Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,211 @@
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
model,tokenizer = FastLanguageModel.from_pretrained('./unified_model')
|
| 5 |
|
|
|
|
| 6 |
def generate_response_true_false(instruction):
|
| 7 |
"""
|
| 8 |
Generates a response using your fine-tuned model based on the provided instruction.
|
|
@@ -72,11 +275,22 @@ Answer the provided question with the knowledge provided to you
|
|
| 72 |
|
| 73 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 74 |
with torch.no_grad():
|
| 75 |
-
outputs = model.generate(**inputs,early_stopping=False,min_length=50,length_penalty=2,max_length=
|
| 76 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 77 |
return response
|
| 78 |
|
| 79 |
-
def generate_response_multiple_choice(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
"""
|
| 81 |
Generates a response using a fine-tuned language model for multiple-choice questions.
|
| 82 |
|
|
@@ -114,13 +328,8 @@ def generate_response_multiple_choice(instruction,choice_A,choice_B,choice_C,cho
|
|
| 114 |
### Question:
|
| 115 |
{instruction}
|
| 116 |
|
| 117 |
-
### Choices:
|
| 118 |
-
A) {choice_A}
|
| 119 |
-
B) {choice_B}
|
| 120 |
-
C) {choice_C}
|
| 121 |
-
D) {choice_D}
|
| 122 |
-
|
| 123 |
### Answer:
|
|
|
|
| 124 |
"""
|
| 125 |
|
| 126 |
# Tokenize the prompt and move it to GPU for inference
|
|
@@ -137,12 +346,20 @@ def generate_response_multiple_choice(instruction,choice_A,choice_B,choice_C,cho
|
|
| 137 |
max_new_tokens=300,
|
| 138 |
top_p=0.95,
|
| 139 |
top_k=50,
|
| 140 |
-
temperature=0.
|
| 141 |
num_return_sequences=1
|
| 142 |
)
|
| 143 |
|
| 144 |
# Decode the response into text
|
| 145 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
return response
|
| 147 |
|
| 148 |
def true_false_greet(question):
|
|
@@ -170,10 +387,7 @@ def open_ended_greet(question):
|
|
| 170 |
else:
|
| 171 |
# Call a placeholder function (must be implemented separately) to generate a response
|
| 172 |
response = generate_response_open_ended(question) # Note: generate_response is not defined in this snippet
|
| 173 |
-
|
| 174 |
-
# Extract the answer from the generated response by splitting on "### Answer:"
|
| 175 |
-
# response = response.split('### Answer:')[1]
|
| 176 |
-
|
| 177 |
# Return the formatted response
|
| 178 |
return f"{response}!"
|
| 179 |
|
|
@@ -189,7 +403,7 @@ def multiple_choice_greet(question, choice_A, choice_B, choice_C, choice_D):
|
|
| 189 |
choice_D (str): Option D for the question.
|
| 190 |
|
| 191 |
Returns:
|
| 192 |
-
str: A response based on the input.
|
| 193 |
If no question is provided, returns a default message.
|
| 194 |
If no choices are provided, returns a default message.
