "stackexchange_title_body/gis.stackexchange.com.jsonl.gz",
|
| 1154 |
+
"lines": 131000,
|
| 1155 |
+
"weight": 11
|
| 1156 |
+
},
|
| 1157 |
+
{
|
| 1158 |
+
"name": "stackexchange_TitleBody_Answer/physics.stackexchange.com.jsonl.gz",
|
| 1159 |
+
"lines": 141230,
|
| 1160 |
+
"weight": 12
|
| 1161 |
+
},
|
| 1162 |
+
{
|
| 1163 |
+
"name": "stackexchange_Title_Answer/physics.stackexchange.com.jsonl.gz",
|
| 1164 |
+
"lines": 141230,
|
| 1165 |
+
"weight": 12
|
| 1166 |
+
},
|
| 1167 |
+
{
|
| 1168 |
+
"name": "stackexchange_title_body/electronics.stackexchange.com.jsonl.gz",
|
| 1169 |
+
"lines": 143582,
|
| 1170 |
+
"weight": 12
|
| 1171 |
+
},
|
| 1172 |
+
{
|
| 1173 |
+
"name": "stackexchange_TitleBody_Answer/unix.stackexchange.com.jsonl.gz",
|
| 1174 |
+
"lines": 155414,
|
| 1175 |
+
"weight": 13
|
| 1176 |
+
},
|
| 1177 |
+
{
|
| 1178 |
+
"name": "stackexchange_Title_Answer/unix.stackexchange.com.jsonl.gz",
|
| 1179 |
+
"lines": 155414,
|
| 1180 |
+
"weight": 13
|
| 1181 |
+
},
|
| 1182 |
+
{
|
| 1183 |
+
"name": "stackexchange_TitleBody_Answer/tex.stackexchange.com.jsonl.gz",
|
| 1184 |
+
"lines": 171628,
|
| 1185 |
+
"weight": 15
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"name": "stackexchange_Title_Answer/tex.stackexchange.com.jsonl.gz",
|
| 1189 |
+
"lines": 171628,
|
| 1190 |
+
"weight": 15
|
| 1191 |
+
},
|
| 1192 |
+
{
|
| 1193 |
+
"name": "stackexchange_title_body/physics.stackexchange.com.jsonl.gz",
|
| 1194 |
+
"lines": 173307,
|
| 1195 |
+
"weight": 15
|
| 1196 |
+
},
|
| 1197 |
+
{
|
| 1198 |
+
"name": "stackexchange_title_body/stats.stackexchange.com.jsonl.gz",
|
| 1199 |
+
"lines": 173466,
|
| 1200 |
+
"weight": 15
|
| 1201 |
+
},
|
| 1202 |
+
{
|
| 1203 |
+
"name": "stackexchange_title_body/unix.stackexchange.com.jsonl.gz",
|
| 1204 |
+
"lines": 185997,
|
| 1205 |
+
"weight": 16
|
| 1206 |
+
},
|
| 1207 |
+
{
|
| 1208 |
+
"name": "stackexchange_title_body/tex.stackexchange.com.jsonl.gz",
|
| 1209 |
+
"lines": 202954,
|
| 1210 |
+
"weight": 17
|
| 1211 |
+
},
|
| 1212 |
+
{
|
| 1213 |
+
"name": "TriviaQA_pairs.jsonl.gz",
|
| 1214 |
+
"lines": 73346,
|
| 1215 |
+
"weight": 19
|
| 1216 |
+
},
|
| 1217 |
+
{
|
| 1218 |
+
"name": "stackexchange_TitleBody_Answer/serverfault.com.jsonl.gz",
|
| 1219 |
+
"lines": 238507,
|
| 1220 |
+
"weight": 20
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"name": "stackexchange_Title_Answer/serverfault.com.jsonl.gz",
|
| 1224 |
+
"lines": 238507,
|
| 1225 |
+
"weight": 20
|
| 1226 |
+
},
|
| 1227 |
+
{
|
| 1228 |
+
"name": "stackexchange_duplicate_questions_title-body_title-body.jsonl.gz",
|
| 1229 |
+
"lines": 250460,
|
| 1230 |
+
"weight": 21
|
| 1231 |
+
},
|
| 1232 |
+
{
|
| 1233 |
+
"name": "stackexchange_duplicate_questions_body_body.jsonl.gz",
|
| 1234 |
+
"lines": 250519,
|
| 1235 |
+
"weight": 21
|
| 1236 |
+
},
|
| 1237 |
+
{
|
| 1238 |
+
"name": "squad_pairs.jsonl.gz",
|
| 1239 |
+
"lines": 87599,
|
| 1240 |
+
"weight": 22
|
| 1241 |
+
},
|
| 1242 |
+
{
|
| 1243 |
+
"name": "stackexchange_TitleBody_Answer/askubuntu.com.jsonl.gz",
|
| 1244 |
+
"lines": 267135,
|
| 1245 |
+
"weight": 22
|
| 1246 |
+
},
|
| 1247 |
+
{
|
| 1248 |
+
"name": "stackexchange_Title_Answer/askubuntu.com.jsonl.gz",
|
| 1249 |
+
"lines": 267135,
|
| 1250 |
+
"weight": 22
|
| 1251 |
+
},
|
| 1252 |
+
{
|
| 1253 |
+
"name": "stackexchange_title_body/serverfault.com.jsonl.gz",
|
| 1254 |
+
"lines": 270904,
|
| 1255 |
+
"weight": 23
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"name": "NQ-train_pairs.jsonl.gz",
|
| 1259 |
+
"lines": 100231,
|
| 1260 |
+
"weight": 25
|
| 1261 |
+
},
|
| 1262 |
+
{
|
| 1263 |
+
"name": "SimpleWiki.jsonl.gz",
|
| 1264 |
+
"lines": 102225,
|
| 1265 |
+
"weight": 26
|
| 1266 |
+
},
|
| 1267 |
+
{
|
| 1268 |
+
"name": "quora_duplicates_triplets.jsonl.gz",
|
| 1269 |
+
"lines": 103663,
|
| 1270 |
+
"weight": 26
|
| 1271 |
+
},
|
| 1272 |
+
{
|
| 1273 |
+
"name": "stackexchange_duplicate_questions_title_title.jsonl.gz",
|
| 1274 |
+
"lines": 304525,
|
| 1275 |
+
"weight": 26
|
| 1276 |
+
},
|
| 1277 |
+
{
|
| 1278 |
+
"name": "altlex.jsonl.gz",
|
| 1279 |
+
"lines": 112696,
|
| 1280 |
+
"weight": 28
|
| 1281 |
+
},
|
| 1282 |
+
{
|
| 1283 |
+
"name": "stackexchange_title_body/askubuntu.com.jsonl.gz",
|
| 1284 |
+
"lines": 347925,
|
| 1285 |
+
"weight": 29
|
| 1286 |
+
},
|
| 1287 |
+
{
|
| 1288 |
+
"name": "stackexchange_TitleBody_Answer/superuser.com.jsonl.gz",
|
| 1289 |
+
"lines": 352610,
|
| 1290 |
+
"weight": 30
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"name": "stackexchange_Title_Answer/superuser.com.jsonl.gz",
|
| 1294 |
+
"lines": 352610,
|
| 1295 |
+
"weight": 30
|
| 1296 |
+
},
|
| 1297 |
+
{
|
| 1298 |
+
"name": "wikihow.jsonl.gz",
|
| 1299 |
+
"lines": 128542,
|
| 1300 |
+
"weight": 32
|
| 1301 |
+
},
|
| 1302 |
+
{
|
| 1303 |
+
"name": "stackexchange_title_body/superuser.com.jsonl.gz",
|
| 1304 |
+
"lines": 435463,
|
| 1305 |
+
"weight": 36
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"name": "stackexchange_title_body/small_stackexchanges.jsonl.gz",
|
| 1309 |
+
"lines": 448146,
|
| 1310 |
+
"weight": 37
|
| 1311 |
+
},
|
| 1312 |
+
{
|
| 1313 |
+
"name": "stackexchange_TitleBody_Answer/small_stackexchanges.jsonl.gz",
|
| 1314 |
+
"lines": 460256,
|
| 1315 |
+
"weight": 38
|
| 1316 |
+
},
|
| 1317 |
+
{
|
| 1318 |
+
"name": "stackexchange_Title_Answer/small_stackexchanges.jsonl.gz",
|
| 1319 |
+
"lines": 460256,
|
| 1320 |
+
"weight": 38
|
| 1321 |
+
},
|
| 1322 |
+
{
|
| 1323 |
+
"name": "sentence-compression.jsonl.gz",
|
| 1324 |
+
"lines": 180000,
|
| 1325 |
+
"weight": 45
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"name": "AllNLI.jsonl.gz",
|
| 1329 |
+
"lines": 277230,
|
| 1330 |
+
"weight": 69
|
| 1331 |
+
},
|
| 1332 |
+
{
|
| 1333 |
+
"name": "eli5_question_answer.jsonl.gz",
|
| 1334 |
+
"lines": 325475,
|
| 1335 |
+
"weight": 81
|
| 1336 |
+
},
|
| 1337 |
+
{
|
| 1338 |
+
"name": "reddit/reddit_2015.jsonl.gz",
|
| 1339 |
+
"lines": 135108166,
|
| 1340 |
+
"weight": 82
|
| 1341 |
+
},
|
| 1342 |
+
{
|
| 1343 |
+
"name": "reddit/reddit_2016.jsonl.gz",
|
| 1344 |
+
"lines": 159164386,
|
| 1345 |
+
"weight": 82
|
| 1346 |
+
},
|
| 1347 |
+
{
|
| 1348 |
+
"name": "reddit/reddit_2017.jsonl.gz",
|
| 1349 |
+
"lines": 191485219,
|
| 1350 |
+
"weight": 82
|
| 1351 |
+
},
|
| 1352 |
+
{
|
| 1353 |
+
"name": "reddit/reddit_2018.jsonl.gz",
|
| 1354 |
+
"lines": 240726659,
|
| 1355 |
+
"weight": 82
|
| 1356 |
+
},
|
| 1357 |
+
{
|
| 1358 |
+
"name": "stackexchange_TitleBody_Answer/math.stackexchange.com.jsonl.gz",
|
| 1359 |
+
"lines": 1100953,
|
| 1360 |
+
"weight": 83
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"name": "stackexchange_Title_Answer/math.stackexchange.com.jsonl.gz",
|
| 1364 |
+
"lines": 1100953,
|
| 1365 |
+
"weight": 83
|
| 1366 |
+
},
|
| 1367 |
+
{
|
| 1368 |
+
"name": "stackexchange_title_body/math.stackexchange.com.jsonl.gz",
|
| 1369 |
+
"lines": 1338443,
|
| 1370 |
+
"weight": 83
|
| 1371 |
+
},
|
| 1372 |
+
{
|
| 1373 |
+
"name": "stackexchange_TitleBody_Answer/stackoverflow.com-Posts.jsonl.gz",
|
| 1374 |
+
"lines": 15768211,
|
| 1375 |
+
"weight": 83
|
| 1376 |
+
},
|
| 1377 |
+
{
|
| 1378 |
+
"name": "stackexchange_Title_Answer/stackoverflow.com-Posts.jsonl.gz",
|
| 1379 |
+
"lines": 15768211,
|
| 1380 |
+
"weight": 83
|
| 1381 |
+
},
|
| 1382 |
+
{
|
| 1383 |
+
"name": "stackexchange_title_body/stackoverflow.com-Posts.jsonl.gz",
|
| 1384 |
+
"lines": 18562443,
|
| 1385 |
+
"weight": 83
|
| 1386 |
+
},
|
| 1387 |
+
{
|
| 1388 |
+
"name": "specter_train_triples.jsonl.gz",
|
| 1389 |
+
"lines": 684100,
|
| 1390 |
+
"weight": 84
|
| 1391 |
+
},
|
| 1392 |
+
{
|
| 1393 |
+
"name": "S2ORC_title_abstract.jsonl.gz",
|
| 1394 |
+
"lines": 41769185,
|
| 1395 |
+
"weight": 123
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"name": "S2ORC_citation_pairs.jsonl.gz",
|
| 1399 |
+
"lines": 52603982,
|
| 1400 |
+
"weight": 123
|
| 1401 |
+
},
|
| 1402 |
+
{
|
| 1403 |
+
"name": "PAQ_pairs.jsonl.gz",
|
| 1404 |
+
"lines": 64371441,
|
| 1405 |
+
"weight": 123
|
| 1406 |
+
},
|
| 1407 |
+
{
|
| 1408 |
+
"name": "WikiAnswers_pairs.jsonl.gz",
|
| 1409 |
+
"lines": 77427422,
|
| 1410 |
+
"weight": 123
|
| 1411 |
+
},
|
| 1412 |
+
{
|
| 1413 |
+
"name": "S2ORC_citation_pairs_abstract.jsonl.gz",
|
| 1414 |
+
"lines": 116288806,
|
| 1415 |
+
"weight": 123
|
| 1416 |
+
},
|
| 1417 |
+
{
|
| 1418 |
+
