from unsloth import FastLanguageModel import torch import gradio as gr import xml.etree.ElementTree as ET import re """ This module provides utilities for extracting structured data from text blocks. It supports parsing XML-like structures, Markdown-like formatting, and alternative text representations for extracting "choice" and "justification" fields. Functions: extract_from_xml_et(text: str) -> dict Parses XML-like text and extracts key-value pairs. extract_choice(text: str) -> str Extracts the choice (e.g., A), B), C), D)) from a text block. extract_justification(text: str) -> str Extracts the justification text from a text block. extract_from_markdown_regex(text: str) -> dict Extracts data from Markdown-like structured text, specifically "choice" and "justification" fields. extract_fields(text: str) -> list Processes text blocks to extract structured data using a combination of XML parsing, regex-based choice and justification extraction, and Markdown-like parsing. """ def extract_from_xml_et(text: str) -> dict: """ Parses an XML-like string and extracts key-value pairs from its elements. Parameters: text (str): A string containing XML-like content (e.g., value). Returns: dict: A dictionary where the keys are lowercase XML tags and the values are their corresponding text content. None: Returns None if XML parsing fails. Example: >>> text = '"value"' >>> extract_from_xml_et(text) {'key': 'value'} """ try: wrapped_text = f"{text}" root = ET.fromstring(wrapped_text) data = {} for child in root: if child.text: value = child.text.strip().strip('"') data[child.tag.lower()] = value return data except ET.ParseError: return None def extract_choice(text: str) -> str: """ Extracts the choice (e.g., A), B), C), D)) from a text block. Parameters: text (str): Input text to search for the choice. Returns: str: The extracted choice, or None if not found. Example: >>> text = "A) This is a sample choice." >>> extract_choice(text) 'A)' """ choice_pattern = r'([A-D]\))' match = re.search(choice_pattern, text) if match: return match.group(1).strip() return None def extract_justification(text: str) -> str: """ Extracts the justification text from a text block. Parameters: text (str): Input text to search for the justification. Returns: str: The extracted justification, or None if not found. Example: >>> text = "- Justification: This is the reason." >>> extract_justification(text) 'This is the reason.' """ justification_pattern = r'(?:- )?Justification:\s*(.+)' match = re.search(justification_pattern, text) if match: return match.group(1).strip() return None def extract_from_markdown_regex(text: str) -> dict: """ Extracts structured data from Markdown-like text blocks. Parameters: text (str): Input text containing Markdown-like content, with **choice** and **justification** fields. Returns: dict: A dictionary containing "choice" and "justification", or None if no match is found. Example: >>> text = "**choice**: A **justification**: This is the reason." >>> extract_from_markdown_regex(text) {'choice': 'A', 'justification': 'This is the reason.'} """ choice_pattern = r'\*\*choice\*\*:\s*(.+?)' justification_pattern = r'\*\*justification\*\*:\s*([\s\S]+?)(?=\*\*choice\*\*|$)' choice_match = re.search(choice_pattern, text) justification_match = re.search(justification_pattern, text) if choice_match and justification_match: return { "choice": choice_match.group(1).strip(), "justification": justification_match.group(1).strip() } return None def extract_fields(text: str) -> list: """ Processes text blocks to extract structured data. This function attempts to parse each block using the following methods: 1. XML Parsing: Uses extract_from_xml_et to handle XML-like content. 2. Regex for Choice and Justification: Extracts these fields separately. 3. Markdown Parsing: Uses extract_from_markdown_regex for Markdown-like structures. Parameters: text (str): Input text containing one or more blocks of data. Returns: list: A list of dictionaries, each containing extracted data from a block. Workflow: 1. Splits the input text into blocks using double line breaks (\n\n). 2. For each block: - Attempts to parse it using extract_from_xml_et. - If unsuccessful, tries extract_choice and extract_justification. - Finally, falls back to extract_from_markdown_regex. 3. Aggregates the results into a list of dictionaries. Example: >>> text = ''' "value" **choice**: A **justification**: This is the reason. A) Taking all reasonable measures to safeguard user data, - Justification: This is the reason. ''' >>> extract_fields(text) [ {'key': 'value'}, {'choice': 'A', 'justification': 'This is the reason.'}, {'choice': 'A)', 'justification': 'This is the reason.'