Spaces:
Runtime error
Runtime error
foivospar
commited on
Commit
·
1c1d081
1
Parent(s):
0259ae0
initial demo
Browse files- app.py +231 -0
- arc2face/__init__.py +2 -0
- arc2face/models.py +91 -0
- arc2face/utils.py +30 -0
- requirements.txt +9 -0
app.py
ADDED
|
@@ -0,0 +1,231 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
sys.path.append('./')
|
| 3 |
+
|
| 4 |
+
from diffusers import (
|
| 5 |
+
StableDiffusionPipeline,
|
| 6 |
+
UNet2DConditionModel,
|
| 7 |
+
DPMSolverMultistepScheduler,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
from arc2face import CLIPTextModelWrapper, project_face_embs
|
| 11 |
+
|
| 12 |
+
import torch
|
| 13 |
+
from insightface.app import FaceAnalysis
|
| 14 |
+
from PIL import Image
|
| 15 |
+
import numpy as np
|
| 16 |
+
import random
|
| 17 |
+
|
| 18 |
+
import gradio as gr
|
| 19 |
+
|
| 20 |
+
# global variable
|
| 21 |
+
MAX_SEED = np.iinfo(np.int32).max
|
| 22 |
+
if torch.cuda.is_available():
|
| 23 |
+
device = "cuda"
|
| 24 |
+
dtype = torch.float16
|
| 25 |
+
else:
|
| 26 |
+
device = "cpu"
|
| 27 |
+
dtype = torch.float32
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
# download models
|
| 31 |
+
from huggingface_hub import hf_hub_download
|
| 32 |
+
|
| 33 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models")
|
| 34 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models")
|
| 35 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models")
|
| 36 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models")
|
| 37 |
+
hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2")
|
| 38 |
+
|
| 39 |
+
# Load face detection and recognition package
|
| 40 |
+
if device=="cuda":
|
| 41 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 42 |
+
else:
|
| 43 |
+
app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
|
| 44 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 45 |
+
|
| 46 |
+
# Load pipeline
|
| 47 |
+
base_model = 'runwayml/stable-diffusion-v1-5'
|
| 48 |
+
encoder = CLIPTextModelWrapper.from_pretrained(
|
| 49 |
+
'models', subfolder="encoder", torch_dtype=dtype
|
| 50 |
+
)
|
| 51 |
+
unet = UNet2DConditionModel.from_pretrained(
|
| 52 |
+
'models', subfolder="arc2face", torch_dtype=dtype
|
| 53 |
+
)
|
| 54 |
+
pipeline = StableDiffusionPipeline.from_pretrained(
|
| 55 |
+
base_model,
|
| 56 |
+
text_encoder=encoder,
|
| 57 |
+
unet=unet,
|
| 58 |
+
torch_dtype=dtype,
|
| 59 |
+
safety_checker=None
|
| 60 |
+
)
|
| 61 |
+
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
|
| 62 |
+
pipeline = pipeline.to(device)
|
| 63 |
+
|
| 64 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
| 65 |
+
if randomize_seed:
|
| 66 |
+
seed = random.randint(0, MAX_SEED)
|
| 67 |
+
return seed
|
| 68 |
+
|
| 69 |
+
def get_example():
|
| 70 |
+
case = [
|
| 71 |
+
[
|
| 72 |
+
'./assets/examples/freeman.jpg',
|
| 73 |
+
],
|
| 74 |
+
[
|
| 75 |
+
'./assets/examples/lily.png',
|
| 76 |
+
],
|
| 77 |
+
[
|
| 78 |
+
'./assets/examples/joacquin.png',
|
| 79 |
+
],
|
| 80 |
+
[
|
| 81 |
+
'./assets/examples/jackie.png',
|
| 82 |
+
],
|
| 83 |
+
[
|
| 84 |
+
'./assets/examples/freddie.png',
|
| 85 |
+
],
|
| 86 |
+
[
|
| 87 |
+
'./assets/examples/hepburn.png',
|
| 88 |
+
],
|
| 89 |
+
]
|
| 90 |
+
return case
|
| 91 |
+
|
| 92 |
+
def run_example(img_file):
|
| 93 |
+
return generate_image(img_file, 25, 3, 23, 2)
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)):
|
| 97 |
+
|
| 98 |
+
if image_path is None:
|
| 99 |
+
raise gr.Error(f"Cannot find any input face image! Please upload a face image.")