"name": "searchQA_question_top5_snippets_merged.jsonl.gz",
|
| 1419 |
+
"lines": 582261,
|
| 1420 |
+
"weight": 144
|
| 1421 |
+
},
|
| 1422 |
+
{
|
| 1423 |
+
"name": "yahoo_answers_title_question.jsonl.gz",
|
| 1424 |
+
"lines": 659896,
|
| 1425 |
+
"weight": 163
|
| 1426 |
+
},
|
| 1427 |
+
{
|
| 1428 |
+
"name": "yahoo_answers_question_answer.jsonl.gz",
|
| 1429 |
+
"lines": 681164,
|
| 1430 |
+
"weight": 169
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"name": "yahoo_answers_title_answer.jsonl.gz",
|
| 1434 |
+
"lines": 1198260,
|
| 1435 |
+
"weight": 247
|
| 1436 |
+
},
|
| 1437 |
+
{
|
| 1438 |
+
"name": "amazon-qa-train-pairs.jsonl.gz",
|
| 1439 |
+
"lines": 2448839,
|
| 1440 |
+
"weight": 247
|
| 1441 |
+
},
|
| 1442 |
+
{
|
| 1443 |
+
"name": "gooaq_pairs.jsonl.gz",
|
| 1444 |
+
"lines": 3012496,
|
| 1445 |
+
"weight": 247
|
| 1446 |
+
},
|
| 1447 |
+
{
|
| 1448 |
+
"name": "msmarco-query_passage_negative.jsonl.gz",
|
| 1449 |
+
"lines": 9144553,
|
| 1450 |
+
"weight": 247
|
| 1451 |
+
}
|
| 1452 |
+
]
|
all-MiniLM-L6-v2/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:53aa51172d142c89d9012cce15ae4d6cc0ca6895895114379cacb4fab128d9db
|
| 3 |
+
size 90868376
|
all-MiniLM-L6-v2/modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
all-MiniLM-L6-v2/onnx/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6fd5d72fe4589f189f8ebc006442dbb529bb7ce38f8082112682524616046452
|
| 3 |
+
size 90405214
|
all-MiniLM-L6-v2/onnx/model_O1.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1391c6fc20b5530250bc15cbe1f47578ffeca55ab0551d335cc668b6299a88ec
|
| 3 |
+
size 90360328
|
all-MiniLM-L6-v2/onnx/model_O2.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1de3905029190b398c7d300b530e320cf4b5e7d3dfb9af1429ebd73fd9a16faf
|
| 3 |
+
size 90326566
|
all-MiniLM-L6-v2/onnx/model_O3.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a44f671e364dddbac31f203f07b91be6b0a35e51936e5ebfab65b6d9538b83ff
|
| 3 |
+
size 90326497
|
all-MiniLM-L6-v2/onnx/model_O4.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1667d7f3ba669048b13a96ee3a44456d5e42c8f44588ae8b603430e16160c485
|
| 3 |
+
size 45212349
|
all-MiniLM-L6-v2/onnx/model_qint8_arm64.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4278337fd0ff3c68bfb6291042cad8ab363e1d9fbc43dcb499fe91c871902474
|
| 3 |
+
size 23026053
|
all-MiniLM-L6-v2/onnx/model_qint8_avx512.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4278337fd0ff3c68bfb6291042cad8ab363e1d9fbc43dcb499fe91c871902474
|
| 3 |
+
size 23026053
|
all-MiniLM-L6-v2/onnx/model_qint8_avx512_vnni.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4278337fd0ff3c68bfb6291042cad8ab363e1d9fbc43dcb499fe91c871902474
|
| 3 |
+
size 23026053
|
all-MiniLM-L6-v2/onnx/model_quint8_avx2.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b941bf19f1f1283680f449fa6a7336bb5600bdcd5f84d10ddc5cd72218a0fd21
|
| 3 |
+
size 23046789
|
all-MiniLM-L6-v2/openvino/openvino_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8b86cab4722e2aefab310cf96d4d5a9eb3b187f7d9670a082afc55c7fa0d392a
|
| 3 |
+
size 90265744
|
all-MiniLM-L6-v2/openvino/openvino_model.xml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
all-MiniLM-L6-v2/openvino/openvino_model_qint8_quantized.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c92ea4af3c6bc7b4a0f3b3d61b147c850f4dbdd7c9e7beee0c0c70dc12da289b
|
| 3 |
+
size 22933664
|
all-MiniLM-L6-v2/openvino/openvino_model_qint8_quantized.xml
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
all-MiniLM-L6-v2/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c3a85f238711653950f6a79ece63eb0ea93d76f6a6284be04019c53733baf256
|
| 3 |
+
size 90888945
|
all-MiniLM-L6-v2/rust_model.ot
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2d98d96d278348988f2744e6445b8bc16d921c3f6e17c667362f3cb353007aea
|
| 3 |
+
size 90887379
|
all-MiniLM-L6-v2/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 256,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
all-MiniLM-L6-v2/special_tokens_map.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
all-MiniLM-L6-v2/tf_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:24c06a7429b843d46e40c6b167122053921bf94dce2e5550ea5c07fabc597646
|
| 3 |
+
size 91005696
|
all-MiniLM-L6-v2/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
all-MiniLM-L6-v2/tokenizer_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "name_or_path": "nreimers/MiniLM-L6-H384-uncased", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "BertTokenizer", "model_max_length": 512}
|
all-MiniLM-L6-v2/train_script.py
ADDED
|
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Train script for a single file
|
| 3 |
+
|
| 4 |
+
Need to set the TPU address first:
|
| 5 |
+
export XRT_TPU_CONFIG="localservice;0;localhost:51011"
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import torch.multiprocessing as mp
|
| 9 |
+
import threading
|
| 10 |
+
import time
|
| 11 |
+
import random
|
| 12 |
+
import sys
|
| 13 |
+
import argparse
|
| 14 |
+
import gzip
|
| 15 |
+
import json
|
| 16 |
+
import logging
|
| 17 |
+
import tqdm
|
| 18 |
+
import torch
|
| 19 |
+
from torch import nn
|
| 20 |
+
from torch.utils.data import DataLoader
|
| 21 |
+
import torch
|
| 22 |
+
import torch_xla
|
| 23 |
+
import torch_xla.core
|
| 24 |
+
import torch_xla.core.functions
|
| 25 |
+
import torch_xla.core.xla_model as xm
|
| 26 |
+
import torch_xla.distributed.xla_multiprocessing as xmp
|
| 27 |
+
import torch_xla.distributed.parallel_loader as pl
|
| 28 |
+
import os
|
| 29 |
+
from shutil import copyfile
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
from transformers import (
|
| 33 |
+
AdamW,
|
| 34 |
+
AutoModel,
|
| 35 |
+
AutoTokenizer,
|
| 36 |
+
get_linear_schedule_with_warmup,
|
| 37 |
+
set_seed,
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
class AutoModelForSentenceEmbedding(nn.Module):
|
| 41 |
+
def __init__(self, model_name, tokenizer, normalize=True):
|
| 42 |
+
super(AutoModelForSentenceEmbedding, self).__init__()
|
| 43 |
+
|
| 44 |
+
self.model = AutoModel.from_pretrained(model_name)
|
| 45 |
+
self.normalize = normalize
|
| 46 |
+
self.tokenizer = tokenizer
|
| 47 |
+
|
| 48 |
+
def forward(self, **kwargs):
|
| 49 |
+
model_output = self.model(**kwargs)
|
| 50 |
+
embeddings = self.mean_pooling(model_output, kwargs['attention_mask'])
|
| 51 |
+
if self.normalize:
|
| 52 |
+
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1)
|
| 53 |
+
|
| 54 |
+
return embeddings
|
| 55 |
+
|
| 56 |
+
def mean_pooling(self, model_output, attention_mask):
|
| 57 |
+
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
|
| 58 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 59 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 60 |
+
|
| 61 |
+
def save_pretrained(self, output_path):
|
| 62 |
+
if xm.is_master_ordinal():
|
| 63 |
+
self.tokenizer.save_pretrained(output_path)
|
| 64 |
+
self.model.config.save_pretrained(output_path)
|
| 65 |
+
|
| 66 |
+
xm.save(self.model.state_dict(), os.path.join(output_path, "pytorch_model.bin"))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def train_function(index, args, queue):
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model)
|
| 73 |
+
model = AutoModelForSentenceEmbedding(args.model, tokenizer)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Train Loop
|
| 77 |
+
device = xm.xla_device()
|
| 78 |
+
model = model.to(device)
|
| 79 |
+
|
| 80 |
+
# Instantiate optimizer
|
| 81 |
+
optimizer = AdamW(params=model.parameters(), lr=2e-5, correct_bias=True)
|
| 82 |
+
|
| 83 |
+
lr_scheduler = get_linear_schedule_with_warmup(
|
| 84 |
+
optimizer=optimizer,
|
| 85 |
+
num_warmup_steps=500,
|
| 86 |
+
num_training_steps=args.steps,
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Now we train the model
|
| 90 |
+
cross_entropy_loss = nn.CrossEntropyLoss()
|
| 91 |
+
max_grad_norm = 1
|
| 92 |
+
|
| 93 |
+
model.train()
|
| 94 |
+
|
| 95 |
+
for global_step in tqdm.trange(args.steps, disable=not xm.is_master_ordinal()):
|
| 96 |
+
#### Get the batch data
|
| 97 |
+
batch = queue.get()
|
| 98 |
+
#print(index, "batch {}x{}".format(len(batch), ",".join([str(len(b)) for b in batch])))
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
if len(batch[0]) == 2: #(anchor, positive)
|
| 102 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
| 103 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
| 104 |
+
|
| 105 |
+
### Compute embeddings
|
| 106 |
+
embeddings_a = model(**text1.to(device))
