Spaces:
Runtime error
Runtime error
File size: 18,225 Bytes
5f15a71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
from unsloth import FastLanguageModel
import torch
import gradio as gr
import xml.etree.ElementTree as ET
import re
"""
This module provides utilities for extracting structured data from text blocks.
It supports parsing XML-like structures, Markdown-like formatting, and alternative
text representations for extracting "choice" and "justification" fields.
Functions:
extract_from_xml_et(text: str) -> dict
Parses XML-like text and extracts key-value pairs.
extract_choice(text: str) -> str
Extracts the choice (e.g., A), B), C), D)) from a text block.
extract_justification(text: str) -> str
Extracts the justification text from a text block.
extract_from_markdown_regex(text: str) -> dict
Extracts data from Markdown-like structured text, specifically "choice"
and "justification" fields.
extract_fields(text: str) -> list
Processes text blocks to extract structured data using a combination of
XML parsing, regex-based choice and justification extraction, and Markdown-like parsing.
"""
def extract_from_xml_et(text: str) -> dict:
"""
Parses an XML-like string and extracts key-value pairs from its elements.
Parameters:
text (str): A string containing XML-like content (e.g., <tag>value</tag>).
Returns:
dict: A dictionary where the keys are lowercase XML tags and the values
are their corresponding text content.
None: Returns None if XML parsing fails.
Example:
>>> text = '<key>"value"</key>'
>>> extract_from_xml_et(text)
{'key': 'value'}
"""
try:
wrapped_text = f"<root>{text}</root>"
root = ET.fromstring(wrapped_text)
data = {}
for child in root:
if child.text:
value = child.text.strip().strip('"')
data[child.tag.lower()] = value
return data
except ET.ParseError:
return None
def extract_choice(text: str) -> str:
"""
Extracts the choice (e.g., A), B), C), D)) from a text block.
Parameters:
text (str): Input text to search for the choice.
Returns:
str: The extracted choice, or None if not found.
Example:
>>> text = "A) This is a sample choice."
>>> extract_choice(text)
'A)'
"""
choice_pattern = r'([A-D]\))'
match = re.search(choice_pattern, text)
if match:
return match.group(1).strip()
return None
def extract_justification(text: str) -> str:
"""
Extracts the justification text from a text block.
Parameters:
text (str): Input text to search for the justification.
Returns:
str: The extracted justification, or None if not found.
Example:
>>> text = "- Justification: This is the reason."
>>> extract_justification(text)
'This is the reason.'
"""
justification_pattern = r'(?:- )?Justification:\s*(.+)'
match = re.search(justification_pattern, text)
if match:
return match.group(1).strip()
return None
def extract_from_markdown_regex(text: str) -> dict:
"""
Extracts structured data from Markdown-like text blocks.
Parameters:
text (str): Input text containing Markdown-like content, with **choice**
and **justification** fields.
Returns:
dict: A dictionary containing "choice" and "justification", or None if no match is found.
Example:
>>> text = "**choice**: A **justification**: This is the reason."
>>> extract_from_markdown_regex(text)
{'choice': 'A', 'justification': 'This is the reason.'}
"""
choice_pattern = r'\*\*choice\*\*:\s*(.+?)'
justification_pattern = r'\*\*justification\*\*:\s*([\s\S]+?)(?=\*\*choice\*\*|$)'
choice_match = re.search(choice_pattern, text)
justification_match = re.search(justification_pattern, text)
if choice_match and justification_match:
return {
"choice": choice_match.group(1).strip(),
"justification": justification_match.group(1).strip()
}
return None
def extract_fields(text: str) -> list:
"""
Processes text blocks to extract structured data.
This function attempts to parse each block using the following methods:
1. XML Parsing: Uses extract_from_xml_et to handle XML-like content.
2. Regex for Choice and Justification: Extracts these fields separately.
3. Markdown Parsing: Uses extract_from_markdown_regex for Markdown-like structures.
Parameters:
text (str): Input text containing one or more blocks of data.
Returns:
list: A list of dictionaries, each containing extracted data from a block.
Workflow:
1. Splits the input text into blocks using double line breaks (\n\n).
2. For each block:
- Attempts to parse it using extract_from_xml_et.
- If unsuccessful, tries extract_choice and extract_justification.
- Finally, falls back to extract_from_markdown_regex.
3. Aggregates the results into a list of dictionaries.
Example:
>>> text = '''
<key>"value"</key>
**choice**: A **justification**: This is the reason.
A) Taking all reasonable measures to safeguard user data,
- Justification: This is the reason.
