File size: 28,604 Bytes
0888b9e
d8d5f96
 
 
 
 
2f71153
2c6e629
2f71153
2c6e629
2f71153
 
 
d8d5f96
2c6e629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
de16096
 
 
 
 
d8d5f96
2c6e629
 
2e73ba2
d8d5f96
 
2f71153
0c2af38
2e73ba2
71956d4
2c6e629
0c2af38
d8d5f96
 
0c2af38
d8d5f96
0c2af38
 
 
d8d5f96
0c2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
 
 
 
 
 
0c2af38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2f71153
0c2af38
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c6e629
 
d8d5f96
 
 
2c6e629
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
d8d5f96
 
 
 
 
2e73ba2
 
d8d5f96
 
 
 
 
 
 
 
 
2e73ba2
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
2c6e629
2e73ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
 
 
2c6e629
d8d5f96
 
 
 
 
2e73ba2
 
d8d5f96
2c6e629
 
d8d5f96
 
 
 
 
 
 
2c6e629
 
 
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
2c6e629
d8d5f96
 
2c6e629
de16096
 
d8d5f96
 
2c6e629
 
2f71153
0c2af38
 
 
2c6e629
 
0c2af38
 
2c6e629
0c2af38
 
2c6e629
0c2af38
 
 
2c6e629
 
0c2af38
2c6e629
0c2af38
2c6e629
 
 
 
 
 
0c2af38
 
2c6e629
 
 
 
 
d8d5f96
2c6e629
d8d5f96
2e73ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c6e629
 
 
 
 
d8d5f96
 
2e73ba2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c6e629
d8d5f96
 
 
 
 
2c6e629
d8d5f96
 
2c6e629
 
 
 
 
 
 
 
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
71956d4
2e73ba2
 
 
 
71956d4
d8d5f96
 
 
 
 
2e73ba2
0c2af38
 
 
 
 
2e73ba2
 
 
0c2af38
 
 
d8d5f96
 
 
 
 
 
 
71956d4
 
0c2af38
71956d4
0c2af38
2e73ba2
0c2af38
 
71956d4
2e73ba2
71956d4
 
 
d8d5f96
0c2af38
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2af38
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
0c2af38
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
 
 
 
d8d5f96
2e73ba2
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
 
 
 
 
2e73ba2
d8d5f96
 
2e73ba2
 
 
 
d8d5f96
 
 
2e73ba2
d8d5f96
 
 
 
 
 
 
 
 
2e73ba2
 
 
 
 
d8d5f96
 
 
 
 
 
 
 
 
0888b9e
d8d5f96
de16096
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
import streamlit as st
import requests
from sentence_transformers import SentenceTransformer
import numpy as np
from collections import defaultdict
import time
import os
import shutil

# Set cache directory to /tmp (gets cleared on restart)
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface'
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/tmp/huggingface'

# Clear old cache on startup to prevent accumulation
def clear_old_cache():
    """Clear /tmp cache if it gets too large"""
    cache_dir = '/tmp/huggingface'
    try:
        if os.path.exists(cache_dir):
            size_mb = sum(
                os.path.getsize(os.path.join(dirpath, filename))
                for dirpath, dirnames, filenames in os.walk(cache_dir)
                for filename in filenames
            ) / (1024 * 1024)
            
            # If cache > 5GB, clear it
            if size_mb > 5000:
                shutil.rmtree(cache_dir)
                os.makedirs(cache_dir)
    except:
        pass

# Run cleanup on startup
clear_old_cache()

# Page config
st.set_page_config(
    page_title="OpenAlex Semantic Search",
    page_icon="πŸ”¬",
    layout="wide"
)

# Cache the model loading
@st.cache_resource
def load_model():
    """Load the SPECTER model - trained specifically on scientific papers"""
    # SPECTER is much better for scientific content than general models
    # Model size: ~440MB (vs ~80MB for MiniLM)
    # Embedding size: 768 dimensions (vs 384 for MiniLM)
    return SentenceTransformer('allenai/specter', cache_folder='/tmp/huggingface')