|
| 107 |
+
embeddings_b = model(**text2.to(device))
|
| 108 |
+
|
| 109 |
+
### Gather all embedings
|
| 110 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
| 111 |
+
embeddings_b = torch_xla.core.functions.all_gather(embeddings_b)
|
| 112 |
+
|
| 113 |
+
### Compute similarity scores 512 x 512
|
| 114 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
| 115 |
+
|
| 116 |
+
### Compute cross-entropy loss
|
| 117 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
| 118 |
+
|
| 119 |
+
## Symmetric loss as in CLIP
|
| 120 |
+
loss = (cross_entropy_loss(scores, labels) + cross_entropy_loss(scores.transpose(0, 1), labels)) / 2
|
| 121 |
+
|
| 122 |
+
else: #(anchor, positive, negative)
|
| 123 |
+
text1 = tokenizer([b[0] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
| 124 |
+
text2 = tokenizer([b[1] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
| 125 |
+
text3 = tokenizer([b[2] for b in batch], return_tensors="pt", max_length=args.max_length, truncation=True, padding="max_length")
|
| 126 |
+
|
| 127 |
+
embeddings_a = model(**text1.to(device))
|
| 128 |
+
embeddings_b1 = model(**text2.to(device))
|
| 129 |
+
embeddings_b2 = model(**text3.to(device))
|
| 130 |
+
|
| 131 |
+
embeddings_a = torch_xla.core.functions.all_gather(embeddings_a)
|
| 132 |
+
embeddings_b1 = torch_xla.core.functions.all_gather(embeddings_b1)
|
| 133 |
+
embeddings_b2 = torch_xla.core.functions.all_gather(embeddings_b2)
|
| 134 |
+
|
| 135 |
+
embeddings_b = torch.cat([embeddings_b1, embeddings_b2])
|
| 136 |
+
|
| 137 |
+
### Compute similarity scores 512 x 1024
|
| 138 |
+
scores = torch.mm(embeddings_a, embeddings_b.transpose(0, 1)) * args.scale
|
| 139 |
+
|
| 140 |
+
### Compute cross-entropy loss
|
| 141 |
+
labels = torch.tensor(range(len(scores)), dtype=torch.long, device=embeddings_a.device) # Example a[i] should match with b[i]
|
| 142 |
+
|
| 143 |
+
## One-way loss
|
| 144 |
+
loss = cross_entropy_loss(scores, labels)
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# Backward pass
|
| 148 |
+
optimizer.zero_grad()
|
| 149 |
+
loss.backward()
|
| 150 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), max_grad_norm)
|
| 151 |
+
|
| 152 |
+
xm.optimizer_step(optimizer, barrier=True)
|
| 153 |
+
lr_scheduler.step()
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
#Save model
|
| 157 |
+
if (global_step+1) % args.save_steps == 0:
|
| 158 |
+
output_path = os.path.join(args.output, str(global_step+1))
|
| 159 |
+
xm.master_print("save model: "+output_path)
|
| 160 |
+
model.save_pretrained(output_path)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
output_path = os.path.join(args.output, "final")
|
| 164 |
+
xm.master_print("save model final: "+ output_path)
|
| 165 |
+
model.save_pretrained(output_path)
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def produce_data(args, queue, filepaths, dataset_indices):
|
| 169 |
+
global_batch_size = args.batch_size*args.nprocs #Global batch size
|
| 170 |
+
size_per_dataset = int(global_batch_size / args.datasets_per_batch) #How many datasets per batch
|
| 171 |
+
num_same_dataset = int(size_per_dataset / args.batch_size)
|
| 172 |
+
print("producer", "global_batch_size", global_batch_size)
|
| 173 |
+
print("producer", "size_per_dataset", size_per_dataset)
|
| 174 |
+
print("producer", "num_same_dataset", num_same_dataset)
|
| 175 |
+
|
| 176 |
+
datasets = []
|
| 177 |
+
for filepath in filepaths:
|
| 178 |
+
if "reddit_" in filepath: #Special dataset class for Reddit files
|
| 179 |
+
data_obj = RedditDataset(filepath)
|
| 180 |
+
else:
|
| 181 |
+
data_obj = Dataset(filepath)
|
| 182 |
+
datasets.append(iter(data_obj))
|
| 183 |
+
|
| 184 |
+
# Store if dataset is in a 2 col or 3 col format
|
| 185 |
+
num_cols = {idx: len(next(dataset)) for idx, dataset in enumerate(datasets)}
|
| 186 |
+
|
| 187 |
+
while True:
|
| 188 |
+
texts_in_batch = set()
|
| 189 |
+
batch_format = None #2 vs 3 col format for this batch
|
| 190 |
+
|
| 191 |
+
#Add data from several sub datasets
|
| 192 |
+
for _ in range(args.datasets_per_batch):
|
| 193 |
+
valid_dataset = False #Check that datasets have the same 2/3 col format
|
| 194 |
+
while not valid_dataset:
|
| 195 |
+
data_idx = random.choice(dataset_indices)
|
| 196 |
+
if batch_format is None:
|
| 197 |
+
batch_format = num_cols[data_idx]
|
| 198 |
+
valid_dataset = True
|
| 199 |
+
else: #Check that this dataset has the same format
|
| 200 |
+
valid_dataset = (batch_format == num_cols[data_idx])
|
| 201 |
+
|
| 202 |
+
#Get data from this dataset
|
| 203 |
+
dataset = datasets[data_idx]
|
| 204 |
+
for _ in range(num_same_dataset):
|
| 205 |
+
for _ in range(args.nprocs):
|
| 206 |
+
batch_device = [] #A batch for one device
|
| 207 |
+
while len(batch_device) < args.batch_size:
|
| 208 |
+
sample = next(dataset)
|
| 209 |
+
in_batch = False
|
| 210 |
+
for text in sample:
|
| 211 |
+
if text in texts_in_batch:
|
| 212 |
+
in_batch = True
|
| 213 |
+
break
|
| 214 |
+
|
| 215 |
+
if not in_batch:
|
| 216 |
+
for text in sample:
|
| 217 |
+
texts_in_batch.add(text)
|
| 218 |
+
batch_device.append(sample)
|
| 219 |
+
|
| 220 |
+
queue.put(batch_device)
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class RedditDataset:
|
| 224 |
+
"""
|
| 225 |
+
A class that handles the reddit data files
|
| 226 |
+
"""
|
| 227 |
+
def __init__(self, filepath):
|
| 228 |
+
self.filepath = filepath
|
| 229 |
+
|
| 230 |
+
def __iter__(self):
|
| 231 |
+
while True:
|
| 232 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
| 233 |
+
for line in fIn:
|
| 234 |
+
data = json.loads(line)
|
| 235 |
+
|
| 236 |
+
if "response" in data and "context" in data:
|
| 237 |
+
yield [data["response"], data["context"]]
|
| 238 |
+
|
| 239 |
+
class Dataset:
|
| 240 |
+
"""
|
| 241 |
+
A class that handles one dataset
|
| 242 |
+
"""
|
| 243 |
+
def __init__(self, filepath):
|
| 244 |
+
self.filepath = filepath
|
| 245 |
+
|
| 246 |
+
def __iter__(self):
|
| 247 |
+
max_dataset_size = 10*1000*1000 #Cache small datasets in memory
|
| 248 |
+
dataset = []
|
| 249 |
+
data_format = None
|
| 250 |
+
|
| 251 |
+
while dataset is None or len(dataset) == 0:
|
| 252 |
+
with gzip.open(self.filepath, "rt") as fIn:
|
| 253 |
+
for line in fIn:
|
| 254 |
+
data = json.loads(line)
|
| 255 |
+
if isinstance(data, dict):
|
| 256 |
+
data = data['texts']
|
| 257 |
+
|
| 258 |
+
if data_format is None:
|
| 259 |
+
data_format = len(data)
|
| 260 |
+
|
| 261 |
+
#Ensure that all entries are of the same 2/3 col format
|
| 262 |
+
assert len(data) == data_format
|
| 263 |
+
|
| 264 |
+
if dataset is not None:
|
| 265 |
+
dataset.append(data)
|
| 266 |
+
if len(dataset) >= max_dataset_size:
|
| 267 |
+
dataset = None
|
| 268 |
+
|
| 269 |
+
yield data
|
| 270 |
+
|
| 271 |
+
# Data loaded. Now stream to the queue
|
| 272 |
+
# Shuffle for each epoch
|
| 273 |
+
while True:
|
| 274 |
+
random.shuffle(dataset)
|
| 275 |
+
for data in dataset:
|
| 276 |
+
yield data
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
|
| 280 |
+
if __name__ == "__main__":
|
| 281 |
+
parser = argparse.ArgumentParser()
|
| 282 |
+
parser.add_argument('--model', default='nreimers/MiniLM-L6-H384-uncased')
|
| 283 |
+
parser.add_argument('--steps', type=int, default=2000)
|
| 284 |
+
parser.add_argument('--save_steps', type=int, default=10000)
|
| 285 |
+
parser.add_argument('--batch_size', type=int, default=64)
|
| 286 |
+
parser.add_argument('--max_length', type=int, default=128)
|
| 287 |
+
parser.add_argument('--nprocs', type=int, default=8)
|
| 288 |
+
parser.add_argument('--datasets_per_batch', type=int, default=2, help="Number of datasets per batch")
|
| 289 |
+
parser.add_argument('--scale', type=float, default=20, help="Use 20 for cossim, and 1 when you work with unnormalized embeddings with dot product")
|
| 290 |
+
parser.add_argument('--data_folder', default="/data", help="Folder with your dataset files")
|
| 291 |
+
parser.add_argument('data_config', help="A data_config.json file")
|
| 292 |
+
parser.add_argument('output')
|
| 293 |
+
args = parser.parse_args()
|
| 294 |
+
|
| 295 |
+
# Ensure global batch size is divisble by data_sample_size
|
| 296 |
+
assert (args.batch_size*args.nprocs) % args.datasets_per_batch == 0
|
| 297 |
+
|
| 298 |
+
logging.info("Output: "+args.output)
|
| 299 |
+
if os.path.exists(args.output):
|
| 300 |
+
print("Output folder already exists.")
|
| 301 |
+
input("Continue?")