'''
>>> extract_fields(text)
[
{'key': 'value'},
{'choice': 'A', 'justification': 'This is the reason.'},
{'choice': 'A)', 'justification': 'This is the reason.'}
]
"""
entries = []
blocks = re.split(r'\n\s*\n', text.strip()) # Split text into blocks by double newlines
for block in blocks:
print("Processing Block:", block)
extracted_data = {}
# Try extracting using XML
xml_data = extract_from_xml_et(block)
if xml_data:
print("Extracted via XML:", xml_data)
entries.append(xml_data)
continue
# Try extracting using separated choice and justification regex
choice = extract_choice(block)
justification = extract_justification(block)
if choice or justification:
extracted_data["choice"] = choice
extracted_data["justification"] = justification
entries.append(extracted_data)
continue
# Try extracting using Markdown regex
markdown_data = extract_from_markdown_regex(block)
if markdown_data:
print("Extracted via Markdown Regex:", markdown_data)
entries.append(markdown_data)
return entries
### The code initializes the LLM model and tokenizer from a fine-tuned checkpoint located in a directory called unified_model.
model,tokenizer = FastLanguageModel.from_pretrained('./unified_model')
def generate_response_true_false(instruction):
"""
Generates a response using your fine-tuned model based on the provided instruction.
This function enables faster inference through the `FastLanguageModel` and prepares a
prompt for the model to determine whether the given statement is "True" or "False".
Args:
instruction (str): A string containing the statement and instructions to be evaluated.
Returns:
str: "True" or "False" based on the model's response, or "Unable to determine" if the
response cannot be parsed reliably.
"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference within the function
prompt = f"""### Instruction:
Determine if the following statement is true or false. Respond only with "True" or "False".
### Statement:
{instruction}
### Answer:"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=50)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("### Answer:")[-1].strip()
# Extract True/False from response
if response.lower() == "true":
return "True"
elif response.lower() == "false":
return "False"
else:
# Try to identify the answer even if it's not perfectly formatted
if "true" in response.lower():
return "True"
elif "false" in response.lower():
return "False"
else:
return "Unable to determine."
def generate_response_open_ended(instruction):
"""
Generates a response using your fine-tuned model based on the provided instruction.
This function enables faster inference through the `FastLanguageModel` and prepares a
prompt for the model to determine whether the given statement is "True" or "False".
Args:
instruction (str): A string containing the statement and instructions to be evaluated.
Returns:
str: A response from the model to the provided question or "Unable to determine" if the
response cannot be parsed reliably.
"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference within the function
prompt = f"""### Instruction:
Answer the provided question with the knowledge provided to you
### Question:
{instruction}
### Answer:
"""
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
with torch.no_grad():
outputs = model.generate(**inputs,early_stopping=False,min_length=50,length_penalty=2,max_length=200)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the answer from the generated response by splitting on "### Answer:"
response = response.split('### Answer:')[1]
return response
def generate_response_multiple_choice(question,choice_A,choice_B,choice_C,choice_D):
instruction = f'''{question}
Choices:
A) {choice_A},
B) {choice_B},
C) {choice_C},
D) {choice_D}
'''
"""
Generates a response using a fine-tuned language model for multiple-choice questions.
Args:
instruction (str): A string containing the question and its options.
Returns:
dict: A dictionary with the selected choice and its justification.
Example:
{
"choice": "A",
"justification": "Explanation for why Option A is correct."
}
If the model fails to provide a valid response, defaults to:
{
"choice": "None",
"justification": "Could not parse JSON"
}
"""
# Enable native faster inference for the model
FastLanguageModel.for_inference(model)
# Define the prompt with a detailed instruction for the model
prompt = f"""### Instruction:
In the following question, you are provided with 4 choices. Select the best choice based on the knowledge provided and provide a justification for that choice.
**You must return only your response with the following keys:**
- "choice": The best choice letter
- "justification": The justification for your choice
**Example Response:**
**choice**: A
**justification**: Explanation for why Option A is correct
### Question:
{instruction}
### Answer:
"""
# Tokenize the prompt and move it to GPU for inference
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
# Generate a response from the model
with torch.no_grad():
outputs = model.generate(
**inputs,
early_stopping=True,
min_length=50,
length_penalty=2,
do_sample=True,
max_new_tokens=300,
top_p=0.95,
top_k=50,
temperature=0.65,
num_return_sequences=1
)
# Decode the response into text
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract the answer from the generated response by splitting on "### Answer:"
response = response.split('### Answer:')[1]
print("RESPONSE",response)
data = extract_fields(response)
if len(data) == 0:
response = {"choice": data[0]['choice'], "justification": data[0]['justification']}
else:
response = {"choice": data[-1]['choice'], "justification": data[-1]['justification']}
return response
def true_false_greet(question):
if question == "":
# Return a default response if no input is given
return "No question was given to answer"
else:
# Call a placeholder function (must be implemented separately)
response = generate_response_true_false(question) # Note: This function is not defined in this code
return f"{response}!"
def open_ended_greet(question):
"""
Processes the user's question and returns a response.