|
| 195 |
"""
|
|
@@ -202,29 +416,39 @@ def multiple_choice_greet(question, choice_A, choice_B, choice_C, choice_D):
|
|
| 202 |
else:
|
| 203 |
# Call a placeholder function (must be implemented separately) to generate a response
|
| 204 |
response = generate_response_multiple_choice(question, choice_A, choice_B, choice_C, choice_D)
|
| 205 |
-
|
| 206 |
-
# Extract the answer from the generated response by splitting on "### Answer:"
|
| 207 |
-
# response = response.split('### Answer:')[1]
|
| 208 |
-
|
| 209 |
# Return the formatted response
|
| 210 |
-
return f"{
|
| 211 |
|
|
|
|
| 212 |
def show_true_false_interface():
|
| 213 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
| 214 |
|
|
|
|
| 215 |
def show_open_ended_interface():
|
| 216 |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 217 |
|
|
|
|
| 218 |
def show_multiple_choice_interface():
|
| 219 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 220 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 221 |
with gr.Blocks() as demo:
|
| 222 |
|
|
|
|
| 223 |
with gr.Row():
|
| 224 |
btn_t_f = gr.Button('True/False questions')
|
| 225 |
btn_open_ended = gr.Button('Open-Ended questions')
|
| 226 |
btn_m_c = gr.Button('Multiple-Choice questions')
|
| 227 |
|
|
|
|
| 228 |
with gr.Column(visible=True) as true_false_interface:
|
| 229 |
gr.Markdown("## True-False Template")
|
| 230 |
question_simple = gr.Textbox(label="Enter your question")
|
|
@@ -232,6 +456,7 @@ with gr.Blocks() as demo:
|
|
| 232 |
submit_simple = gr.Button("Submit")
|
| 233 |
submit_simple.click(true_false_greet, inputs=question_simple, outputs=simple_output)
|
| 234 |
|
|
|
|
| 235 |
with gr.Column(visible=False) as open_ended_interface:
|
| 236 |
gr.Markdown("## Open Ended Template")
|
| 237 |
question_simple = gr.Textbox(label="Enter your question")
|
|
@@ -239,6 +464,7 @@ with gr.Blocks() as demo:
|
|
| 239 |
submit_simple = gr.Button("Submit")
|
| 240 |
submit_simple.click(open_ended_greet, inputs=question_simple, outputs=simple_output)
|
| 241 |
|
|
|
|
| 242 |
with gr.Column(visible=False) as mc_interface:
|
| 243 |
gr.Markdown("## Multiple-Choice Template")
|
| 244 |
question_mc = gr.Textbox(label="Enter your question")
|
|
@@ -250,8 +476,9 @@ with gr.Blocks() as demo:
|
|
| 250 |
submit_mc = gr.Button("Submit")
|
| 251 |
submit_mc.click(multiple_choice_greet, inputs=[question_mc, choice_A, choice_B, choice_C, choice_D], outputs=mc_output)
|
| 252 |
|
|
|
|
| 253 |
btn_t_f.click(show_true_false_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 254 |
btn_open_ended.click(show_open_ended_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 255 |
btn_m_c.click(show_multiple_choice_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 256 |
|
| 257 |
-
demo.launch(
|
|
|
|
| 1 |
from unsloth import FastLanguageModel
|
| 2 |
import torch
|
| 3 |
import gradio as gr
|
| 4 |
+
import xml.etree.ElementTree as ET
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
"""
|
| 8 |
+
This module provides utilities for extracting structured data from text blocks.
|
| 9 |
+
It supports parsing XML-like structures, Markdown-like formatting, and alternative
|
| 10 |
+
text representations for extracting "choice" and "justification" fields.
|
| 11 |
+
|
| 12 |
+
Functions:
|
| 13 |
+
extract_from_xml_et(text: str) -> dict
|
| 14 |
+
Parses XML-like text and extracts key-value pairs.
|
| 15 |
+
|
| 16 |
+
extract_choice(text: str) -> str
|
| 17 |
+
Extracts the choice (e.g., A), B), C), D)) from a text block.
|
| 18 |
+
|
| 19 |
+
extract_justification(text: str) -> str
|
| 20 |
+
Extracts the justification text from a text block.
|
| 21 |
+
|
| 22 |
+
extract_from_markdown_regex(text: str) -> dict
|
| 23 |
+
Extracts data from Markdown-like structured text, specifically "choice"
|
| 24 |
+
and "justification" fields.
|
| 25 |
+
|
| 26 |
+
extract_fields(text: str) -> list
|
| 27 |
+
Processes text blocks to extract structured data using a combination of
|
| 28 |
+
XML parsing, regex-based choice and justification extraction, and Markdown-like parsing.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def extract_from_xml_et(text: str) -> dict:
|
| 32 |
+
"""
|
| 33 |
+
Parses an XML-like string and extracts key-value pairs from its elements.