|
| 302 |
+
|
| 303 |
+
# Write train script to output path
|
| 304 |
+
os.makedirs(args.output, exist_ok=True)
|
| 305 |
+
|
| 306 |
+
data_config_path = os.path.join(args.output, 'data_config.json')
|
| 307 |
+
copyfile(args.data_config, data_config_path)
|
| 308 |
+
|
| 309 |
+
train_script_path = os.path.join(args.output, 'train_script.py')
|
| 310 |
+
copyfile(__file__, train_script_path)
|
| 311 |
+
with open(train_script_path, 'a') as fOut:
|
| 312 |
+
fOut.write("\n\n# Script was called via:\n#python " + " ".join(sys.argv))
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
#Load data config
|
| 317 |
+
with open(args.data_config) as fIn:
|
| 318 |
+
data_config = json.load(fIn)
|
| 319 |
+
|
| 320 |
+
queue = mp.Queue(maxsize=100*args.nprocs)
|
| 321 |
+
|
| 322 |
+
filepaths = []
|
| 323 |
+
dataset_indices = []
|
| 324 |
+
for idx, data in enumerate(data_config):
|
| 325 |
+
filepaths.append(os.path.join(os.path.expanduser(args.data_folder), data['name']))
|
| 326 |
+
dataset_indices.extend([idx]*data['weight'])
|
| 327 |
+
|
| 328 |
+
# Start producer
|
| 329 |
+
p = mp.Process(target=produce_data, args=(args, queue, filepaths, dataset_indices))
|
| 330 |
+
p.start()
|
| 331 |
+
|
| 332 |
+
# Run training
|
| 333 |
+
print("Start processes:", args.nprocs)
|
| 334 |
+
xmp.spawn(train_function, args=(args, queue), nprocs=args.nprocs, start_method='fork')
|
| 335 |
+
print("Training done")
|
| 336 |
+
print("It might be that not all processes exit automatically. In that case you must manually kill this process.")
|
| 337 |
+
print("With 'pkill python' you can kill all remaining python processes")
|
| 338 |
+
p.kill()
|
| 339 |
+
exit()
|
| 340 |
+
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
# Script was called via:
|
| 344 |
+
#python train_many_data_files_v2.py --steps 1000000 --batch_size 128 --model nreimers/MiniLM-L6-H384-uncased train_data_configs/all_datasets_v4.json output/all_datasets_v4_MiniLM-L6-H384-uncased-batch128
|
all-MiniLM-L6-v2/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
endpoint.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from flask import Flask, request, jsonify
|
| 2 |
+
import os
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
from llama_index.core import VectorStoreIndex, Settings, StorageContext, load_index_from_storage
|
| 5 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 6 |
+
from llama_index.llms.groq import Groq
|
| 7 |
+
import pandas as pd
|
| 8 |
+
from llama_index.core import Document
|
| 9 |
+
|
| 10 |
+
app = Flask(__name__)
|
| 11 |
+
|
| 12 |
+
# --- Configuration ---
|
| 13 |
+
PERSIST_DIR = "./storage"
|
| 14 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 15 |
+
LLM_MODEL = "llama3-8b-8192"
|
| 16 |
+
CSV_FILE_PATH = "shl_assessments.csv"
|
| 17 |
+
|
| 18 |
+
# --- Root Route (for health check) ---
|
| 19 |
+
@app.route("/", methods=["GET"])
|
| 20 |
+
def home():
|
| 21 |
+
return "🧠 SHL Chatbot API is running!", 200
|
| 22 |
+
|
| 23 |
+
# --- Utility Functions ---
|
| 24 |
+
def load_groq_llm():
|
| 25 |
+
load_dotenv()
|
| 26 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 27 |
+
if not api_key:
|
| 28 |
+
raise ValueError("GROQ_API_KEY not found in .env file or environment variables")
|
| 29 |
+
return Groq(model=LLM_MODEL, api_key=api_key, temperature=0.1)
|
| 30 |
+
|
| 31 |
+
def load_embeddings():
|
| 32 |
+
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 33 |
+
|
| 34 |
+
def load_data_from_csv(csv_path):
|
| 35 |
+
try:
|
| 36 |
+
df = pd.read_csv(csv_path)
|
| 37 |
+
required_columns = ["Assessment Name", "URL", "Remote Testing Support",
|
| 38 |
+
"Adaptive/IRT Support", "Duration (min)", "Test Type"]
|
| 39 |
+
if not all(col in df.columns for col in required_columns):
|
| 40 |
+
raise ValueError(f"CSV file must contain columns: {', '.join(required_columns)}")
|
| 41 |
+
return df.to_dict(orient="records")
|
| 42 |
+
except FileNotFoundError:
|
| 43 |
+
raise FileNotFoundError(f"CSV file not found at {csv_path}")
|
| 44 |
+
except Exception as e:
|
| 45 |
+
raise Exception(f"Error reading CSV: {e}")
|
| 46 |
+
|
| 47 |
+
def build_index(data):
|
| 48 |
+
Settings.embed_model = load_embeddings()
|
| 49 |
+
Settings.llm = load_groq_llm()
|
| 50 |
+
documents = [
|
| 51 |
+
Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}")
|
| 52 |
+
for item in data
|
| 53 |
+
]
|
| 54 |
+
index = VectorStoreIndex.from_documents(documents)
|
| 55 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 56 |
+
return index
|
| 57 |
+
|
| 58 |
+
def load_chat_engine():
|
| 59 |
+
if not os.path.exists(PERSIST_DIR):
|
| 60 |
+
return None
|
| 61 |
+
Settings.embed_model = load_embeddings()
|
| 62 |
+
Settings.llm = load_groq_llm()
|
| 63 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 64 |
+
index = load_index_from_storage(storage_context)
|
| 65 |
+
return index.as_chat_engine(chat_mode="context", verbose=True)
|
| 66 |
+
|
| 67 |
+
# --- Load or Build Index ---
|
| 68 |
+
try:
|
| 69 |
+
chat_engine = load_chat_engine()
|
| 70 |
+
if chat_engine is None:
|
| 71 |
+
assessment_data = load_data_from_csv(CSV_FILE_PATH)
|
| 72 |
+
build_index(assessment_data)
|
| 73 |
+
chat_engine = load_chat_engine()
|
| 74 |
+
except Exception as e:
|
| 75 |
+
print(f"❌ Error initializing chat engine: {e}")
|
| 76 |
+
chat_engine = None
|
| 77 |
+
|
| 78 |
+
# --- Endpoint ---
|
| 79 |
+
@app.route("/assessments", methods=["POST"])
|
| 80 |
+
def get_assessments():
|
| 81 |
+
data = request.get_json()
|
| 82 |
+
query = data.get("query")
|
| 83 |
+
|
| 84 |
+
if not query:
|
| 85 |
+
return jsonify({"error": "No query provided"}), 400
|
| 86 |
+
|
| 87 |
+
if chat_engine:
|
| 88 |
+
try:
|
| 89 |
+
response = chat_engine.chat(query)
|
| 90 |
+
results = []
|
| 91 |
+
|
| 92 |
+
for node in response.source_nodes:
|
| 93 |
+
try:
|
| 94 |
+
parts = node.node.text.split(", ")
|
| 95 |
+
results.append({
|
| 96 |
+
"assessment_name": parts[0].split(": ")[1] if len(parts) > 0 else "N/A",
|
| 97 |
+
"assessment_url": parts[1].split(": ")[1] if len(parts) > 1 else "N/A",
|
| 98 |
+
"remote_testing_support": parts[2].split(": ")[1] if len(parts) > 2 else "N/A",
|
| 99 |
+
"adaptive_irt_support": parts[3].split(": ")[1] if len(parts) > 3 else "N/A",
|
| 100 |
+
"duration": parts[4].split(": ")[1] if len(parts) > 4 else "N/A",
|
| 101 |
+
"test_type": parts[5].split(": ")[1] if len(parts) > 5 else "N/A"
|
| 102 |
+
})
|
| 103 |
+
except:
|
| 104 |
+
results.append({"error": "Error parsing assessment info"})
|
| 105 |
+
|
| 106 |
+
return jsonify({"query": query, "response": results}), 200
|
| 107 |
+
|
| 108 |
+
except Exception as e:
|
| 109 |
+
return jsonify({"error": f"Chat processing error: {e}"}), 500
|
| 110 |
+
else:
|
| 111 |
+
return jsonify({"error": "Chat engine not initialized"}), 500
|
| 112 |
+
|
| 113 |
+
# --- Entry Point for Local Debugging ---
|
| 114 |
+
if __name__ == "__main__":
|
| 115 |
+
app.run(host="0.0.0.0", port=10000)
|
| 116 |
+
|
| 117 |
+
from flask import Flask, request, jsonify
|
| 118 |
+
import os
|
| 119 |
+
from dotenv import load_dotenv
|
| 120 |
+
from llama_index.core import VectorStoreIndex, Settings, StorageContext, load_index_from_storage
|
| 121 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 122 |
+
from llama_index.llms.groq import Groq
|
| 123 |
+
import pandas as pd
|
| 124 |
+
from llama_index.core import Document
|
| 125 |
+
|
| 126 |
+
app = Flask(__name__)
|
| 127 |
+
|
| 128 |
+
# --- Configuration ---
|
| 129 |
+
PERSIST_DIR = "./storage"
|
| 130 |
+
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
| 131 |
+
LLM_MODEL = "llama3-8b-8192"
|
| 132 |
+
CSV_FILE_PATH = "shl_assessments.csv"
|
| 133 |
+
|
| 134 |
+
# --- Root Route (for health check) ---
|
| 135 |
+
@app.route("/", methods=["GET"])
|
| 136 |
+
def home():
|
| 137 |
+
return "🧠 SHL Chatbot API is running!", 200
|
| 138 |
+
|
| 139 |
+
# --- Utility Functions ---
|
| 140 |
+
def load_groq_llm():
|
| 141 |
+
load_dotenv()
|
| 142 |
+
api_key = os.getenv("GROQ_API_KEY")
|
| 143 |
+
if not api_key:
|
| 144 |
+
raise ValueError("GROQ_API_KEY not found in .env file or environment variables")
|
| 145 |
+
return Groq(model=LLM_MODEL, api_key=api_key, temperature=0.1)
|
| 146 |
+
|
| 147 |
+
def load_embeddings():
|
| 148 |
+
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 149 |
+
|
| 150 |
+
def load_data_from_csv(csv_path):
|
| 151 |
+
try:
|
| 152 |
+
df = pd.read_csv(csv_path)
|
| 153 |
+
required_columns = ["Assessment Name", "URL", "Remote Testing Support",
|
| 154 |
+
"Adaptive/IRT Support", "Duration (min)", "Test Type"]
|
| 155 |
+
if not all(col in df.columns for col in required_columns):
|
| 156 |
+
raise ValueError(f"CSV file must contain columns: {', '.join(required_columns)}")
|
| 157 |
+
return df.to_dict(orient="records")
|
| 158 |
+
except FileNotFoundError:
|
| 159 |
+
raise FileNotFoundError(f"CSV file not found at {csv_path}")
|
| 160 |
+
except Exception as e:
|
| 161 |
+
raise Exception(f"Error reading CSV: {e}")
|
| 162 |
+
|
| 163 |
+
def build_index(data):
|
| 164 |
+
Settings.embed_model = load_embeddings()
|
| 165 |
+
Settings.llm = load_groq_llm()
|
| 166 |
+
documents = [
|
| 167 |
+
Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}")
|
| 168 |
+
for item in data
|
| 169 |
+
]
|
| 170 |
+
index = VectorStoreIndex.from_documents(documents)
|