} ] """ entries = [] blocks = re.split(r'\n\s*\n', text.strip()) # Split text into blocks by double newlines for block in blocks: print("Processing Block:", block) extracted_data = {} # Try extracting using XML xml_data = extract_from_xml_et(block) if xml_data: print("Extracted via XML:", xml_data) entries.append(xml_data) continue # Try extracting using separated choice and justification regex choice = extract_choice(block) justification = extract_justification(block) if choice or justification: extracted_data["choice"] = choice extracted_data["justification"] = justification entries.append(extracted_data) continue # Try extracting using Markdown regex markdown_data = extract_from_markdown_regex(block) if markdown_data: print("Extracted via Markdown Regex:", markdown_data) entries.append(markdown_data) return entries ### The code initializes the LLM model and tokenizer from a fine-tuned checkpoint located in a directory called unified_model. model,tokenizer = FastLanguageModel.from_pretrained('./unified_model') def generate_response_true_false(instruction): """ Generates a response using your fine-tuned model based on the provided instruction. This function enables faster inference through the `FastLanguageModel` and prepares a prompt for the model to determine whether the given statement is "True" or "False". Args: instruction (str): A string containing the statement and instructions to be evaluated. Returns: str: "True" or "False" based on the model's response, or "Unable to determine" if the response cannot be parsed reliably. """ FastLanguageModel.for_inference(model) # Enable native 2x faster inference within the function prompt = f"""### Instruction: Determine if the following statement is true or false. Respond only with "True" or "False". ### Statement: {instruction} ### Answer:""" inputs = tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): outputs = model.generate(**inputs, max_new_tokens=50) response = tokenizer.decode(outputs[0], skip_special_tokens=True) response = response.split("### Answer:")[-1].strip() # Extract True/False from response if response.lower() == "true": return "True" elif response.lower() == "false": return "False" else: # Try to identify the answer even if it's not perfectly formatted if "true" in response.lower(): return "True" elif "false" in response.lower(): return "False" else: return "Unable to determine." def generate_response_open_ended(instruction): """ Generates a response using your fine-tuned model based on the provided instruction. This function enables faster inference through the `FastLanguageModel` and prepares a prompt for the model to determine whether the given statement is "True" or "False". Args: instruction (str): A string containing the statement and instructions to be evaluated. Returns: str: A response from the model to the provided question or "Unable to determine" if the response cannot be parsed reliably. """ FastLanguageModel.for_inference(model) # Enable native 2x faster inference within the function prompt = f"""### Instruction: Answer the provided question with the knowledge provided to you ### Question: {instruction} ### Answer: """ inputs = tokenizer(prompt, return_tensors="pt").to("cuda") with torch.no_grad(): outputs = model.generate(**inputs,early_stopping=False,min_length=50,length_penalty=2,max_length=200) response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the answer from the generated response by splitting on "### Answer:" response = response.split('### Answer:')[1] return response def generate_response_multiple_choice(question,choice_A,choice_B,choice_C,choice_D): instruction = f'''{question} Choices: A) {choice_A}, B) {choice_B}, C) {choice_C}, D) {choice_D} ''' """ Generates a response using a fine-tuned language model for multiple-choice questions. Args: instruction (str): A string containing the question and its options. Returns: dict: A dictionary with the selected choice and its justification. Example: { "choice": "A", "justification": "Explanation for why Option A is correct." } If the model fails to provide a valid response, defaults to: { "choice": "None", "justification": "Could not parse JSON" } """ # Enable native faster inference for the model FastLanguageModel.for_inference(model) # Define the prompt with a detailed instruction for the model prompt = f"""### Instruction: In the following question, you are provided with 4 choices. Select the best choice based on the knowledge provided and provide a justification for that choice. **You must return only your response with the following keys:** - "choice": The best choice letter - "justification": The justification for your choice **Example Response:** **choice**: A **justification**: Explanation for why Option A is correct ### Question: {instruction} ### Answer: """ # Tokenize the prompt and move it to GPU for inference inputs = tokenizer(prompt, return_tensors="pt").to("cuda") # Generate a response from the model with torch.no_grad(): outputs = model.generate( **inputs, early_stopping=True, min_length=50, length_penalty=2, do_sample=True, max_new_tokens=300, top_p=0.95, top_k=50, temperature=0.65, num_return_sequences=1 ) # Decode the response into text response = tokenizer.decode(outputs[0], skip_special_tokens=True) # Extract the answer from the generated response by splitting on "### Answer:" response = response.split('### Answer:')[1] print("RESPONSE",response) data = extract_fields(response) if len(data) == 0: response = {"choice": data[0]['choice'], "justification": data[0]['justification']} else: response = {"choice": data[-1]['choice'], "justification": data[-1]['justification']} return