|
| 34 |
+
|
| 35 |
+
Parameters:
|
| 36 |
+
text (str): A string containing XML-like content (e.g., <tag>value</tag>).
|
| 37 |
+
|
| 38 |
+
Returns:
|
| 39 |
+
dict: A dictionary where the keys are lowercase XML tags and the values
|
| 40 |
+
are their corresponding text content.
|
| 41 |
+
None: Returns None if XML parsing fails.
|
| 42 |
+
|
| 43 |
+
Example:
|
| 44 |
+
>>> text = '<key>"value"</key>'
|
| 45 |
+
>>> extract_from_xml_et(text)
|
| 46 |
+
{'key': 'value'}
|
| 47 |
+
"""
|
| 48 |
+
try:
|
| 49 |
+
wrapped_text = f"<root>{text}</root>"
|
| 50 |
+
root = ET.fromstring(wrapped_text)
|
| 51 |
+
data = {}
|
| 52 |
+
for child in root:
|
| 53 |
+
if child.text:
|
| 54 |
+
value = child.text.strip().strip('"')
|
| 55 |
+
data[child.tag.lower()] = value
|
| 56 |
+
return data
|
| 57 |
+
except ET.ParseError:
|
| 58 |
+
return None
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def extract_choice(text: str) -> str:
|
| 62 |
+
"""
|
| 63 |
+
Extracts the choice (e.g., A), B), C), D)) from a text block.
|
| 64 |
+
|
| 65 |
+
Parameters:
|
| 66 |
+
text (str): Input text to search for the choice.
|
| 67 |
+
|
| 68 |
+
Returns:
|
| 69 |
+
str: The extracted choice, or None if not found.
|
| 70 |
+
|
| 71 |
+
Example:
|
| 72 |
+
>>> text = "A) This is a sample choice."
|
| 73 |
+
>>> extract_choice(text)
|
| 74 |
+
'A)'
|
| 75 |
+
"""
|
| 76 |
+
choice_pattern = r'([A-D]\))'
|
| 77 |
+
match = re.search(choice_pattern, text)
|
| 78 |
+
if match:
|
| 79 |
+
return match.group(1).strip()
|
| 80 |
+
return None
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def extract_justification(text: str) -> str:
|
| 84 |
+
"""
|
| 85 |
+
Extracts the justification text from a text block.
|
| 86 |
+
|
| 87 |
+
Parameters:
|
| 88 |
+
text (str): Input text to search for the justification.
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
str: The extracted justification, or None if not found.
|
| 92 |
+
|
| 93 |
+
Example:
|
| 94 |
+
>>> text = "- Justification: This is the reason."
|
| 95 |
+
>>> extract_justification(text)
|
| 96 |
+
'This is the reason.'
|
| 97 |
+
"""
|
| 98 |
+
justification_pattern = r'(?:- )?Justification:\s*(.+)'
|
| 99 |
+
match = re.search(justification_pattern, text)
|
| 100 |
+
if match:
|
| 101 |
+
return match.group(1).strip()
|
| 102 |
+
return None
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def extract_from_markdown_regex(text: str) -> dict:
|
| 106 |
+
"""
|
| 107 |
+
Extracts structured data from Markdown-like text blocks.
|
| 108 |
+
|
| 109 |
+
Parameters:
|
| 110 |
+
text (str): Input text containing Markdown-like content, with **choice**
|
| 111 |
+
and **justification** fields.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
dict: A dictionary containing "choice" and "justification", or None if no match is found.
|
| 115 |
+
|
| 116 |
+
Example:
|
| 117 |
+
>>> text = "**choice**: A **justification**: This is the reason."
