Spaces:
Sleeping
Sleeping
updated main.py
Browse files
main.py
CHANGED
|
@@ -16,11 +16,9 @@ from llama_index.core import Document
|
|
| 16 |
|
| 17 |
PERSIST_DIR = "./storage"
|
| 18 |
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 19 |
-
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 20 |
-
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
| 21 |
LLM_MODEL = "llama3-8b-8192"
|
| 22 |
CSV_FILE_PATH = "shl_assessments.csv"
|
| 23 |
-
GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or
|
| 24 |
|
| 25 |
|
| 26 |
def load_data_from_csv(csv_path):
|
|
@@ -43,7 +41,6 @@ def load_data_from_csv(csv_path):
|
|
| 43 |
def load_groq_llm():
|
| 44 |
try:
|
| 45 |
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
| 46 |
-
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
| 47 |
except KeyError:
|
| 48 |
raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
|
| 49 |
|
|
@@ -52,13 +49,11 @@ def load_groq_llm():
|
|
| 52 |
|
| 53 |
|
| 54 |
def load_embeddings():
|
| 55 |
-
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
|
| 56 |
-
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
|
| 57 |
|
| 58 |
def build_index(data):
|
| 59 |
"""Builds the vector index from the provided assessment data."""
|
| 60 |
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 61 |
-
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
| 62 |
Settings.llm = load_groq_llm()
|
| 63 |
|
| 64 |
documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
|
|
@@ -144,16 +139,9 @@ def main():
|
|
| 144 |
"role": "assistant",
|
| 145 |
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
|
| 146 |
}]
|
| 147 |
-
st.session_state.messages = [{
|
| 148 |
-
"role": "assistant",
|
| 149 |
-
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
|
| 150 |
-
}]
|
| 151 |
if "index_built" not in st.session_state:
|
| 152 |
st.session_state["index_built"] = False
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
if not st.session_state["index_built"]:
|
| 158 |
try:
|
| 159 |
with st.spinner("Loading data and building index..."):
|
|
|
|
| 16 |
|
| 17 |
PERSIST_DIR = "./storage"
|
| 18 |
EMBED_MODEL = "./all-MiniLM-L6-v2"
|
|
|
|
|
|
|
| 19 |
LLM_MODEL = "llama3-8b-8192"
|
| 20 |
CSV_FILE_PATH = "shl_assessments.csv"
|
| 21 |
+
GROQ_API_KEY = st.secrets["GROQ_API_KEY"] or os.getenv("GROQ_API_KEY")
|
| 22 |
|
| 23 |
|
| 24 |
def load_data_from_csv(csv_path):
|
|
|
|
| 41 |
def load_groq_llm():
|
| 42 |
try:
|
| 43 |
api_key = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
|
|
|
| 44 |
except KeyError:
|
| 45 |
raise ValueError("GROQ_API_KEY not found in Streamlit secrets.")
|
| 46 |
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
def load_embeddings():
|
| 52 |
+
return HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
|
|
|
|
| 53 |
|
| 54 |
def build_index(data):
|
| 55 |
"""Builds the vector index from the provided assessment data."""
|
| 56 |
return HuggingFaceEmbedding(model_name=EMBED_MODEL)
|
|
|
|
| 57 |
Settings.llm = load_groq_llm()
|
| 58 |
|
| 59 |
documents = [Document(text=f"Name: {item['Assessment Name']}, URL: {item['URL']}, Remote Testing: {item['Remote Testing Support']}, Adaptive/IRT: {item['Adaptive/IRT Support']}, Duration: {item['Duration (min)']}, Type: {item['Test Type']}") for item in data]
|
|
|
|
| 139 |
"role": "assistant",
|
| 140 |
"content": "Hello! I'm your SHL assessment assistant. How can I help you?"
|
| 141 |
}]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
if "index_built" not in st.session_state:
|
| 143 |
st.session_state["index_built"] = False
|
| 144 |
|
|
|
|
|
|
|
|
|
|
| 145 |
if not st.session_state["index_built"]:
|
| 146 |
try:
|
| 147 |
with st.spinner("Loading data and building index..."):
|