|
| 100 |
+
|
| 101 |
+
img = np.array(Image.open(image_path))[:,:,::-1]
|
| 102 |
+
|
| 103 |
+
# Face detection and ID-embedding extraction
|
| 104 |
+
faces = app.get(img)
|
| 105 |
+
|
| 106 |
+
if len(faces) == 0:
|
| 107 |
+
raise gr.Error(f"Face detection failed! Please try with another image")
|
| 108 |
+
|
| 109 |
+
faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # select largest face (if more than one detected)
|
| 110 |
+
id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device)
|
| 111 |
+
id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True) # normalize embedding
|
| 112 |
+
id_emb = project_face_embs(pipeline, id_emb) # pass throught the encoder
|
| 113 |
+
|
| 114 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
| 115 |
+
|
| 116 |
+
print("Start inference...")
|
| 117 |
+
images = pipeline(
|
| 118 |
+
prompt_embeds=id_emb,
|
| 119 |
+
num_inference_steps=num_steps,
|
| 120 |
+
guidance_scale=guidance_scale,
|
| 121 |
+
num_images_per_prompt=num_images,
|
| 122 |
+
generator=generator
|
| 123 |
+
).images
|
| 124 |
+
|
| 125 |
+
return images
|
| 126 |
+
|
| 127 |
+
### Description
|
| 128 |
+
title = r"""
|
| 129 |
+
<h1>Arc2Face: A Foundation Model of Human Faces</h1>
|
| 130 |
+
"""
|
| 131 |
+
|
| 132 |
+
description = r"""
|
| 133 |
+
<b>Official 🤗 Gradio demo</b> for <a href='https://arc2face.github.io/' target='_blank'><b>Arc2Face: A Foundation Model of Human Faces</b></a>.<br>
|
| 134 |
+
|
| 135 |
+
Steps:<br>
|
| 136 |
+
1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin.
|
| 137 |
+
2. Click <b>Submit</b> to generate new images of the subject.
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
Footer = r"""
|
| 141 |
+
---
|
| 142 |
+
📝 **Citation**
|
| 143 |
+
<br>
|
| 144 |
+
If you find Arc2Face helpful for your research, please consider citing our paper:
|
| 145 |
+
```bibtex
|
| 146 |
+
@misc{paraperas2024arc2face,
|
| 147 |
+
title={Arc2Face: A Foundation Model of Human Faces},
|
| 148 |
+
author={Foivos Paraperas Papantoniou and Alexandros Lattas and Stylianos Moschoglou and Jiankang Deng and Bernhard Kainz and Stefanos Zafeiriou},
|
| 149 |
+
year={2024},
|
| 150 |
+
eprint={2403.11641},
|
| 151 |
+
archivePrefix={arXiv},
|
| 152 |
+
primaryClass={cs.CV}
|
| 153 |
+
}
|
| 154 |
+
```
|
| 155 |
+
"""
|
| 156 |
+
|
| 157 |
+
css = '''
|
| 158 |
+
.gradio-container {width: 85% !important}
|
| 159 |
+
'''
|
| 160 |
+
with gr.Blocks(css=css) as demo:
|
| 161 |
+
|
| 162 |
+
# description
|
| 163 |
+
gr.Markdown(title)
|
| 164 |
+
gr.Markdown(description)
|
| 165 |
+
|
| 166 |
+
with gr.Row():
|
| 167 |
+
with gr.Column():
|
| 168 |
+
|
| 169 |
+
# upload face image
|
| 170 |
+
img_file = gr.Image(label="Upload a photo with a face", type="filepath")
|
| 171 |
+
|
| 172 |
+
submit = gr.Button("Submit", variant="primary")
|
| 173 |
+
|
| 174 |
+
with gr.Accordion(open=False, label="Advanced Options"):
|
| 175 |
+
num_steps = gr.Slider(
|
| 176 |
+
label="Number of sample steps",
|
| 177 |
+
minimum=20,
|
| 178 |
+
maximum=100,
|
| 179 |
+
step=1,
|
| 180 |
+
value=25,
|
| 181 |
+
)
|
| 182 |
+
guidance_scale = gr.Slider(
|
| 183 |
+
label="Guidance scale",
|
| 184 |
+
minimum=0.1,
|
| 185 |
+
maximum=10.0,
|
| 186 |
+
step=0.1,
|
| 187 |
+
value=3,
|
| 188 |
+
)
|
| 189 |
+
num_images = gr.Slider(
|
| 190 |
+
label="Number of output images",
|
| 191 |
+
minimum=1,
|
| 192 |
+
maximum=4,
|
| 193 |
+