# LIMITED CACHE: Only store 50 recent searches
@st.cache_data(ttl=3600, max_entries=50, show_spinner=False)
def search_openalex_papers(query, num_results=50, country_code=None, use_fulltext=False, year_min=None, year_max=None):
    """
    Search OpenAlex for papers related to the query
    Optionally filter by author's country
    Optionally use full-text search (searches title + abstract + full text when available)
    Optionally filter by publication year range
    
    Note: Results are cached for 1 hour, max 50 searches stored
    For large requests (>100), uses pagination
    """
    base_url = "https://api.openalex.org/works"
    all_papers = []
    
    # OpenAlex max per_page is 200, so we need pagination for large requests
    per_page = min(200, num_results)
    num_pages = (num_results + per_page - 1) // per_page  # Ceiling division
    
    for page in range(1, num_pages + 1):
        params = {
            "per_page": per_page,
            "page": page,
            "select": "id,title,abstract_inverted_index,authorships,publication_year,cited_by_count,display_name",
            "mailto": "[email protected]"  # Polite pool
        }
        
        # Build filter string
        filters = []
        
        if use_fulltext:
            # Full-text search (searches title + abstract + full text when available)
            filters.append(f"fulltext.search:{query}")
        else:
            # Standard search (title + abstract only)
            params["search"] = query
        
        # Add country filter if specified
        if country_code:
            filters.append(f"authorships.countries:{country_code}")
        
        # Add year range filter if specified
        if year_min is not None:
            filters.append(f"publication_year:>{year_min-1}")  # Greater than or equal
        if year_max is not None:
            filters.append(f"publication_year:<{year_max+1}")  # Less than or equal
        
        # Combine filters with comma (AND operation)
        if filters:
            params["filter"] = ",".join(filters)
        
        try:
            response = requests.get(base_url, params=params, timeout=30)
            response.raise_for_status()
            data = response.json()
            papers = data.get("results", [])
            all_papers.extend(papers)
            
            # If we got fewer papers than requested, no more pages available
            if len(papers) < per_page:
                break
                
            # Rate limiting - be nice to OpenAlex
            if page < num_pages:
                time.sleep(0.1)  # 100ms delay between requests
                
        except Exception as e:
            st.error(f"Error fetching papers (page {page}): {str(e)}")
            break
    
    return all_papers[:num_results]  # Return exactly what was requested

def reconstruct_abstract(inverted_index):
    """
    Reconstruct abstract from OpenAlex inverted index format
    """
    if not inverted_index:
        return ""
    
    # Create list of (position, word) tuples
    words_with_positions = []
    for word, positions in inverted_index.items():
        for pos in positions:
            words_with_positions.append((pos, word))
    
    # Sort by position and join
    words_with_positions.sort(key=lambda x: x[0])
    return " ".join([word for _, word in words_with_positions])

# LIMITED CACHE: Only store 200 recent author lookups
@st.cache_data(ttl=3600, max_entries=200)
def get_author_details(author_id):
    """
    Fetch detailed author information from OpenAlex
    Cache limited to 200 authors to prevent storage issues
    """
    base_url = f"https://api.openalex.org/authors/{author_id}"
    
    params = {
        "mailto": "[email protected]"
    }
    
    try:
        response = requests.get(base_url, params=params, timeout=10)
        response.raise_for_status()
        return response.json()
    except Exception as e:
        return None

# LIMITED CACHE: Only store 200 recent author works lookups
@st.cache_data(ttl=3600, max_entries=200)
def get_author_works(author_id, max_works=20):
    """
    Fetch author's recent works for validation
    Returns up to max_works most recent papers by this author
    """
    base_url = "https://api.openalex.org/works"
    
    params = {
        "filter": f"author.id:A{author_id}",
        "per_page": max_works,
        "sort": "cited_by_count:desc",  # Get most cited papers
        "select": "id,title,abstract_inverted_index,publication_year",
        "mailto": "[email protected]"
    }
    
    try:
        response = requests.get(base_url, params=params, timeout=10)
        response.raise_for_status()
        data = response.json()
        return data.get("results", [])
    except Exception as e:
        return []

def validate_author_relevance(author_id, query_embedding, model, threshold=0.25, max_works=20):
    """
    Validate if an author is actually relevant to the search query
    by checking semantic similarity of their body of work
    
