Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
|
@@ -26,16 +26,6 @@ from llama_cpp import Llama
|
|
| 26 |
|
| 27 |
|
| 28 |
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
| 29 |
-
SYSTEM_TOKEN = 1788
|
| 30 |
-
USER_TOKEN = 1404
|
| 31 |
-
BOT_TOKEN = 9225
|
| 32 |
-
LINEBREAK_TOKEN = 13
|
| 33 |
-
|
| 34 |
-
ROLE_TOKENS = {
|
| 35 |
-
"user": USER_TOKEN,
|
| 36 |
-
"bot": BOT_TOKEN,
|
| 37 |
-
"system": SYSTEM_TOKEN
|
| 38 |
-
}
|
| 39 |
|
| 40 |
LOADER_MAPPING = {
|
| 41 |
".csv": (CSVLoader, {}),
|
|
@@ -52,37 +42,42 @@ LOADER_MAPPING = {
|
|
| 52 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
| 53 |
}
|
| 54 |
|
| 55 |
-
directory = "."
|
| 56 |
-
model_url = "https://huggingface.co/IlyaGusev/saiga2_13b_gguf/resolve/main/model-q4_K.gguf"
|
| 57 |
-
repo_name = "IlyaGusev/saiga2_13b_gguf"
|
| 58 |
-
model_name = "model-q4_K.gguf"
|
| 59 |
-
final_model_path = os.path.join(directory, model_name)
|
| 60 |
-
embedder_name = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 61 |
-
|
| 62 |
-
print("Downloading all files...")
|
| 63 |
-
rm_files = [os.path.join(directory, f) for f in os.listdir(directory)]
|
| 64 |
-
for f in rm_files:
|
| 65 |
-
if os.path.isfile(f):
|
| 66 |
-
os.remove(f)
|
| 67 |
-
else:
|
| 68 |
-
shutil.rmtree(f)
|
| 69 |
-
|
| 70 |
-
if not os.path.exists(final_model_path):
|
| 71 |
-
with open(final_model_path, "wb") as f:
|
| 72 |
-
http_get(model_url, f)
|
| 73 |
-
os.chmod(final_model_path, 0o777)
|
| 74 |
-
print("Files downloaded!")
|
| 75 |
-
|
| 76 |
-
model = Llama(
|
| 77 |
-
model_path=final_model_path,
|
| 78 |
-
n_ctx=2000,
|
| 79 |
-
n_parts=1,
|
| 80 |
-
)
|
| 81 |
|
| 82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
|
| 84 |
-
max_new_tokens = 1500
|
| 85 |
-
embeddings = HuggingFaceEmbeddings(model_name=embedder_name)
|
| 86 |
|
| 87 |
def get_uuid():
|
| 88 |
return str(uuid4())
|
|
@@ -97,11 +92,9 @@ def load_single_document(file_path: str) -> Document:
|
|
| 97 |
|
| 98 |
|
| 99 |
def get_message_tokens(model, role, content):
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
message_tokens.append(model.token_eos())
|
| 104 |
-
return message_tokens
|
| 105 |
|
| 106 |
|
| 107 |
def get_system_tokens(model):
|
|
@@ -136,7 +129,7 @@ def build_index(file_paths, db, chunk_size, chunk_overlap, file_warning):
|
|
| 136 |
|
| 137 |
db = Chroma.from_documents(
|
| 138 |
fixed_documents,
|
| 139 |
-
|
| 140 |
client_settings=Settings(
|
| 141 |
anonymized_telemetry=False
|
| 142 |
)
|
|
@@ -151,7 +144,7 @@ def user(message, history, system_prompt):
|
|
| 151 |
|
| 152 |
|
| 153 |
def retrieve(history, db, retrieved_docs, k_documents):
|
| 154 |
-
|
| 155 |
if db:
|
| 156 |
last_user_message = history[-1][0]
|
| 157 |
retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
|
@@ -172,25 +165,25 @@ def bot(
|
|
| 172 |
if not history:
|
| 173 |
return
|
| 174 |
|
| 175 |
-
tokens = get_system_tokens(
|
| 176 |
tokens.append(LINEBREAK_TOKEN)
|
| 177 |
|
| 178 |
for user_message, bot_message in history[:-1]:
|
| 179 |
-
message_tokens = get_message_tokens(model=
|
| 180 |
tokens.extend(message_tokens)
|
| 181 |
if bot_message:
|
| 182 |
-
message_tokens = get_message_tokens(model=
|
| 183 |
tokens.extend(message_tokens)
|
| 184 |
|
| 185 |
last_user_message = history[-1][0]
|
| 186 |
if retrieved_docs:
|
| 187 |
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
|
| 188 |
-
message_tokens = get_message_tokens(model=
|
| 189 |
tokens.extend(message_tokens)
|
| 190 |
|
| 191 |
-
role_tokens = [
|
| 192 |
tokens.extend(role_tokens)
|
| 193 |
-
generator =
|
| 194 |
tokens,
|
| 195 |
top_k=top_k,
|
| 196 |
top_p=top_p,
|
|
@@ -199,9 +192,9 @@ def bot(
|
|
| 199 |
|
| 200 |
partial_text = ""
|
| 201 |
for i, token in enumerate(generator):
|
| 202 |
-
if token ==
|
| 203 |
break
|
| 204 |
-
partial_text +=
|
| 205 |
history[-1][1] = partial_text
|
| 206 |
yield history
|
| 207 |
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
LOADER_MAPPING = {
|
| 31 |
".csv": (CSVLoader, {}),
|
|
|
|
| 42 |
".txt": (TextLoader, {"encoding": "utf8"}),
|
| 43 |
}
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
+
def load_model(
|
| 47 |
+
directory: str = ".",
|
| 48 |
+
model_name: str = "model-q4_K.gguf",
|
| 49 |
+
model_url: str = "https://huggingface.co/IlyaGusev/saiga2_13b_gguf/resolve/main/model-q4_K.gguf"
|
| 50 |
+
):
|
| 51 |
+
final_model_path = os.path.join(directory, model_name)
|
| 52 |
+
|
| 53 |
+
print("Downloading all files...")