Args:
question (str): The input text provided by the user.
Returns:
str: A processed response. If no input is given, a default message is returned.
"""
if question == "":
# Return a default response if no question is provided
return "No question was given to answer"
else:
# Call a placeholder function (must be implemented separately) to generate a response
response = generate_response_open_ended(question) # Note: generate_response is not defined in this snippet
# Return the formatted response
return f"{response}!"
def multiple_choice_greet(question, choice_A, choice_B, choice_C, choice_D):
"""
Processes the user's question and multiple-choice options to generate a response.
Args:
question (str): The input question provided by the user.
choice_A (str): Option A for the question.
choice_B (str): Option B for the question.
choice_C (str): Option C for the question.
choice_D (str): Option D for the question.
Returns:
str: A response based on the input.
If no question is provided, returns a default message.
If no choices are provided, returns a default message.
"""
if question == "":
# Return a default response if no question is provided
return "No question was given to answer"
if choice_A == "" and choice_B == "" and choice_C == "" and choice_D == "":
# Return a default response if no choices are provided
return "No choice was given"
else:
# Call a placeholder function (must be implemented separately) to generate a response
response = generate_response_multiple_choice(question, choice_A, choice_B, choice_C, choice_D)
actual_response = "Selected Choice: " + response['choice'] + "\nJustification: " + response['justification']
# Return the formatted response
return f"{actual_response}"
#### Function which enables the visibility of true/false questions interface
def show_true_false_interface():
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
#### Function which enables the visibility of open-ended questions interface
def show_open_ended_interface():
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False)
#### Function which enables the visibility of multiple-choice questions interface
def show_multiple_choice_interface():
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
# print(generate_response_multiple_choice("Which of the following best describes a bank’s legal duty in cases of phishing, according to Greek law?",
# "Taking all reasonable measures to safeguard user data and transactions",
# "Ensuring absolute prevention of all cyberattacks",
# "Holding customers solely responsible for phishing losses",
# "Avoiding liability by implementing disclaimers"
# ))
with gr.Blocks() as demo:
### We define a row in which we create the navigation buttons for each question type
with gr.Row():
btn_t_f = gr.Button('True/False questions')
btn_open_ended = gr.Button('Open-Ended questions')
btn_m_c = gr.Button('Multiple-Choice questions')
### We define the interface for the true/false questions
with gr.Column(visible=True) as true_false_interface:
gr.Markdown("## True-False Template")
question_simple = gr.Textbox(label="Enter your question")
simple_output = gr.Textbox(label="Output", interactive=False)
submit_simple = gr.Button("Submit")
submit_simple.click(true_false_greet, inputs=question_simple, outputs=simple_output)
### We define the interface for the open-ended questions
with gr.Column(visible=False) as open_ended_interface:
gr.Markdown("## Open Ended Template")
question_simple = gr.Textbox(label="Enter your question")
simple_output = gr.Textbox(label="Output", interactive=False)
submit_simple = gr.Button("Submit")
submit_simple.click(open_ended_greet, inputs=question_simple, outputs=simple_output)
### We define the interface for the multiple-choice questions
with gr.Column(visible=False) as mc_interface:
gr.Markdown("## Multiple-Choice Template")
question_mc = gr.Textbox(label="Enter your question")
choice_A = gr.Textbox(label="Choice A")
choice_B = gr.Textbox(label="Choice B")
choice_C = gr.Textbox(label="Choice C")
choice_D = gr.Textbox(label="Choice D")
mc_output = gr.Textbox(label="Output", interactive=False)
submit_mc = gr.Button("Submit")
submit_mc.click(multiple_choice_greet, inputs=[question_mc, choice_A, choice_B, choice_C, choice_D], outputs=mc_output)
### If a navigation button is clicked, a visibility function is executed
btn_t_f.click(show_true_false_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
btn_open_ended.click(show_open_ended_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
btn_m_c.click(show_multiple_choice_interface, outputs=[true_false_interface, open_ended_interface, mc_interface])
demo.launch() |