    Returns: (is_valid, avg_similarity, num_works_checked)
    """
    # Fetch author's works
    works = get_author_works(author_id, max_works)
    
    if not works:
        return False, 0.0, 0
    
    # Generate embeddings for author's works
    work_texts = []
    for work in works:
        title = work.get('title', '') or work.get('display_name', '')
        abstract = reconstruct_abstract(work.get('abstract_inverted_index', {}))
        text = f"{title} {title} {abstract}"
        if text.strip():
            work_texts.append(text)
    
    if not work_texts:
        return False, 0.0, 0
    
    # Calculate similarity to query
    work_embeddings = model.encode(work_texts, convert_to_tensor=False, show_progress_bar=False)
    similarities = calculate_semantic_similarity(query_embedding, work_embeddings)
    avg_similarity = np.mean(similarities)
    
    # Author is valid if their average work similarity exceeds threshold
    is_valid = avg_similarity >= threshold
    
    return is_valid, avg_similarity, len(work_texts)

def calculate_semantic_similarity(query_embedding, paper_embeddings):
    """
    Calculate cosine similarity between query and papers
    """
    # Normalize embeddings
    query_norm = query_embedding / np.linalg.norm(query_embedding)
    paper_norms = paper_embeddings / np.linalg.norm(paper_embeddings, axis=1, keepdims=True)
    
    # Calculate cosine similarity
    similarities = np.dot(paper_norms, query_norm)
    return similarities

def rank_authors(papers, paper_scores, model, query_embedding, min_papers=2, validate_authors=True, validation_threshold=0.25):
    """
    Extract authors from papers and rank them based on:
    - Semantic relevance (average of their paper scores)
    - H-index
    - Total citations
    
    If validate_authors=True, checks each author's body of work for relevance
    """
    author_data = defaultdict(lambda: {
        'name': '',
        'id': '',
        'paper_scores': [],
        'paper_ids': [],
        'total_citations': 0,
        'works_count': 0,
        'h_index': 0,
        'institution': '',
        'validation_score': 0.0,
        'validated': False
    })
    
    # Collect author information from papers
    for paper, score in zip(papers, paper_scores):
        for authorship in paper.get('authorships', []):
            author = authorship.get('author', {})
            author_id = author.get('id', '').split('/')[-1] if author.get('id') else None
            
            if author_id and author_id.startswith('A'):
                author_data[author_id]['name'] = author.get('display_name', 'Unknown')
                author_data[author_id]['id'] = author_id
                author_data[author_id]['paper_scores'].append(score)
                author_data[author_id]['paper_ids'].append(paper.get('id', ''))
                
                # Get institution
                institutions = authorship.get('institutions', [])
                if institutions and not author_data[author_id]['institution']:
                    author_data[author_id]['institution'] = institutions[0].get('display_name', '')
    
    # Filter authors with minimum paper count
    filtered_authors = {
        aid: data for aid, data in author_data.items() 
        if len(data['paper_scores']) >= min_papers
    }
    
    # Fetch detailed metrics for each author
    with st.spinner(f"Fetching metrics for {len(filtered_authors)} authors..."):
        progress_bar = st.progress(0)
        for idx, (author_id, data) in enumerate(filtered_authors.items()):
            author_details = get_author_details(author_id)
            if author_details:
                data['h_index'] = author_details.get('summary_stats', {}).get('h_index', 0)
                data['total_citations'] = author_details.get('cited_by_count', 0)
                data['works_count'] = author_details.get('works_count', 0)
            
            progress_bar.progress((idx + 1) / len(filtered_authors))
            time.sleep(0.1)  # Rate limiting
        
        progress_bar.empty()
    