|
| 118 |
+
>>> extract_from_markdown_regex(text)
|
| 119 |
+
{'choice': 'A', 'justification': 'This is the reason.'}
|
| 120 |
+
"""
|
| 121 |
+
choice_pattern = r'\*\*choice\*\*:\s*(.+?)'
|
| 122 |
+
justification_pattern = r'\*\*justification\*\*:\s*([\s\S]+?)(?=\*\*choice\*\*|$)'
|
| 123 |
+
choice_match = re.search(choice_pattern, text)
|
| 124 |
+
justification_match = re.search(justification_pattern, text)
|
| 125 |
+
|
| 126 |
+
if choice_match and justification_match:
|
| 127 |
+
return {
|
| 128 |
+
"choice": choice_match.group(1).strip(),
|
| 129 |
+
"justification": justification_match.group(1).strip()
|
| 130 |
+
}
|
| 131 |
+
return None
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def extract_fields(text: str) -> list:
|
| 135 |
+
"""
|
| 136 |
+
Processes text blocks to extract structured data.
|
| 137 |
+
|
| 138 |
+
This function attempts to parse each block using the following methods:
|
| 139 |
+
1. XML Parsing: Uses extract_from_xml_et to handle XML-like content.
|
| 140 |
+
2. Regex for Choice and Justification: Extracts these fields separately.
|
| 141 |
+
3. Markdown Parsing: Uses extract_from_markdown_regex for Markdown-like structures.
|
| 142 |
+
|
| 143 |
+
Parameters:
|
| 144 |
+
text (str): Input text containing one or more blocks of data.
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
list: A list of dictionaries, each containing extracted data from a block.
|
| 148 |
+
|
| 149 |
+
Workflow:
|
| 150 |
+
1. Splits the input text into blocks using double line breaks (\n\n).
|
| 151 |
+
2. For each block:
|
| 152 |
+
- Attempts to parse it using extract_from_xml_et.
|
| 153 |
+
- If unsuccessful, tries extract_choice and extract_justification.
|
| 154 |
+
- Finally, falls back to extract_from_markdown_regex.
|
| 155 |
+
3. Aggregates the results into a list of dictionaries.
|
| 156 |
+
|
| 157 |
+
Example:
|
| 158 |
+
>>> text = '''
|
| 159 |
+
<key>"value"</key>
|
| 160 |
+
|
| 161 |
+
**choice**: A **justification**: This is the reason.
|
| 162 |
+
|
| 163 |
+
A) Taking all reasonable measures to safeguard user data,
|
| 164 |
+
- Justification: This is the reason.
|
| 165 |
+
'''
|
| 166 |
+
>>> extract_fields(text)
|
| 167 |
+
[
|
| 168 |
+
{'key': 'value'},
|
| 169 |
+
{'choice': 'A', 'justification': 'This is the reason.'},
|
| 170 |
+
{'choice': 'A)', 'justification': 'This is the reason.'}
|
| 171 |
+
]
|
| 172 |
+
"""
|
| 173 |
+
entries = []
|
| 174 |
+
blocks = re.split(r'\n\s*\n', text.strip()) # Split text into blocks by double newlines
|
| 175 |
+
|
| 176 |
+
for block in blocks:
|
| 177 |
+
print("Processing Block:", block)
|
| 178 |
+
extracted_data = {}
|
| 179 |
+
|
| 180 |
+
# Try extracting using XML
|
| 181 |
+
xml_data = extract_from_xml_et(block)
|
| 182 |
+
if xml_data:
|
| 183 |
+
print("Extracted via XML:", xml_data)
|
| 184 |
+
entries.append(xml_data)
|
| 185 |
+
continue
|
| 186 |
+
|
| 187 |
+
# Try extracting using separated choice and justification regex
|
| 188 |
+
choice = extract_choice(block)
|
| 189 |
+
justification = extract_justification(block)
|
| 190 |
+
if choice or justification:
|
| 191 |
+
extracted_data["choice"] = choice
|
| 192 |
+
extracted_data["justification"] = justification
|
| 193 |
+
entries.append(extracted_data)
|
| 194 |
+
continue
|
| 195 |
+
|
| 196 |
+
# Try extracting using Markdown regex
|
| 197 |
+
markdown_data = extract_from_markdown_regex(block)
|
| 198 |
+
if markdown_data:
|
| 199 |
+
print("Extracted via Markdown Regex:", markdown_data)
|
| 200 |
+
entries.append(markdown_data)
|
| 201 |
+
|
| 202 |
+
return entries
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
### The code initializes the LLM model and tokenizer from a fine-tuned checkpoint located in a directory called unified_model.