| 171 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 172 |
+
return index
|
| 173 |
+
|
| 174 |
+
def load_chat_engine():
|
| 175 |
+
if not os.path.exists(PERSIST_DIR):
|
| 176 |
+
return None
|
| 177 |
+
Settings.embed_model = load_embeddings()
|
| 178 |
+
Settings.llm = load_groq_llm()
|
| 179 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 180 |
+
index = load_index_from_storage(storage_context)
|
| 181 |
+
return index.as_chat_engine(chat_mode="context", verbose=True)
|
| 182 |
+
|
| 183 |
+
# --- Load or Build Index ---
|
| 184 |
+
try:
|
| 185 |
+
chat_engine = load_chat_engine()
|
| 186 |
+
if chat_engine is None:
|
| 187 |
+
assessment_data = load_data_from_csv(CSV_FILE_PATH)
|
| 188 |
+
build_index(assessment_data)
|
| 189 |
+
chat_engine = load_chat_engine()
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"❌ Error initializing chat engine: {e}")
|
| 192 |
+
chat_engine = None
|
| 193 |
+
|
| 194 |
+
# --- Endpoint ---
|
| 195 |
+
@app.route("/assessments", methods=["POST"])
|
| 196 |
+
def get_assessments():
|
| 197 |
+
data = request.get_json()
|
| 198 |
+
query = data.get("query")
|
| 199 |
+
|
| 200 |
+
if not query:
|
| 201 |
+
return jsonify({"error": "No query provided"}), 400
|
| 202 |
+
|
| 203 |
+
if chat_engine:
|
| 204 |
+
try:
|
| 205 |
+
response = chat_engine.chat(query)
|
| 206 |
+
results = []
|
| 207 |
+
|
| 208 |
+
for node in response.source_nodes:
|
| 209 |
+
try:
|
| 210 |
+
parts = node.node.text.split(", ")
|
| 211 |
+
results.append({
|
| 212 |
+
"assessment_name": parts[0].split(": ")[1] if len(parts) > 0 else "N/A",
|
| 213 |
+
"assessment_url": parts[1].split(": ")[1] if len(parts) > 1 else "N/A",
|
| 214 |
+
"remote_testing_support": parts[2].split(": ")[1] if len(parts) > 2 else "N/A",
|
| 215 |
+
"adaptive_irt_support": parts[3].split(": ")[1] if len(parts) > 3 else "N/A",
|
| 216 |
+
"duration": parts[4].split(": ")[1] if len(parts) > 4 else "N/A",
|
| 217 |
+
"test_type": parts[5].split(": ")[1] if len(parts) > 5 else "N/A"
|
| 218 |
+
})
|
| 219 |
+
except:
|
| 220 |
+
results.append({"error": "Error parsing assessment info"})
|
| 221 |
+
|
| 222 |
+
return jsonify({"query": query, "response": results}), 200
|
| 223 |
+
|
| 224 |
+
except Exception as e:
|
| 225 |
+
return jsonify({"error": f"Chat processing error: {e}"}), 500
|
| 226 |
+
else:
|
| 227 |
+
return jsonify({"error": "Chat engine not initialized"}), 500
|
| 228 |
+
|
| 229 |
+
# --- Entry Point for Local Debugging ---
|
| 230 |
+
if __name__ == "__main__":
|
| 231 |
+
app.run(host="0.0.0.0", port=10000)
|
main.py
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import shutil
|
| 3 |
+
import streamlit as st
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from llama_index.core import (
|
| 6 |
+
VectorStoreIndex,
|
| 7 |
+
Settings,
|
| 8 |
+
StorageContext,
|
| 9 |
+
load_index_from_storage,
|
| 10 |
+
)
|
| 11 |
+
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
| 12 |
+
from llama_index.llms.groq import Groq
|
| 13 |
+
import pandas as pd
|
| 14 |
+
from llama_index.core import Document
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
PERSIST_DIR = "./storage"
|
| 18 |
+
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 19 |
+
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 20 |
+
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 21 |
+
LLM_MODEL = "llama3-8b-8192"
|
| 22 |
+
CSV_FILE_PATH = "shl_assessments.csv"
|
| 23 |
+
GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or os.getenv["GROQ_API_KEY"] or os.getenv("GROQ_API_KEY")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def load_data_from_csv(csv_path):
|
| 27 |
+
"""Loads assessment data from a CSV file."""
|
| 28 |
+
try:
|
| 29 |
+
df = pd.read_csv(csv_path)
|
| 30 |
+
required_columns = ["Assessment Name", "URL", "Remote Testing Support",
|
| 31 |
+
"Adaptive/IRT Support", "Duration (min)", "Test Type"]
|
| 32 |
+
if not all(col in df.columns for col in required_columns):
|
| 33 |
+
raise ValueError(f"CSV file must contain columns: {', '.join(required_columns)}")
|
| 34 |
+
return df.to_dict(orient="records")
|
| 35 |
+
except FileNotFoundError:
|
| 36 |
+
raise FileNotFoundError(f"Error: CSV file not found at {csv_path}")
|
| 37 |
+
except ValueError as e:
|
| 38 |
+
raise ValueError(f"Error reading CSV: {e}")
|
| 39 |
+
except Exception as e:
|
| 40 |
+
raise Exception(f"An unexpected error occurred while loading CSV data: {e}")
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def load_groq_llm():
|
| 44 |
+
try:
|
| 45 |
+
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
| 46 |
+
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
| 47 |
+
except KeyError:
|
| 48 |
+
raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
|
| 49 |
+
|
| 50 |
+
return Groq(model=LLM_MODEL, api_key=api_key, temperature=0.1)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def load_embeddings():
|
| 55 |
+
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
|
| 56 |
+
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
|
| 57 |
+
|
| 58 |
+
def build_index(data):
|
| 59 |
+
"""Builds the vector index from the provided assessment data."""
|
| 60 |
+
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 61 |
+
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 62 |
+
Settings.llm = load_groq_llm()
|
| 63 |
+
|
| 64 |
+
documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
|
| 65 |
+
|
| 66 |
+
index = VectorStoreIndex.from_documents(documents)
|
| 67 |
+
index.storage_context.persist(persist_dir=PERSIST_DIR)
|
| 68 |
+
return index
|
| 69 |
+
|
| 70 |
+
def load_chat_engine():
|
| 71 |
+
"""Loads the chat engine from the persisted index."""
|
| 72 |
+
if not os.path.exists(PERSIST_DIR):
|
| 73 |
+
return None
|
| 74 |
+
|
| 75 |
+
Settings.embed_model = load_embeddings()
|
| 76 |
+
Settings.llm = load_groq_llm()
|
| 77 |
+
storage_context = StorageContext.from_defaults(persist_dir=PERSIST_DIR)
|
| 78 |
+
index = load_index_from_storage(storage_context)
|
| 79 |
+
return index.as_chat_engine(chat_mode="context", verbose=True)
|
| 80 |
+
|
| 81 |
+
def reset_index():
|
| 82 |
+
"""Resets the persisted index and chat history."""
|
| 83 |
+
try:
|
| 84 |
+
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
|
| 85 |
+
st.success("Knowledge index reset successfully!")
|
| 86 |
+
st.session_state.messages = [{"role": "assistant", "content": "Hello! I'm your SHL assessment assistant. How can I help you?"}]
|
| 87 |
+
st.session_state["index_built"] = False
|
| 88 |
+
if 'chat_engine' in st.session_state:
|
| 89 |
+
del st.session_state['chat_engine']
|
| 90 |
+
return None
|
| 91 |
+
except Exception as e:
|
| 92 |
+
st.error(f"Error resetting index: {str(e)}")
|
| 93 |
+
return None
|
| 94 |
+
|
| 95 |
+
def main():
|
| 96 |
+
st.set_page_config(
|
| 97 |
+
page_title="SHL Assessment Chatbot",
|
| 98 |
+
layout="wide",
|
| 99 |
+
initial_sidebar_state="collapsed"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
st.markdown("""
|
| 103 |
+
<style>
|
| 104 |
+
:root {
|
| 105 |
+
--primary: #6eb5ff;
|
| 106 |
+
--background: #000000;
|
| 107 |
+
--card: #f0f2f6;
|
| 108 |
+
--text: #ffffff;
|
| 109 |
+
--background: #000000;
|
| 110 |
+
--card: #f0f2f6;
|
| 111 |
+
--text: #ffffff;
|
| 112 |
+
}
|
| 113 |
+
.stApp {
|
| 114 |
+
background-color: var(--background) !important;
|
| 115 |
+
color: var(--text) !important;
|
| 116 |
+
}
|
| 117 |
+
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
|
| 118 |
+
color: var(--text) !important;
|
| 119 |
+
}
|
| 120 |
+
.stApp {
|
| 121 |
+
background-color: var(--background) !important;
|
| 122 |
+
color: var(--text) !important;
|
| 123 |
+
}
|
| 124 |
+
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
|
| 125 |
+
color: var(--text) !important;
|
| 126 |
+
}
|
| 127 |
+
.stApp {
|
| 128 |
+
background-color: var(--background) !important;
|
| 129 |
+
color: var(--text) !important;
|
| 130 |
+
}
|
| 131 |
+
.stMarkdown, .stTextInput, .stChatMessage, .stChatInputContainer, .css-10trblm, .css-1cpxqw2 {
|
| 132 |
+
color: var(--text) !important;
|
| 133 |
+
}
|
| 134 |
+
</style>
|
| 135 |
+
""", unsafe_allow_html=True)
|
| 136 |
+
|
| 137 |
+
load_dotenv()
|
| 138 |
+
os.environ["STREAMLIT_SERVER_ENABLE_FILE_WATCHER"] = "false"
|
| 139 |
+
os.environ["TORCH_DISABLE_STREAMLIT_WATCHER"] = "1"
|
| 140 |
+
os.environ["LLAMA_INDEX_DISABLE_OPENAI"] = "1"
|
| 141 |
+
|
| 142 |
+
if "messages" not in st.session_state:
|
| 143 |
+
st.session_state.messages = [{
|
| 144 |
+
"role": "assistant",
|
| 145 |
+
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
|
| 146 |
+
}]
|
| 147 |
+
st.session_state.messages = [{
|
| 148 |
+
"role": "assistant",
|
| 149 |
+
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
|
| 150 |
+
}]
|
| 151 |
+
if "index_built" not in st.session_state:
|
| 152 |
+
st.session_state["index_built"] = False
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
if not st.session_state["index_built"]:
|
| 158 |
+
try:
|
| 159 |
+
with st.spinner("Loading data and building index..."):
|
| 160 |
+
assessment_data = load_data_from_csv(CSV_FILE_PATH)
|
| 161 |
+
if assessment_data:
|
| 162 |
+
build_index(assessment_data)
|
| 163 |
+
st.session_state['chat_engine'] = load_chat_engine()
|
| 164 |
+
st.session_state["index_built"] = True
|
| 165 |
+
else:
|
| 166 |
+
st.error("Failed to load assessment data. Please check the CSV file.")