    # Validate authors if requested
    if validate_authors:
        with st.spinner(f"Validating author relevance (checking their body of work)..."):
            progress_bar = st.progress(0)
            validated_count = 0
            
            for idx, (author_id, data) in enumerate(filtered_authors.items()):
                is_valid, val_score, num_works = validate_author_relevance(
                    author_id, query_embedding, model, validation_threshold
                )
                data['validated'] = is_valid
                data['validation_score'] = val_score
                data['num_works_checked'] = num_works
                
                if is_valid:
                    validated_count += 1
                
                progress_bar.progress((idx + 1) / len(filtered_authors))
                time.sleep(0.1)  # Rate limiting
            
            progress_bar.empty()
            st.success(f"βœ… {validated_count}/{len(filtered_authors)} authors validated as relevant to your query")
        
        # Filter to only validated authors
        filtered_authors = {
            aid: data for aid, data in filtered_authors.items() 
            if data['validated']
        }
    
    # Calculate composite score for ranking
    ranked_authors = []
    for author_id, data in filtered_authors.items():
        avg_relevance = np.mean(data['paper_scores'])
        
        # Normalize metrics (using log scale for citations)
        normalized_h_index = data['h_index'] / 100.0  # Assume max h-index of 100
        normalized_citations = np.log1p(data['total_citations']) / 15.0  # Log scale
        
        # Weighted composite score
        if validate_authors:
            # Include validation score in composite
            composite_score = (
                0.4 * avg_relevance +  # 40% relevance in initial papers
                0.3 * data['validation_score'] +  # 30% validation (their body of work)
                0.2 * min(normalized_h_index, 1.0) +  # 20% h-index
                0.1 * min(normalized_citations, 1.0)  # 10% citations
            )
        else:
            # Original scoring without validation
            composite_score = (
                0.5 * avg_relevance +  # 50% relevance
                0.3 * min(normalized_h_index, 1.0) +  # 30% h-index
                0.2 * min(normalized_citations, 1.0)  # 20% citations
            )
        
        ranked_authors.append({
            'name': data['name'],
            'id': author_id,
            'h_index': data['h_index'],
            'total_citations': data['total_citations'],
            'works_count': data['works_count'],
            'num_relevant_papers': len(data['paper_scores']),
            'avg_relevance_score': avg_relevance,
            'validation_score': data['validation_score'],
            'validated': data['validated'],
            'composite_score': composite_score,
            'institution': data['institution'],
            'openalex_url': f"https://openalex.org/A{author_id}"
        })
    
    # Sort by composite score
    ranked_authors.sort(key=lambda x: x['composite_score'], reverse=True)
    
    return ranked_authors

# Define country codes
COUNTRIES = {
    "All Countries": None,
    "Australia": "AU",
    "Canada": "CA",
    "China": "CN",
    "France": "FR",
    "Germany": "DE",
    "India": "IN",
    "Japan": "JP",
    "United Kingdom": "GB",
    "United States": "US",
}

def main():
    # Header
    st.title("πŸ”¬ OpenAlex Semantic Search")
    st.markdown("""
    Search for research papers and discover top researchers using semantic similarity matching.
    This tool uses **SPECTER** (Scientific Paper Embeddings using Citation-informed TransformERs),
    a model specifically trained on scientific papers for better relevance matching.
    """)
    
    # Sidebar configuration
    st.sidebar.header("βš™οΈ Search Configuration")
    
    # Search mode selection
    search_mode = st.sidebar.radio(
        "Search Mode",
        ["Quick Search", "Deep Search"],
        help="Quick: 50-100 papers (~30s) | Deep: 500-1,000 papers (2-5 min)"
    )
    