|
| 206 |
model,tokenizer = FastLanguageModel.from_pretrained('./unified_model')
|
| 207 |
|
| 208 |
+
|
| 209 |
def generate_response_true_false(instruction):
|
| 210 |
"""
|
| 211 |
Generates a response using your fine-tuned model based on the provided instruction.
|
|
|
|
| 275 |
|
| 276 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
| 277 |
with torch.no_grad():
|
| 278 |
+
outputs = model.generate(**inputs,early_stopping=False,min_length=50,length_penalty=2,max_length=200)
|
| 279 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 280 |
+
# Extract the answer from the generated response by splitting on "### Answer:"
|
| 281 |
+
response = response.split('### Answer:')[1]
|
| 282 |
return response
|
| 283 |
|
| 284 |
+
def generate_response_multiple_choice(question,choice_A,choice_B,choice_C,choice_D):
|
| 285 |
+
|
| 286 |
+
instruction = f'''{question}
|
| 287 |
+
Choices:
|
| 288 |
+
A) {choice_A},
|
| 289 |
+
B) {choice_B},
|
| 290 |
+
C) {choice_C},
|
| 291 |
+
D) {choice_D}
|
| 292 |
+
'''
|
| 293 |
+
|
| 294 |
"""
|
| 295 |
Generates a response using a fine-tuned language model for multiple-choice questions.
|
| 296 |
|
|
|
|
| 328 |
### Question:
|
| 329 |
{instruction}
|
| 330 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 331 |
### Answer:
|
| 332 |
+
|
| 333 |
"""
|
| 334 |
|
| 335 |
# Tokenize the prompt and move it to GPU for inference
|
|
|
|
| 346 |
max_new_tokens=300,
|
| 347 |
top_p=0.95,
|
| 348 |
top_k=50,
|
| 349 |
+
temperature=0.65,
|
| 350 |
num_return_sequences=1
|
| 351 |
)
|
| 352 |
|
| 353 |
# Decode the response into text
|
| 354 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 355 |
+
# Extract the answer from the generated response by splitting on "### Answer:"
|
| 356 |
+
response = response.split('### Answer:')[1]
|
| 357 |
+
print("RESPONSE",response)
|
| 358 |
+
data = extract_fields(response)
|
| 359 |
+
if len(data) == 0:
|
| 360 |
+
response = {"choice": data[0]['choice'], "justification": data[0]['justification']}
|
| 361 |
+
else:
|
| 362 |
+
response = {"choice": data[-1]['choice'], "justification": data[-1]['justification']}
|
| 363 |
return response
|
| 364 |
|
| 365 |
def true_false_greet(question):
|
|
|
|
| 387 |
else:
|
| 388 |
# Call a placeholder function (must be implemented separately) to generate a response
|
| 389 |
response = generate_response_open_ended(question) # Note: generate_response is not defined in this snippet
|
| 390 |
+
|
|
|
|
|
|
|
|
|
|
| 391 |
# Return the formatted response
|
| 392 |
return f"{response}!"
|
| 393 |
|
|
|
|
| 403 |
choice_D (str): Option D for the question.
|
| 404 |
|
| 405 |
Returns:
|
| 406 |
+
str: A response based on the input.
|
| 407 |
If no question is provided, returns a default message.
|
| 408 |
If no choices are provided, returns a default message.