|
| 167 |
+
except Exception as e:
|
| 168 |
+
st.error(f"Error initializing application: {e}")
|
| 169 |
+
|
| 170 |
+
# --- Chat Interface ---
|
| 171 |
+
chat_engine = st.session_state.get('chat_engine')
|
| 172 |
+
if chat_engine:
|
| 173 |
+
for msg in st.session_state.messages:
|
| 174 |
+
icon = "🤖" if msg["role"] == "assistant" else "👤"
|
| 175 |
+
with st.chat_message(msg["role"]):
|
| 176 |
+
st.markdown(f"<span style='color: white;'>{icon} {msg['content']}</span>", unsafe_allow_html=True)
|
| 177 |
+
|
| 178 |
+
if prompt := st.chat_input("Ask me about SHL assessments..."):
|
| 179 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 180 |
+
with st.chat_message("user"):
|
| 181 |
+
st.markdown(f"<span style='color: white;'>👤 {prompt}</span>", unsafe_allow_html=True)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
with st.chat_message("assistant"):
|
| 185 |
+
try:
|
| 186 |
+
# Add formatting instructions to the prompt
|
| 187 |
+
formatted_prompt = f"{prompt}. Please provide a list of all matching SHL assessments (minimum 1, maximum 10). For each assessment, include the following details: Assessment Name: [Name], URL: [URL], Remote Testing Support: [Yes/No], Adaptive/IRT Support: [Yes/No], Duration: [Duration], Test Type: [Type]. If there are no matching assessments, please state that."
|
| 188 |
+
response = chat_engine.chat(formatted_prompt)
|
| 189 |
+
st.markdown(f"<span style='color: white;'>🤖 {response.response}</span>", unsafe_allow_html=True)
|
| 190 |
+
st.session_state.messages.append({"role": "assistant", "content": response.response})
|
| 191 |
+
except Exception as e:
|
| 192 |
+
st.error(f"An error occurred during chat: {e}")
|
| 193 |
+
|
| 194 |
+
else:
|
| 195 |
+
st.info("💬 Chat is ready! Ask me anything about SHL assessments.")
|
| 196 |
+
|
| 197 |
+
if __name__ == "__main__":
|
| 198 |
+
main()
|
| 199 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
streamlit==1.44.1
|
| 2 |
+
llama-index==0.12.28
|
| 3 |
+
llama-index-core==0.12.28
|
| 4 |
+
llama-index-embeddings-huggingface==0.5.2
|
| 5 |
+
llama-index-llms-groq==0.3.1
|
| 6 |
+
pandas==2.2.3
|
| 7 |
+
python-dotenv==1.1.0
|
| 8 |
+
sentence-transformers==4.0.2
|
| 9 |
+
groq==0.22.0
|
| 10 |
+
streamlit
|
| 11 |
+
Flask
|
| 12 |
+
gunicorn
|
shl_assessments.csv
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Assessment Name,URL,Remote Testing Support,Adaptive/IRT Support,Duration (min),Test Type
|
| 2 |
+
Cognitive Ability Test,https://www.shl.com/solutions/products/cognitive-ability-test/,Yes,Yes,20,Cognitive
|
| 3 |
+
Personality Profiler,https://www.shl.com/solutions/products/personality-profiler/,No,No,25,Personality
|
| 4 |
+
Java Developer Test,https://www.shl.com/solutions/products/java-developer-test/,Yes,No,30,Technical
|
| 5 |
+
Team Collaboration Assessment,https://www.shl.com/solutions/products/team-collaboration-assessment/,No,Yes,35,Behavioral
|
| 6 |
+
SQL Proficiency Test,https://www.shl.com/solutions/products/sql-proficiency-test/,Yes,No,40,Aptitude
|
| 7 |
+
Leadership Style Inventory,https://www.shl.com/solutions/products/leadership-style-inventory/,No,No,45,Situational
|
| 8 |
+
Customer Service Aptitude,https://www.shl.com/solutions/products/customer-service-aptitude/,Yes,Yes,20,Reasoning
|
| 9 |
+
Verbal Reasoning Test,https://www.shl.com/solutions/products/verbal-reasoning-test/,No,No,25,Communication
|
| 10 |
+
Numerical Reasoning Test,https://www.shl.com/solutions/products/numerical-reasoning-test/,Yes,No,30,Cognitive
|
| 11 |
+
Critical Thinking Assessment,https://www.shl.com/solutions/products/critical-thinking-assessment/,No,Yes,35,Personality
|
| 12 |
+
Python Coding Test,https://www.shl.com/solutions/products/python-coding-test/,Yes,No,40,Technical
|
| 13 |
+
Emotional Intelligence Survey,https://www.shl.com/solutions/products/emotional-intelligence-survey/,No,No,45,Behavioral
|
| 14 |
+
Situational Judgment Test,https://www.shl.com/solutions/products/situational-judgment-test/,Yes,Yes,20,Aptitude
|
| 15 |
+
Time Management Evaluation,https://www.shl.com/solutions/products/time-management-evaluation/,No,No,25,Situational
|
| 16 |
+
Data Analysis Assessment,https://www.shl.com/solutions/products/data-analysis-assessment/,Yes,No,30,Reasoning
|
| 17 |
+
Software Engineering Exam,https://www.shl.com/solutions/products/software-engineering-exam/,No,Yes,35,Communication
|
| 18 |
+
Finance & Accounting Aptitude,https://www.shl.com/solutions/products/finance-and-accounting-aptitude/,Yes,No,40,Cognitive
|
| 19 |
+
Logical Reasoning Test,https://www.shl.com/solutions/products/logical-reasoning-test/,No,No,45,Personality
|
| 20 |
+
Communication Skills Test,https://www.shl.com/solutions/products/communication-skills-test/,Yes,Yes,20,Technical
|
| 21 |
+
Machine Learning Quiz,https://www.shl.com/solutions/products/machine-learning-quiz/,No,No,25,Behavioral
|
| 22 |
+
Cognitive Ability Test,https://www.shl.com/solutions/products/cognitive-ability-test/,Yes,No,30,Aptitude
|
| 23 |
+
Personality Profiler,https://www.shl.com/solutions/products/personality-profiler/,No,Yes,35,Situational
|
| 24 |
+
Java Developer Test,https://www.shl.com/solutions/products/java-developer-test/,Yes,No,40,Reasoning
|
| 25 |
+
Team Collaboration Assessment,https://www.shl.com/solutions/products/team-collaboration-assessment/,No,No,45,Communication
|
| 26 |
+
SQL Proficiency Test,https://www.shl.com/solutions/products/sql-proficiency-test/,Yes,Yes,20,Cognitive
|
| 27 |
+
Leadership Style Inventory,https://www.shl.com/solutions/products/leadership-style-inventory/,No,No,25,Personality
|
| 28 |
+
Customer Service Aptitude,https://www.shl.com/solutions/products/customer-service-aptitude/,Yes,No,30,Technical
|
| 29 |
+
Verbal Reasoning Test,https://www.shl.com/solutions/products/verbal-reasoning-test/,No,Yes,35,Behavioral
|
| 30 |
+
Numerical Reasoning Test,https://www.shl.com/solutions/products/numerical-reasoning-test/,Yes,No,40,Aptitude
|
| 31 |
+
Critical Thinking Assessment,https://www.shl.com/solutions/products/critical-thinking-assessment/,No,No,45,Situational
|
| 32 |
+
Python Coding Test,https://www.shl.com/solutions/products/python-coding-test/,Yes,Yes,20,Reasoning
|
| 33 |
+
Emotional Intelligence Survey,https://www.shl.com/solutions/products/emotional-intelligence-survey/,No,No,25,Communication
|
| 34 |
+
Situational Judgment Test,https://www.shl.com/solutions/products/situational-judgment-test/,Yes,No,30,Cognitive
|
| 35 |
+
Time Management Evaluation,https://www.shl.com/solutions/products/time-management-evaluation/,No,Yes,35,Personality
|
| 36 |
+
Data Analysis Assessment,https://www.shl.com/solutions/products/data-analysis-assessment/,Yes,No,40,Technical
|
| 37 |
+
Software Engineering Exam,https://www.shl.com/solutions/products/software-engineering-exam/,No,No,45,Behavioral
|
| 38 |
+
Finance & Accounting Aptitude,https://www.shl.com/solutions/products/finance-and-accounting-aptitude/,Yes,Yes,20,Aptitude
|
| 39 |
+
Logical Reasoning Test,https://www.shl.com/solutions/products/logical-reasoning-test/,No,No,25,Situational
|
| 40 |
+
Communication Skills Test,https://www.shl.com/solutions/products/communication-skills-test/,Yes,No,30,Reasoning
|
| 41 |
+
Machine Learning Quiz,https://www.shl.com/solutions/products/machine-learning-quiz/,No,Yes,35,Communication
|
| 42 |
+
Cognitive Ability Test,https://www.shl.com/solutions/products/cognitive-ability-test/,Yes,No,40,Cognitive
|
| 43 |
+
Personality Profiler,https://www.shl.com/solutions/products/personality-profiler/,No,No,45,Personality
|
| 44 |
+
Java Developer Test,https://www.shl.com/solutions/products/java-developer-test/,Yes,Yes,20,Technical
|
| 45 |
+
Team Collaboration Assessment,https://www.shl.com/solutions/products/team-collaboration-assessment/,No,No,25,Behavioral
|
| 46 |
+
SQL Proficiency Test,https://www.shl.com/solutions/products/sql-proficiency-test/,Yes,No,30,Aptitude
|
| 47 |
+