    # Number of papers based on mode
    if search_mode == "Quick Search":
        num_papers = st.sidebar.slider(
            "Number of papers to analyze",
            min_value=20,
            max_value=100,
            value=50,
            step=10,
            help="More papers = more comprehensive but slower"
        )
    else:  # Deep Search - LIMIT TO 1000 to prevent storage issues
        num_papers = st.sidebar.slider(
            "Number of papers to analyze",
            min_value=100,
            max_value=1000,  # REDUCED from 5000
            value=500,
            step=100,
            help="⚠️ Limited to 1000 papers to prevent storage issues. Deep search takes 2-5 minutes."
        )
    
    # Country filter
    selected_country = st.sidebar.selectbox(
        "Filter by author country (optional)",
        options=list(COUNTRIES.keys()),
        help="Only include papers where at least one author is from this country"
    )
    country_code = COUNTRIES[selected_country]
    
    # Year range filter
    st.sidebar.subheader("πŸ“… Year Range")
    current_year = 2025
    use_year_filter = st.sidebar.checkbox(
        "Limit by publication year",
        value=False,
        help="Filter papers by publication year range"
    )
    
    if use_year_filter:
        year_col1, year_col2 = st.sidebar.columns(2)
        with year_col1:
            year_min = st.number_input(
                "From",
                min_value=1900,
                max_value=current_year,
                value=2015,
                step=1
            )
        with year_col2:
            year_max = st.number_input(
                "To",
                min_value=1900,
                max_value=current_year,
                value=current_year,
                step=1
            )
    else:
        year_min = None
        year_max = None
    
    # Full-text search option
    use_fulltext = st.sidebar.checkbox(
        "Include full text (when available)",
        value=False,
        help="Search within full paper text (not just title/abstract). ~10-15% of papers have full text available. Slightly slower."
    )
    
    # Author validation
    st.sidebar.subheader("πŸ‘€ Author Validation")
    validate_authors = st.sidebar.checkbox(
        "Validate authors' body of work",
        value=True,
        help="Check each author's recent papers to confirm they're actually working in this area. More accurate but slower."
    )
    
    if validate_authors:
        validation_threshold = st.sidebar.slider(
            "Validation threshold",
            min_value=0.15,
            max_value=0.50,
            value=0.25,
            step=0.05,
            help="Minimum average similarity score for author's works. Higher = stricter filter."
        )
    else:
        validation_threshold = 0.25
    
    # Minimum papers per author
    min_papers_per_author = st.sidebar.slider(
        "Minimum papers per author",
        min_value=1,
        max_value=5,
        value=2,
        help="Filters out authors who appear in fewer than N papers"
    )
    
    # Display settings
    st.sidebar.header("πŸ“Š Display Settings")
    top_papers_display = st.sidebar.slider("Number of top papers to show", 5, 50, 10)
    top_authors_display = st.sidebar.slider("Number of top authors to show", 5, 50, 10)
    
    # Storage usage info
    st.sidebar.markdown("---")
    st.sidebar.info("πŸ’Ύ Cache limited to prevent storage issues:\n- Max 50 searches stored\n- Max 200 authors cached\n- Max 1000 papers in Deep Search")
    
    # Main search interface
    st.header("πŸ” Search Query")
    
    query = st.text_input(
        "Enter your search query:",
        placeholder="e.g., 'graph neural networks for protein structure prediction'",
        help="Enter keywords or a description of what you're looking for"
    )
    
    search_button = st.button("πŸ” Search", type="primary")
    
    if search_button and query:
        # Display search parameters
        year_range_text = f"Years: **{year_min}-{year_max}**" if use_year_filter else "Years: **All**"
        validation_text = f"Validation: **On (threshold {validation_threshold})**" if validate_authors else "Validation: **Off**"
        
        st.info(f"πŸ” Searching: **{query}** | Mode: **{search_mode}** | Papers: **{num_papers}** | {year_range_text} | Country: **{selected_country}** | Full-text: **{'Yes' if use_fulltext else 'No'}** | {validation_text} | Min papers/author: **{min_papers_per_author}**")
        