|
| 409 |
"""
|
|
|
|
| 416 |
else:
|
| 417 |
# Call a placeholder function (must be implemented separately) to generate a response
|
| 418 |
response = generate_response_multiple_choice(question, choice_A, choice_B, choice_C, choice_D)
|
| 419 |
+
actual_response = "Selected Choice: " + response['choice'] + "\nJustification: " + response['justification']
|
|
|
|
|
|
|
|
|
|
| 420 |
# Return the formatted response
|
| 421 |
+
return f"{actual_response}"
|
| 422 |
|
| 423 |
+
#### Function which enables the visibility of true/false questions interface
|
| 424 |
def show_true_false_interface():
|
| 425 |
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
| 426 |
|
| 427 |
+
#### Function which enables the visibility of open-ended questions interface
|
| 428 |
def show_open_ended_interface():
|
| 429 |
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
|
| 430 |
|
| 431 |
+
#### Function which enables the visibility of multiple-choice questions interface
|
| 432 |
def show_multiple_choice_interface():
|
| 433 |
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
|
| 434 |
|
| 435 |
+
# print(generate_response_multiple_choice("Which of the following best describes a bank’s legal duty in cases of phishing, according to Greek law?",
|
| 436 |
+
# "Taking all reasonable measures to safeguard user data and transactions",
|
| 437 |
+
# "Ensuring absolute prevention of all cyberattacks",
|
| 438 |
+
# "Holding customers solely responsible for phishing losses",
|
| 439 |
+
# "Avoiding liability by implementing disclaimers"
|
| 440 |
+
# ))
|
| 441 |
+
|
| 442 |
+
|
| 443 |
with gr.Blocks() as demo:
|
| 444 |
|
| 445 |
+
### We define a row in which we create the navigation buttons for each question type
|
| 446 |
with gr.Row():
|
| 447 |
btn_t_f = gr.Button('True/False questions')
|
| 448 |
btn_open_ended = gr.Button('Open-Ended questions')
|
| 449 |
btn_m_c = gr.Button('Multiple-Choice questions')
|
| 450 |
|
| 451 |
+
### We define the interface for the true/false questions
|
| 452 |
with gr.Column(visible=True) as true_false_interface:
|
| 453 |
gr.Markdown("## True-False Template")
|
| 454 |
question_simple = gr.Textbox(label="Enter your question")
|
|
|
|
| 456 |
submit_simple = gr.Button("Submit")
|
| 457 |
submit_simple.click(true_false_greet, inputs=question_simple, outputs=simple_output)
|
| 458 |
|
| 459 |
+
### We define the interface for the open-ended questions
|
| 460 |
with gr.Column(visible=False) as open_ended_interface:
|
| 461 |
gr.Markdown("## Open Ended Template")
|
| 462 |
question_simple = gr.Textbox(label="Enter your question")
|
|
|
|
| 464 |
submit_simple = gr.Button("Submit")
|
| 465 |
submit_simple.click(open_ended_greet, inputs=question_simple, outputs=simple_output)
|
| 466 |
|
| 467 |
+
### We define the interface for the multiple-choice questions
|
| 468 |
with gr.Column(visible=False) as mc_interface:
|
| 469 |
gr.Markdown("## Multiple-Choice Template")
|
| 470 |
question_mc = gr.Textbox(label="Enter your question")
|
|
|
|
| 476 |
submit_mc = gr.Button("Submit")
|
| 477 |
submit_mc.click(multiple_choice_greet, inputs=[question_mc, choice_A, choice_B, choice_C, choice_D], outputs=mc_output)
|
| 478 |
|
| 479 |
+
### If a navigation button is clicked, a visibility function is executed
|
| 480 |
btn_t_f.click(show_true_false_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 481 |
btn_open_ended.click(show_open_ended_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 482 |
btn_m_c.click(show_multiple_choice_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
|
| 483 |
|
| 484 |
+
demo.launch()
|