|
| 54 |
+
rm_files = [os.path.join(directory, f) for f in os.listdir(directory)]
|
| 55 |
+
for f in rm_files:
|
| 56 |
+
if os.path.isfile(f):
|
| 57 |
+
os.remove(f)
|
| 58 |
+
else:
|
| 59 |
+
shutil.rmtree(f)
|
| 60 |
+
|
| 61 |
+
if not os.path.exists(final_model_path):
|
| 62 |
+
with open(final_model_path, "wb") as f:
|
| 63 |
+
http_get(model_url, f)
|
| 64 |
+
os.chmod(final_model_path, 0o777)
|
| 65 |
+
print("Files downloaded!")
|
| 66 |
+
|
| 67 |
+
model = Llama(
|
| 68 |
+
model_path=final_model_path,
|
| 69 |
+
n_ctx=2000,
|
| 70 |
+
n_parts=1,
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
print("Model loaded!")
|
| 74 |
+
return model
|
| 75 |
+
|
| 76 |
+
MAX_NEW_TOKENS = 1500
|
| 77 |
+
EMBEDDER_NAME = "sentence-transformers/paraphrase-multilingual-mpnet-base-v2"
|
| 78 |
+
EMBEDDER = HuggingFaceEmbeddings(model_name=EMBEDDER_NAME)
|
| 79 |
+
MODEL = load_model()
|
| 80 |
|
|
|
|
|
|
|
| 81 |
|
| 82 |
def get_uuid():
|
| 83 |
return str(uuid4())
|
|
|
|
| 92 |
|
| 93 |
|
| 94 |
def get_message_tokens(model, role, content):
|
| 95 |
+
content = f"{role}\n{content}\n</s>"
|
| 96 |
+
content = content.encode("utf-8")
|
| 97 |
+
return model.tokenize(content, special=True)
|
|
|
|
|
|
|
| 98 |
|
| 99 |
|
| 100 |
def get_system_tokens(model):
|
|
|
|
| 129 |
|
| 130 |
db = Chroma.from_documents(
|
| 131 |
fixed_documents,
|
| 132 |
+
EMBEDDER,
|
| 133 |
client_settings=Settings(
|
| 134 |
anonymized_telemetry=False
|
| 135 |
)
|
|
|
|
| 144 |
|
| 145 |
|
| 146 |
def retrieve(history, db, retrieved_docs, k_documents):
|
| 147 |
+
retrieved_docs = ""
|
| 148 |
if db:
|
| 149 |
last_user_message = history[-1][0]
|
| 150 |
retriever = db.as_retriever(search_kwargs={"k": k_documents})
|
|
|
|
| 165 |
if not history:
|
| 166 |
return
|
| 167 |
|
| 168 |
+
tokens = get_system_tokens(MODEL)[:]
|
| 169 |
tokens.append(LINEBREAK_TOKEN)
|
| 170 |
|
| 171 |
for user_message, bot_message in history[:-1]:
|
| 172 |
+
message_tokens = get_message_tokens(model=MODEL, role="user", content=user_message)
|
| 173 |
tokens.extend(message_tokens)
|
| 174 |
if bot_message:
|
| 175 |
+
message_tokens = get_message_tokens(model=MODEL, role="bot", content=bot_message)
|
| 176 |
tokens.extend(message_tokens)
|
| 177 |
|
| 178 |
last_user_message = history[-1][0]
|
| 179 |
if retrieved_docs:
|
| 180 |
last_user_message = f"Контекст: {retrieved_docs}\n\nИспользуя контекст, ответь на вопрос: {last_user_message}"
|
| 181 |
+
message_tokens = get_message_tokens(model=MODEL, role="user", content=last_user_message)
|
| 182 |
tokens.extend(message_tokens)
|
| 183 |
|
| 184 |
+
role_tokens = [MODEL.token_bos(), BOT_TOKEN, LINEBREAK_TOKEN]
|
| 185 |
tokens.extend(role_tokens)
|
| 186 |
+
generator = MODEL.generate(
|
| 187 |
tokens,
|
| 188 |
top_k=top_k,
|
| 189 |
top_p=top_p,
|
|
|
|
| 192 |
|
| 193 |
partial_text = ""
|
| 194 |
for i, token in enumerate(generator):
|
| 195 |
+
if token == MODEL.token_eos() or (MAX_NEW_TOKENS is not None and i >= MAX_NEW_TOKENS):
|
| 196 |
break
|
| 197 |
+
partial_text += MODEL.detokenize([token]).decode("utf-8", "ignore")
|
| 198 |
history[-1][1] = partial_text
|
| 199 |
yield history
|
| 200 |
|