        # Load model
        with st.spinner("Loading semantic model..."):
            model = load_model()
        
        # Search papers
        search_key = f"{query}_{num_papers}_{country_code}_{use_fulltext}_{year_min}_{year_max}"
        
        if search_mode == "Deep Search":
            progress_text = f"πŸ” Deep search in progress: Fetching up to {num_papers} papers from OpenAlex..."
            progress_bar = st.progress(0, text=progress_text)
        
        year_filter_text = f" from {year_min}-{year_max}" if use_year_filter else ""
        with st.spinner(f"Searching OpenAlex for papers about '{query}'{year_filter_text}{' from ' + selected_country if country_code else ''}{' (including full text)' if use_fulltext else ''}..."):
            papers = search_openalex_papers(query, num_papers, country_code, use_fulltext, year_min, year_max)
            
        if search_mode == "Deep Search":
            progress_bar.progress(33, text="πŸ“„ Papers fetched! Now generating embeddings...")
        
        if not papers:
            st.warning("No papers found. Try different search terms.")
            return
        
        st.success(f"Found {len(papers)} papers!")
        
        # Show debug info in expander
        with st.expander("πŸ” Search Details", expanded=False):
            st.write(f"**Search Mode:** {search_mode}")
            st.write(f"**Query:** {query}")
            st.write(f"**Full-text search:** {'Enabled' if use_fulltext else 'Disabled'}")
            st.write(f"**Year range:** {year_min}-{year_max}" if use_year_filter else "**Year range:** All years")
            st.write(f"**Papers requested:** {num_papers}")
            st.write(f"**Papers fetched:** {len(papers)}")
            st.write(f"**Country filter:** {selected_country} ({country_code or 'None'})")
            st.write(f"**Author validation:** {'Enabled (threshold: ' + str(validation_threshold) + ')' if validate_authors else 'Disabled'}")
            st.write(f"**First paper:** {papers[0].get('display_name', 'N/A')[:100]}...")
            st.write(f"**Last paper:** {papers[-1].get('display_name', 'N/A')[:100]}...")
        
        # Prepare papers for semantic search
        if search_mode == "Deep Search":
            progress_bar.progress(50, text="🧠 Generating semantic embeddings...")
            
        with st.spinner("Analyzing papers with semantic search..."):
            paper_texts = []
            valid_papers = []
            
            for paper in papers:
                title = paper.get('display_name', '') or paper.get('title', '')
                abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
                
                # Combine title and abstract (title weighted more)
                text = f"{title} {title} {abstract}"  # Title appears twice for emphasis
                
                if text.strip():
                    paper_texts.append(text)
                    valid_papers.append(paper)
            
            if not paper_texts:
                st.error("No valid paper content found.")
                return
            
            # Generate embeddings
            query_embedding = model.encode(query, convert_to_tensor=False)
            
            if search_mode == "Deep Search":
                progress_bar.progress(66, text=f"πŸ”’ Computing similarity for {len(paper_texts)} papers...")
            
            paper_embeddings = model.encode(paper_texts, convert_to_tensor=False, show_progress_bar=False)
            
            # Calculate similarities
            similarities = calculate_semantic_similarity(query_embedding, paper_embeddings)
            
            # Sort papers by similarity
            sorted_indices = np.argsort(similarities)[::-1]
            sorted_papers = [valid_papers[i] for i in sorted_indices]
            sorted_scores = [similarities[i] for i in sorted_indices]
            
        if search_mode == "Deep Search":
            progress_bar.progress(100, text="βœ… Complete!")
            time.sleep(0.5)
            progress_bar.empty()
        
        # Display top papers
        st.header(f"πŸ“„ Top {top_papers_display} Most Relevant Papers")
        
        for idx, (paper, score) in enumerate(zip(sorted_papers[:top_papers_display], sorted_scores[:top_papers_display])):
            with st.expander(f"**{idx+1}. {paper.get('display_name', 'Untitled')}** (Relevance: {score:.3f})"):
                col1, col2 = st.columns([3, 1])
                
                with col1:
                    abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
                    if abstract:
                        st.markdown(f"**Abstract:** {abstract[:500]}{'...' if len(abstract) > 500 else ''}")
                    else:
                        st.markdown("*No abstract available*")
                    