Leadership Style Inventory,https://www.shl.com/solutions/products/leadership-style-inventory/,No,Yes,35,Situational
|
| 48 |
+
Customer Service Aptitude,https://www.shl.com/solutions/products/customer-service-aptitude/,Yes,No,40,Reasoning
|
| 49 |
+
Verbal Reasoning Test,https://www.shl.com/solutions/products/verbal-reasoning-test/,No,No,45,Communication
|
| 50 |
+
Numerical Reasoning Test,https://www.shl.com/solutions/products/numerical-reasoning-test/,Yes,Yes,20,Cognitive
|
| 51 |
+
Critical Thinking Assessment,https://www.shl.com/solutions/products/critical-thinking-assessment/,No,No,25,Personality
|
| 52 |
+
Python Coding Test,https://www.shl.com/solutions/products/python-coding-test/,Yes,No,30,Technical
|
| 53 |
+
Emotional Intelligence Survey,https://www.shl.com/solutions/products/emotional-intelligence-survey/,No,Yes,35,Behavioral
|
| 54 |
+
Situational Judgment Test,https://www.shl.com/solutions/products/situational-judgment-test/,Yes,No,40,Aptitude
|
| 55 |
+
Time Management Evaluation,https://www.shl.com/solutions/products/time-management-evaluation/,No,No,45,Situational
|
| 56 |
+
Data Analysis Assessment,https://www.shl.com/solutions/products/data-analysis-assessment/,Yes,Yes,20,Reasoning
|
| 57 |
+
Software Engineering Exam,https://www.shl.com/solutions/products/software-engineering-exam/,No,No,25,Communication
|
| 58 |
+
Finance & Accounting Aptitude,https://www.shl.com/solutions/products/finance-and-accounting-aptitude/,Yes,No,30,Cognitive
|
| 59 |
+
Logical Reasoning Test,https://www.shl.com/solutions/products/logical-reasoning-test/,No,Yes,35,Personality
|
| 60 |
+
Communication Skills Test,https://www.shl.com/solutions/products/communication-skills-test/,Yes,No,40,Technical
|
| 61 |
+
Machine Learning Quiz,https://www.shl.com/solutions/products/machine-learning-quiz/,No,No,45,Behavioral
|
| 62 |
+
Cognitive Ability Test,https://www.shl.com/solutions/products/cognitive-ability-test/,Yes,Yes,20,Aptitude
|
| 63 |
+
Personality Profiler,https://www.shl.com/solutions/products/personality-profiler/,No,No,25,Situational
|
| 64 |
+
Java Developer Test,https://www.shl.com/solutions/products/java-developer-test/,Yes,No,30,Reasoning
|
| 65 |
+
Team Collaboration Assessment,https://www.shl.com/solutions/products/team-collaboration-assessment/,No,Yes,35,Communication
|
| 66 |
+
SQL Proficiency Test,https://www.shl.com/solutions/products/sql-proficiency-test/,Yes,No,40,Cognitive
|
| 67 |
+
Leadership Style Inventory,https://www.shl.com/solutions/products/leadership-style-inventory/,No,No,45,Personality
|
| 68 |
+
Customer Service Aptitude,https://www.shl.com/solutions/products/customer-service-aptitude/,Yes,Yes,20,Technical
|
| 69 |
+
Verbal Reasoning Test,https://www.shl.com/solutions/products/verbal-reasoning-test/,No,No,25,Behavioral
|
| 70 |
+
Numerical Reasoning Test,https://www.shl.com/solutions/products/numerical-reasoning-test/,Yes,No,30,Aptitude
|
| 71 |
+
Critical Thinking Assessment,https://www.shl.com/solutions/products/critical-thinking-assessment/,No,Yes,35,Situational
|
| 72 |
+
Python Coding Test,https://www.shl.com/solutions/products/python-coding-test/,Yes,No,40,Reasoning
|
| 73 |
+
Emotional Intelligence Survey,https://www.shl.com/solutions/products/emotional-intelligence-survey/,No,No,45,Communication
|
| 74 |
+
Situational Judgment Test,https://www.shl.com/solutions/products/situational-judgment-test/,Yes,Yes,20,Cognitive
|
| 75 |
+
Time Management Evaluation,https://www.shl.com/solutions/products/time-management-evaluation/,No,No,25,Personality
|
| 76 |
+
Data Analysis Assessment,https://www.shl.com/solutions/products/data-analysis-assessment/,Yes,No,30,Technical
|
| 77 |
+
Software Engineering Exam,https://www.shl.com/solutions/products/software-engineering-exam/,No,Yes,35,Behavioral
|
| 78 |
+
Finance & Accounting Aptitude,https://www.shl.com/solutions/products/finance-and-accounting-aptitude/,Yes,No,40,Aptitude
|
| 79 |
+
Logical Reasoning Test,https://www.shl.com/solutions/products/logical-reasoning-test/,No,No,45,Situational
|
| 80 |
+
Communication Skills Test,https://www.shl.com/solutions/products/communication-skills-test/,Yes,Yes,20,Reasoning
|
| 81 |
+
Machine Learning Quiz,https://www.shl.com/solutions/products/machine-learning-quiz/,No,No,25,Communication
|
| 82 |
+
Cognitive Ability Test,https://www.shl.com/solutions/products/cognitive-ability-test/,Yes,No,30,Cognitive
|
| 83 |
+
Personality Profiler,https://www.shl.com/solutions/products/personality-profiler/,No,Yes,35,Personality
|
| 84 |
+
Java Developer Test,https://www.shl.com/solutions/products/java-developer-test/,Yes,No,40,Technical
|
| 85 |
+
Team Collaboration Assessment,https://www.shl.com/solutions/products/team-collaboration-assessment/,No,No,45,Behavioral
|
| 86 |
+
SQL Proficiency Test,https://www.shl.com/solutions/products/sql-proficiency-test/,Yes,Yes,20,Aptitude
|
| 87 |
+
Leadership Style Inventory,https://www.shl.com/solutions/products/leadership-style-inventory/,No,No,25,Situational
|
| 88 |
+
Customer Service Aptitude,https://www.shl.com/solutions/products/customer-service-aptitude/,Yes,No,30,Reasoning
|
| 89 |
+
Verbal Reasoning Test,https://www.shl.com/solutions/products/verbal-reasoning-test/,No,Yes,35,Communication
|
| 90 |
+
Numerical Reasoning Test,https://www.shl.com/solutions/products/numerical-reasoning-test/,Yes,No,40,Cognitive
|
| 91 |
+
Critical Thinking Assessment,https://www.shl.com/solutions/products/critical-thinking-assessment/,No,No,45,Personality
|
| 92 |
+
Python Coding Test,https://www.shl.com/solutions/products/python-coding-test/,Yes,Yes,20,Technical
|
| 93 |
+
Emotional Intelligence Survey,https://www.shl.com/solutions/products/emotional-intelligence-survey/,No,No,25,Behavioral
|
| 94 |
+
Situational Judgment Test,https://www.shl.com/solutions/products/situational-judgment-test/,Yes,No,30,Aptitude
|
| 95 |
+
Time Management Evaluation,https://www.shl.com/solutions/products/time-management-evaluation/,No,Yes,35,Situational
|
| 96 |
+
Data Analysis Assessment,https://www.shl.com/solutions/products/data-analysis-assessment/,Yes,No,40,Reasoning
|
| 97 |
+
Software Engineering Exam,https://www.shl.com/solutions/products/software-engineering-exam/,No,No,45,Communication
|
| 98 |
+
Finance & Accounting Aptitude,https://www.shl.com/solutions/products/finance-and-accounting-aptitude/,Yes,Yes,20,Cognitive
|
| 99 |
+
Logical Reasoning Test,https://www.shl.com/solutions/products/logical-reasoning-test/,No,No,25,Personality
|
| 100 |
+
Communication Skills Test,https://www.shl.com/solutions/products/communication-skills-test/,Yes,No,30,Technical
|
| 101 |
+
Machine Learning Quiz,https://www.shl.com/solutions/products/machine-learning-quiz/,No,Yes,35,Behavioral
|
storage/default__vector_store.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
storage/docstore.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
storage/graph_store.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"graph_dict": {}}
|
storage/image__vector_store.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"embedding_dict": {}, "text_id_to_ref_doc_id": {}, "metadata_dict": {}}
|