response def true_false_greet(question): if question == "": # Return a default response if no input is given return "No question was given to answer" else: # Call a placeholder function (must be implemented separately) response = generate_response_true_false(question) # Note: This function is not defined in this code return f"{response}!" def open_ended_greet(question): """ Processes the user's question and returns a response. Args: question (str): The input text provided by the user. Returns: str: A processed response. If no input is given, a default message is returned. """ if question == "": # Return a default response if no question is provided return "No question was given to answer" else: # Call a placeholder function (must be implemented separately) to generate a response response = generate_response_open_ended(question) # Note: generate_response is not defined in this snippet # Return the formatted response return f"{response}!" def multiple_choice_greet(question, choice_A, choice_B, choice_C, choice_D): """ Processes the user's question and multiple-choice options to generate a response. Args: question (str): The input question provided by the user. choice_A (str): Option A for the question. choice_B (str): Option B for the question. choice_C (str): Option C for the question. choice_D (str): Option D for the question. Returns: str: A response based on the input. If no question is provided, returns a default message. If no choices are provided, returns a default message. """ if question == "": # Return a default response if no question is provided return "No question was given to answer" if choice_A == "" and choice_B == "" and choice_C == "" and choice_D == "": # Return a default response if no choices are provided return "No choice was given" else: # Call a placeholder function (must be implemented separately) to generate a response response = generate_response_multiple_choice(question, choice_A, choice_B, choice_C, choice_D) actual_response = "Selected Choice: " + response['choice'] + "\nJustification: " + response['justification'] # Return the formatted response return f"{actual_response}" #### Function which enables the visibility of true/false questions interface def show_true_false_interface(): return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False) #### Function which enables the visibility of open-ended questions interface def show_open_ended_interface(): return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) #### Function which enables the visibility of multiple-choice questions interface def show_multiple_choice_interface(): return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True) # print(generate_response_multiple_choice("Which of the following best describes a bank’s legal duty in cases of phishing, according to Greek law?", # "Taking all reasonable measures to safeguard user data and transactions", # "Ensuring absolute prevention of all cyberattacks", # "Holding customers solely responsible for phishing losses", # "Avoiding liability by implementing disclaimers" # )) with gr.Blocks() as demo: ### We define a row in which we create the navigation buttons for each question type with gr.Row(): btn_t_f = gr.Button('True/False questions') btn_open_ended = gr.Button('Open-Ended questions') btn_m_c = gr.Button('Multiple-Choice questions') ### We define the interface for the true/false questions with gr.Column(visible=True) as true_false_interface: gr.Markdown("## True-False Template") question_simple = gr.Textbox(label="Enter your question") simple_output = gr.Textbox(label="Output", interactive=False) submit_simple = gr.Button("Submit") submit_simple.click(true_false_greet, inputs=question_simple, outputs=simple_output) ### We define the interface for the open-ended questions with gr.Column(visible=False) as open_ended_interface: gr.Markdown("## Open Ended Template") question_simple = gr.Textbox(label="Enter your question") simple_output = gr.Textbox(label="Output", interactive=False) submit_simple = gr.Button("Submit") submit_simple.click(open_ended_greet, inputs=question_simple, outputs=simple_output) ### We define the interface for the multiple-choice questions with gr.Column(visible=False) as mc_interface: gr.Markdown("## Multiple-Choice Template") question_mc = gr.Textbox(label="Enter your question") choice_A = gr.Textbox(label="Choice A") choice_B = gr.Textbox(label="Choice B") choice_C = gr.Textbox(label="Choice C") choice_D = gr.Textbox(label="Choice D") mc_output = gr.Textbox(label="Output", interactive=False) submit_mc = gr.Button("Submit") submit_mc.click(multiple_choice_greet, inputs=[question_mc, choice_A, choice_B, choice_C, choice_D], outputs=mc_output) ### If a navigation button is clicked, a visibility function is executed btn_t_f.click(show_true_false_interface, outputs=[true_false_interface, open_ended_interface, mc_interface]) btn_open_ended.click(show_open_ended_interface, outputs=[true_false_interface, open_ended_interface, mc_interface]) btn_m_c.click(show_multiple_choice_interface, outputs=[true_false_interface, open_ended_interface, mc_interface]) demo.launch()