                    # Authors
                    authors = [a.get('author', {}).get('display_name', 'Unknown') 
                              for a in paper.get('authorships', [])]
                    if authors:
                        st.markdown(f"**Authors:** {', '.join(authors[:5])}{'...' if len(authors) > 5 else ''}")
                
                with col2:
                    st.metric("Year", paper.get('publication_year', 'N/A'))
                    st.metric("Citations", paper.get('cited_by_count', 0))
                    
                    paper_id = paper.get('id', '').split('/')[-1]
                    if paper_id:
                        st.markdown(f"[View on OpenAlex](https://openalex.org/{paper_id})")
        
        # Rank authors
        st.header(f"πŸ‘¨β€πŸ”¬ Top {top_authors_display} Researchers")
        
        ranked_authors = rank_authors(
            sorted_papers, 
            sorted_scores, 
            model, 
            query_embedding,
            min_papers=min_papers_per_author,
            validate_authors=validate_authors,
            validation_threshold=validation_threshold
        )
        
        if not ranked_authors:
            st.warning(f"No authors found with at least {min_papers_per_author} relevant papers.")
            return
        
        # Display authors in a table
        st.markdown(f"Found {len(ranked_authors)} researchers with at least {min_papers_per_author} relevant papers.")
        
        for idx, author in enumerate(ranked_authors[:top_authors_display], 1):
            with st.container():
                col1, col2, col3, col4 = st.columns([3, 1, 1, 1])
                
                with col1:
                    st.markdown(f"**{idx}. [{author['name']}]({author['openalex_url']})**")
                    if author['institution']:
                        st.caption(author['institution'])
                
                with col2:
                    st.metric("H-Index", author['h_index'])
                
                with col3:
                    st.metric("Citations", f"{author['total_citations']:,}")
                
                with col4:
                    if validate_authors:
                        st.metric("Body Relevance", f"{author['validation_score']:.3f}")
                    else:
                        st.metric("Relevance", f"{author['avg_relevance_score']:.3f}")
                
                caption_text = f"Total works: {author['works_count']} | Relevant papers: {author['num_relevant_papers']}"
                if validate_authors:
                    caption_text += f" | Paper relevance: {author['avg_relevance_score']:.3f}"
                st.caption(caption_text)
                st.divider()
        
        # Download results
        st.header("πŸ“₯ Download Results")
        
        # Prepare CSV data for authors
        import io
        import csv
        
        csv_buffer = io.StringIO()
        csv_writer = csv.writer(csv_buffer)
        
        # Write header
        header = [
            'Rank', 'Name', 'Institution', 'H-Index', 'Total Citations', 
            'Total Works', 'Relevant Papers', 'Avg Relevance Score', 'Composite Score', 'OpenAlex URL'
        ]
        if validate_authors:
            header.insert(-1, 'Body of Work Validation Score')
        csv_writer.writerow(header)
        
        # Write data
        for idx, author in enumerate(ranked_authors, 1):
            row = [
                idx,
                author['name'],
                author['institution'],
                author['h_index'],
                author['total_citations'],
                author['works_count'],
                author['num_relevant_papers'],
                f"{author['avg_relevance_score']:.4f}",
                f"{author['composite_score']:.4f}",
            ]
            if validate_authors:
                row.append(f"{author['validation_score']:.4f}")
            row.append(author['openalex_url'])
            csv_writer.writerow(row)
        
        csv_data = csv_buffer.getvalue()
        
        st.download_button(
            label="Download Author Rankings (CSV)",
            data=csv_data,
            file_name=f"openalex_authors_{query.replace(' ', '_')[:30]}.csv",
            mime="text/csv"
        )

if __name__ == "__main__":
    main()