step=1,
|
| 194 |
+
value=2,
|
| 195 |
+
)
|
| 196 |
+
seed = gr.Slider(
|
| 197 |
+
label="Seed",
|
| 198 |
+
minimum=0,
|
| 199 |
+
maximum=MAX_SEED,
|
| 200 |
+
step=1,
|
| 201 |
+
value=0,
|
| 202 |
+
)
|
| 203 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 204 |
+
|
| 205 |
+
with gr.Column():
|
| 206 |
+
gallery = gr.Gallery(label="Generated Images")
|
| 207 |
+
|
| 208 |
+
submit.click(
|
| 209 |
+
fn=randomize_seed_fn,
|
| 210 |
+
inputs=[seed, randomize_seed],
|
| 211 |
+
outputs=seed,
|
| 212 |
+
queue=False,
|
| 213 |
+
api_name=False,
|
| 214 |
+
).then(
|
| 215 |
+
fn=generate_image,
|
| 216 |
+
inputs=[img_file, num_steps, guidance_scale, seed, num_images],
|
| 217 |
+
outputs=[gallery]
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
gr.Examples(
|
| 222 |
+
examples=get_example(),
|
| 223 |
+
inputs=[img_file],
|
| 224 |
+
run_on_click=True,
|
| 225 |
+
fn=run_example,
|
| 226 |
+
outputs=[gallery],
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
gr.Markdown(Footer)
|
| 230 |
+
|
| 231 |
+
demo.launch()
|
arc2face/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .models import CLIPTextModelWrapper
|
| 2 |
+
from .utils import project_face_embs
|
arc2face/models.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import CLIPTextModel
|
| 3 |
+
from typing import Any, Callable, Dict, Optional, Tuple, Union, List
|
| 4 |
+
from transformers.modeling_outputs import BaseModelOutputWithPooling
|
| 5 |
+
from transformers.models.clip.modeling_clip import _make_causal_mask, _expand_mask
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class CLIPTextModelWrapper(CLIPTextModel):
|
| 9 |
+
# Adapted from https://github.com/huggingface/transformers/blob/v4.34.1/src/transformers/models/clip/modeling_clip.py#L812
|
| 10 |
+
# Modified to accept precomputed token embeddings "input_token_embs" as input or calculate them from input_ids and return them.
|
| 11 |
+
def forward(
|
| 12 |
+
self,
|
| 13 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 14 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 15 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 16 |
+
output_attentions: Optional[bool] = None,
|
| 17 |
+
output_hidden_states: Optional[bool] = None,
|
| 18 |
+
return_dict: Optional[bool] = None,
|
| 19 |
+
input_token_embs: Optional[torch.Tensor] = None,
|
| 20 |
+
return_token_embs: Optional[bool] = False,
|
| 21 |
+
) -> Union[Tuple, torch.Tensor, BaseModelOutputWithPooling]:
|
| 22 |
+
|
| 23 |
+
if return_token_embs:
|
| 24 |
+
return self.text_model.embeddings.token_embedding(input_ids)
|
| 25 |
+
|
| 26 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 27 |
+
|
| 28 |
+
output_attentions = output_attentions if output_attentions is not None else self.text_model.config.output_attentions
|
| 29 |
+
output_hidden_states = (
|
| 30 |
+
output_hidden_states if output_hidden_states is not None else self.text_model.config.output_hidden_states
|
| 31 |
+
)
|
| 32 |
+
return_dict = return_dict if return_dict is not None else self.text_model.config.use_return_dict
|
| 33 |
+
|
| 34 |
+
if input_ids is None:
|
| 35 |
+
raise ValueError("You have to specify input_ids")
|
| 36 |
+
|
| 37 |
+
input_shape = input_ids.size()
|
| 38 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
| 39 |
+
|
| 40 |
+
hidden_states = self.text_model.embeddings(input_ids=input_ids, position_ids=position_ids, inputs_embeds=input_token_embs)