storage/index_store.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"index_store/data": {"d05d7679-e3c3-4463-8ebb-3546191f3a69": {"__type__": "vector_store", "__data__": "{\"index_id\": \"d05d7679-e3c3-4463-8ebb-3546191f3a69\", \"summary\": null, \"nodes_dict\": {\"1c33403f-62ee-4a45-8c7e-4a1a8d295921\": \"1c33403f-62ee-4a45-8c7e-4a1a8d295921\", \"94d2cdb9-f5bd-41fa-bf79-92f1d4b03898\": \"94d2cdb9-f5bd-41fa-bf79-92f1d4b03898\", \"fa619f4e-9527-4fd1-ae9c-701f88213a71\": \"fa619f4e-9527-4fd1-ae9c-701f88213a71\", \"ae0ad3e2-3a03-4520-b182-d62d8006c433\": \"ae0ad3e2-3a03-4520-b182-d62d8006c433\", \"06e1cf6f-ef51-439f-bc9f-3baf7233f443\": \"06e1cf6f-ef51-439f-bc9f-3baf7233f443\", \"2b84c0ec-82d8-49a4-ade7-77bcbeffe9f4\": \"2b84c0ec-82d8-49a4-ade7-77bcbeffe9f4\", \"1233d6bf-5664-4e92-9581-5be18b141baa\": \"1233d6bf-5664-4e92-9581-5be18b141baa\", \"523f5875-5fa0-46ad-980c-b0777c53af31\": \"523f5875-5fa0-46ad-980c-b0777c53af31\", \"b1b769b7-6f0a-4728-b00c-29c41ec07af7\": \"b1b769b7-6f0a-4728-b00c-29c41ec07af7\", \"187bf2bd-3bbb-47df-80e9-672cf571d181\": \"187bf2bd-3bbb-47df-80e9-672cf571d181\", \"5d43e57c-eada-4b04-83f0-96fa9bea2765\": \"5d43e57c-eada-4b04-83f0-96fa9bea2765\", \"20ffb540-1ef5-4c9f-921b-ea7f872f685c\": \"20ffb540-1ef5-4c9f-921b-ea7f872f685c\", \"3addec3f-721d-4b64-a709-5a5380a0aba4\": \"3addec3f-721d-4b64-a709-5a5380a0aba4\", \"8438f7ae-1514-472d-80b4-9a4d60f48e6b\": \"8438f7ae-1514-472d-80b4-9a4d60f48e6b\", \"5da3e70f-6934-4c40-9d5b-acf7aeeac6a3\": \"5da3e70f-6934-4c40-9d5b-acf7aeeac6a3\", \"995edbf0-74e1-4083-8f60-98f89b680336\": \"995edbf0-74e1-4083-8f60-98f89b680336\", \"02602778-ab96-4e35-9430-03c30aabe5ab\": \"02602778-ab96-4e35-9430-03c30aabe5ab\", \"5b736259-6f8b-4aa3-9ceb-dfd1e4620c3a\": \"5b736259-6f8b-4aa3-9ceb-dfd1e4620c3a\", \"540730ac-02c6-4c53-b1af-1b99cd6ce86a\": \"540730ac-02c6-4c53-b1af-1b99cd6ce86a\", \"7ab316eb-e53e-49ef-bdce-2d4152f78c9e\": \"7ab316eb-e53e-49ef-bdce-2d4152f78c9e\", \"d55e4b8f-579c-4e4e-a3cb-dbfcfd38463c\": \"d55e4b8f-579c-4e4e-a3cb-dbfcfd38463c\", \"7cd5bbf6-222b-451a-9adc-5215048d4219\": \"7cd5bbf6-222b-451a-9adc-5215048d4219\", \"b9b546c1-e457-4368-ad28-843ef5bd4196\": \"b9b546c1-e457-4368-ad28-843ef5bd4196\", \"e617ad14-34b7-4d09-b33c-b17b7b480a2a\": \"e617ad14-34b7-4d09-b33c-b17b7b480a2a\", \"8bcd6f8e-b7fc-4328-ad2d-68c9510b02da\": \"8bcd6f8e-b7fc-4328-ad2d-68c9510b02da\", \"8c32be74-a616-449f-a0f7-451c8d4f3232\": \"8c32be74-a616-449f-a0f7-451c8d4f3232\", \"980a6d6c-44af-4802-a8a4-855c6945c637\": \"980a6d6c-44af-4802-a8a4-855c6945c637\", \"1917b51e-cb83-4c91-82ce-cae806dbde88\": \"1917b51e-cb83-4c91-82ce-cae806dbde88\", \"32f55832-2c1a-49f4-b5f5-5c1a4ce91f71\": \"32f55832-2c1a-49f4-b5f5-5c1a4ce91f71\", \"8466a2c8-16a8-4bfc-bb0d-bad4aed77bc0\": \"8466a2c8-16a8-4bfc-bb0d-bad4aed77bc0\", \"754e6307-ef57-4c74-8e69-ad123ab179a2\": \"754e6307-ef57-4c74-8e69-ad123ab179a2\", \"e4890f6e-e88e-41af-8906-720b2154ac30\": \"e4890f6e-e88e-41af-8906-720b2154ac30\", \"1a753576-b223-41a1-91ae-af50f10eca6f\": \"1a753576-b223-41a1-91ae-af50f10eca6f\", \"1450402c-60fe-4173-aa26-9fd29e35dc0e\": \"1450402c-60fe-4173-aa26-9fd29e35dc0e\", \"8538e7e2-51fa-4177-9fd3-c0a7beef9945\": \"8538e7e2-51fa-4177-9fd3-c0a7beef9945\", \"f7f9e2d6-cdd0-4000-af62-07aad08a6add\": \"f7f9e2d6-cdd0-4000-af62-07aad08a6add\", \"5969c678-6c10-4e40-ab81-cb81f4230004\": \"5969c678-6c10-4e40-ab81-cb81f4230004\", \"f28a2e8f-a3e9-4223-ba20-e16dd7f75566\": \"f28a2e8f-a3e9-4223-ba20-e16dd7f75566\", \"cad9cc59-708e-4564-98f0-0c8fec149377\": \"cad9cc59-708e-4564-98f0-0c8fec149377\", \"a1f0ccb5-c233-4e1c-bcf6-1ea87e7ba749\": \"a1f0ccb5-c233-4e1c-bcf6-1ea87e7ba749\", \"0ae1fe03-dc86-444f-8579-056647ae1758\": \"0ae1fe03-dc86-444f-8579-056647ae1758\", \"77221aed-93b6-4299-ba17-4c07113db5fe\": \"77221aed-93b6-4299-ba17-4c07113db5fe\", \"200dd2d9-eece-4cd4-bbcd-4ff9f36e4960\": \"200dd2d9-eece-4cd4-bbcd-4ff9f36e4960\", \"4ef820cc-20bb-47f7-bc23-3ebf974d2b5c\": \"4ef820cc-20bb-47f7-bc23-3ebf974d2b5c\", \"ec52500d-12a9-4de6-b11a-87b06eac8f31\": \"ec52500d-12a9-4de6-b11a-87b06eac8f31\", \"3bc85d9e-6c26-458e-a5ad-fb2b263fca7a\": \"3bc85d9e-6c26-458e-a5ad-fb2b263fca7a\", \"9e4e052b-956e-4856-bd05-c4a7723ba2c4\": \"9e4e052b-956e-4856-bd05-c4a7723ba2c4\", \"5911c107-f421-41d7-973c-2d208f784693\": \"5911c107-f421-41d7-973c-2d208f784693\", \"619bfdc1-a169-4e65-b197-78b9bef745c8\": \"619bfdc1-a169-4e65-b197-78b9bef745c8\", \"8b3112e4-1ad7-4a9d-a4a4-6f7f3e598124\": \"8b3112e4-1ad7-4a9d-a4a4-6f7f3e598124\", \"d2b2745d-a122-4dce-b9f1-a8d4e0fe8d74\": \"d2b2745d-a122-4dce-b9f1-a8d4e0fe8d74\", \"b9c0d3da-7c39-46b0-bcd9-0bf10b678d01\": \"b9c0d3da-7c39-46b0-bcd9-0bf10b678d01\", \"0f97c2ee-ab52-4487-8fbe-7170421d5dca\": \"0f97c2ee-ab52-4487-8fbe-7170421d5dca\", \"3c7c8128-6c56-418b-97e9-94221af751ea\": \"3c7c8128-6c56-418b-97e9-94221af751ea\", \"a7c3ca4d-0e8e-40b5-bfc9-3fe82d457bfc\": \"a7c3ca4d-0e8e-40b5-bfc9-3fe82d457bfc\", \"b6cdf91b-5b9d-4aef-9f0e-f52361934133\": \"b6cdf91b-5b9d-4aef-9f0e-f52361934133\", \"22a8d6f1-7b24-4ba2-8b94-adc105330ef8\": \"22a8d6f1-7b24-4ba2-8b94-adc105330ef8\", \"c72b32ae-e7e2-4056-9266-19ffc974d05f\": \"c72b32ae-e7e2-4056-9266-19ffc974d05f\", \"917897e6-c6f1-4d0b-acd9-8e0c919af3d2\": \"917897e6-c6f1-4d0b-acd9-8e0c919af3d2\", \"9565237a-1f5c-48d9-84ca-34f60145891f\": \"9565237a-1f5c-48d9-84ca-34f60145891f\", \"61b2074a-77ab-465f-8e77-a6680d252cb6\": \"61b2074a-77ab-465f-8e77-a6680d252cb6\", \"9d289d93-3ab4-490b-ad8d-4c378fe554b3\": \"9d289d93-3ab4-490b-ad8d-4c378fe554b3\", \"c8c0261a-5fbc-41b4-b34a-8b2098400427\": \"c8c0261a-5fbc-41b4-b34a-8b2098400427\", \"373ed326-a94c-40f6-80a7-1be07052d343\": \"373ed326-a94c-40f6-80a7-1be07052d343\", \"3826da16-4c66-4b29-a6fa-3f7102c6b379\": \"3826da16-4c66-4b29-a6fa-3f7102c6b379\", \"56d19ec3-4e0a-49c0-922d-eea6884c785c\": \"56d19ec3-4e0a-49c0-922d-eea6884c785c\", \"4ad46bae-4f08-448c-b892-4268764fe1bc\": \"4ad46bae-4f08-448c-b892-4268764fe1bc\", \"173ff29a-d800-4d7d-ba2b-da737169f2cf\": \"173ff29a-d800-4d7d-ba2b-da737169f2cf\", \"5db5a672-91a9-4798-bead-8d400c0d0bb1\": \"5db5a672-91a9-4798-bead-8d400c0d0bb1\", \"7c2f64bb-ec14-4b8d-bfd0-5b14191c5809\": \"7c2f64bb-ec14-4b8d-bfd0-5b14191c5809\", \"2f278108-f352-41d0-82f7-1828de3fb16e\": \"2f278108-f352-41d0-82f7-1828de3fb16e\", \"ad259806-6807-45d9-a425-8a8c73a5f4ba\": \"ad259806-6807-45d9-a425-8a8c73a5f4ba\", \"be5dabf6-2231-4d00-bc61-7c62a61b7fc4\": \"be5dabf6-2231-4d00-bc61-7c62a61b7fc4\", \"09b364a9-d72d-4623-9800-4ebc13774ba7\": \"09b364a9-d72d-4623-9800-4ebc13774ba7\", \"2165fda3-a9a8-4830-9a61-421008e38c0c\": \"2165fda3-a9a8-4830-9a61-421008e38c0c\", \"b043c9d3-0b83-4ce4-ae23-6161b069af66\": \"b043c9d3-0b83-4ce4-ae23-6161b069af66\", \"36714536-310e-4c8e-9e7c-4ccdf48cc2b7\": \"36714536-310e-4c8e-9e7c-4ccdf48cc2b7\", \"e325972d-c75a-4020-a535-5c66932fd90e\": \"e325972d-c75a-4020-a535-5c66932fd90e\", \"53e85b60-39b3-4ae7-ab12-40433c4fea8f\": \"53e85b60-39b3-4ae7-ab12-40433c4fea8f\", \"6a38fae6-b26d-419f-a7ee-7bcf9a316ed4\": \"6a38fae6-b26d-419f-a7ee-7bcf9a316ed4\", \"a3e73773-7d62-4a6d-9ecd-5e0a1c581f9b\": \"a3e73773-7d62-4a6d-9ecd-5e0a1c581f9b\", \"330ee559-4eeb-4a4e-8ba4-d9ad41a8a6d4\": \"330ee559-4eeb-4a4e-8ba4-d9ad41a8a6d4\", \"eb05cf8d-2988-4a56-a27f-daeba8cd4351\": \"eb05cf8d-2988-4a56-a27f-daeba8cd4351\", \"3ceab828-6131-4e14-a38c-b7a49e93fa00\": \"3ceab828-6131-4e14-a38c-b7a49e93fa00\", \"575261c8-b595-449c-9910-f731dfbbc524\": \"575261c8-b595-449c-9910-f731dfbbc524\", \"2b804415-dea0-4228-bb01-cdef7b7314f1\": \"2b804415-dea0-4228-bb01-cdef7b7314f1\", \"b81e8926-a94d-4a0d-a131-2b094e0f544e\": \"b81e8926-a94d-4a0d-a131-2b094e0f544e\", \"67438345-98b2-4ecc-9a32-7737b81a377f\": \"67438345-98b2-4ecc-9a32-7737b81a377f\", \"22912616-4dd1-4fa9-a721-b703015efbce\": \"22912616-4dd1-4fa9-a721-b703015efbce\", \"14d8706f-030b-41a5-89ba-9c8da9ffa437\": \"14d8706f-030b-41a5-89ba-9c8da9ffa437\", \"046bddfd-74ca-4f19-90fb-7e467fd20451\": \"046bddfd-74ca-4f19-90fb-7e467fd20451\", \"df56b2a3-3630-401b-ad25-7f8102b56957\": \"df56b2a3-3630-401b-ad25-7f8102b56957\", \"28e480fb-1b36-4316-99e2-4ceccc37f0ca\": \"28e480fb-1b36-4316-99e2-4ceccc37f0ca\", \"c3466ff2-beeb-4d67-8812-60e43ada861c\": \"c3466ff2-beeb-4d67-8812-60e43ada861c\", \"ac7db4fa-eba7-418f-9b7e-0be0148f52e6\": \"ac7db4fa-eba7-418f-9b7e-0be0148f52e6\", \"cf422ea9-3371-407d-a5de-3718a41642ff\": \"cf422ea9-3371-407d-a5de-3718a41642ff\", \"aaa8a4bb-d027-48bd-b725-4637335e425c\": \"aaa8a4bb-d027-48bd-b725-4637335e425c\", \"9d7f56dd-17c7-440c-8295-bc3a84e11317\": \"9d7f56dd-17c7-440c-8295-bc3a84e11317\", \"747c0f41-c1cc-461d-bb8e-ea78071f0bc3\": \"747c0f41-c1cc-461d-bb8e-ea78071f0bc3\", \"0bd536f3-3582-4159-aa20-9e3bd05e223a\": \"0bd536f3-3582-4159-aa20-9e3bd05e223a\"}, \"doc_id_dict\": {}, \"embeddings_dict\": {}}"}}}
|