|
| 41 |
+
|
| 42 |
+
# CLIP's text model uses causal mask, prepare it here.
|
| 43 |
+
# https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
|
| 44 |
+
causal_attention_mask = _make_causal_mask(input_shape, hidden_states.dtype, device=hidden_states.device)
|
| 45 |
+
# expand attention_mask
|
| 46 |
+
if attention_mask is not None:
|
| 47 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 48 |
+
attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
|
| 49 |
+
|
| 50 |
+
encoder_outputs = self.text_model.encoder(
|
| 51 |
+
inputs_embeds=hidden_states,
|
| 52 |
+
attention_mask=attention_mask,
|
| 53 |
+
causal_attention_mask=causal_attention_mask,
|
| 54 |
+
output_attentions=output_attentions,
|
| 55 |
+
output_hidden_states=output_hidden_states,
|
| 56 |
+
return_dict=return_dict,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
last_hidden_state = encoder_outputs[0]
|
| 60 |
+
last_hidden_state = self.text_model.final_layer_norm(last_hidden_state)
|
| 61 |
+
|
| 62 |
+
if self.text_model.eos_token_id == 2:
|
| 63 |
+
# The `eos_token_id` was incorrect before PR #24773: Let's keep what have been done here.
|
| 64 |
+
# A CLIP model with such `eos_token_id` in the config can't work correctly with extra new tokens added
|
| 65 |
+
# ------------------------------------------------------------
|
| 66 |
+
# text_embeds.shape = [batch_size, sequence_length, transformer.width]
|
| 67 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
| 68 |
+
# casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
|
| 69 |
+
pooled_output = last_hidden_state[
|
| 70 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
| 71 |
+
input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
|
| 72 |
+
]
|
| 73 |
+
else:
|
| 74 |
+
# The config gets updated `eos_token_id` from PR #24773 (so the use of exta new tokens is possible)
|
| 75 |
+
pooled_output = last_hidden_state[
|
| 76 |
+
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
|
| 77 |
+
# We need to get the first position of `eos_token_id` value (`pad_token_ids` might equal to `eos_token_id`)
|
| 78 |
+
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.text_model.eos_token_id)
|
| 79 |
+
.int()
|
| 80 |
+
.argmax(dim=-1),
|
| 81 |
+
]
|
| 82 |
+
|
| 83 |
+
if not return_dict:
|
| 84 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
| 85 |
+
|
| 86 |
+
return BaseModelOutputWithPooling(
|
| 87 |
+
last_hidden_state=last_hidden_state,
|
| 88 |
+
pooler_output=pooled_output,
|
| 89 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 90 |
+
attentions=encoder_outputs.attentions,
|
| 91 |
+
)
|
arc2face/utils.py
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn.functional as F
|
| 3 |
+
|
| 4 |
+
@torch.no_grad()
|
| 5 |
+
def project_face_embs(pipeline, face_embs):
|
| 6 |
+
|
| 7 |
+
'''
|
| 8 |
+
face_embs: (N, 512) normalized ArcFace embeddings
|
| 9 |
+
'''
|
| 10 |
+
|
| 11 |
+
arcface_token_id = pipeline.tokenizer.encode("id", add_special_tokens=False)[0]
|
| 12 |
+
|
| 13 |
+
input_ids = pipeline.tokenizer(
|
| 14 |
+
"photo of a id person",
|
| 15 |
+
truncation=True,
|
| 16 |
+
padding="max_length",
|
| 17 |
+
max_length=pipeline.tokenizer.model_max_length,
|
| 18 |
+
return_tensors="pt",
|
| 19 |
+
).input_ids.to(pipeline.device)
|
| 20 |
+
|
| 21 |
+
face_embs_padded = F.pad(face_embs, (0, pipeline.text_encoder.config.hidden_size-512), "constant", 0)
|
| 22 |
+
token_embs = pipeline.text_encoder(input_ids=input_ids.repeat(len(face_embs), 1), return_token_embs=True)
|
| 23 |
+
token_embs[input_ids==arcface_token_id] = face_embs_padded
|
| 24 |
+
|
| 25 |
+
prompt_embeds = pipeline.text_encoder(
|
| 26 |
+
input_ids=input_ids,
|
| 27 |
+
input_token_embs=token_embs
|
| 28 |
+
)[0]
|
| 29 |
+
|
| 30 |
+
return prompt_embeds
|
requirements.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy<1.24.0
|
| 2 |
+
torch==2.0.1
|
| 3 |
+
torchvision==0.15.2
|
| 4 |
+
diffusers==0.22.0
|
| 5 |
+
transformers==4.34.1
|
| 6 |
+
accelerate
|
| 7 |
+
insightface
|
| 8 |
+
onnxruntime-gpu
|
| 9 |
+
gradio
|