Spaces:
Sleeping
Sleeping
File size: 28,604 Bytes
0888b9e d8d5f96 2f71153 2c6e629 2f71153 2c6e629 2f71153 d8d5f96 2c6e629 d8d5f96 de16096 d8d5f96 2c6e629 2e73ba2 d8d5f96 2f71153 0c2af38 2e73ba2 71956d4 2c6e629 0c2af38 d8d5f96 0c2af38 d8d5f96 0c2af38 d8d5f96 0c2af38 2e73ba2 0c2af38 2f71153 0c2af38 d8d5f96 2c6e629 d8d5f96 2c6e629 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2c6e629 2e73ba2 d8d5f96 2c6e629 d8d5f96 2e73ba2 d8d5f96 2c6e629 d8d5f96 2c6e629 d8d5f96 2c6e629 d8d5f96 2c6e629 de16096 d8d5f96 2c6e629 2f71153 0c2af38 2c6e629 0c2af38 2c6e629 0c2af38 2c6e629 0c2af38 2c6e629 0c2af38 2c6e629 0c2af38 2c6e629 0c2af38 2c6e629 d8d5f96 2c6e629 d8d5f96 2e73ba2 2c6e629 d8d5f96 2e73ba2 2c6e629 d8d5f96 2c6e629 d8d5f96 2c6e629 d8d5f96 71956d4 2e73ba2 71956d4 d8d5f96 2e73ba2 0c2af38 2e73ba2 0c2af38 d8d5f96 71956d4 0c2af38 71956d4 0c2af38 2e73ba2 0c2af38 71956d4 2e73ba2 71956d4 d8d5f96 0c2af38 d8d5f96 0c2af38 d8d5f96 0c2af38 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 2e73ba2 d8d5f96 0888b9e d8d5f96 de16096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 |
import streamlit as st
import requests
from sentence_transformers import SentenceTransformer
import numpy as np
from collections import defaultdict
import time
import os
import shutil
# Set cache directory to /tmp (gets cleared on restart)
os.environ['HF_HOME'] = '/tmp/huggingface'
os.environ['TRANSFORMERS_CACHE'] = '/tmp/huggingface'
os.environ['SENTENCE_TRANSFORMERS_HOME'] = '/tmp/huggingface'
# Clear old cache on startup to prevent accumulation
def clear_old_cache():
"""Clear /tmp cache if it gets too large"""
cache_dir = '/tmp/huggingface'
try:
if os.path.exists(cache_dir):
size_mb = sum(
os.path.getsize(os.path.join(dirpath, filename))
for dirpath, dirnames, filenames in os.walk(cache_dir)
for filename in filenames
) / (1024 * 1024)
# If cache > 5GB, clear it
if size_mb > 5000:
shutil.rmtree(cache_dir)
os.makedirs(cache_dir)
except:
pass
# Run cleanup on startup
clear_old_cache()
# Page config
st.set_page_config(
page_title="OpenAlex Semantic Search",
page_icon="π¬",
layout="wide"
)
# Cache the model loading
@st.cache_resource
def load_model():
"""Load the SPECTER model - trained specifically on scientific papers"""
# SPECTER is much better for scientific content than general models
# Model size: ~440MB (vs ~80MB for MiniLM)
# Embedding size: 768 dimensions (vs 384 for MiniLM)
return SentenceTransformer('allenai/specter', cache_folder='/tmp/huggingface')
# LIMITED CACHE: Only store 50 recent searches
@st.cache_data(ttl=3600, max_entries=50, show_spinner=False)
def search_openalex_papers(query, num_results=50, country_code=None, use_fulltext=False, year_min=None, year_max=None):
"""
Search OpenAlex for papers related to the query
Optionally filter by author's country
Optionally use full-text search (searches title + abstract + full text when available)
Optionally filter by publication year range
Note: Results are cached for 1 hour, max 50 searches stored
For large requests (>100), uses pagination
"""
base_url = "https://api.openalex.org/works"
all_papers = []
# OpenAlex max per_page is 200, so we need pagination for large requests
per_page = min(200, num_results)
num_pages = (num_results + per_page - 1) // per_page # Ceiling division
for page in range(1, num_pages + 1):
params = {
"per_page": per_page,
"page": page,
"select": "id,title,abstract_inverted_index,authorships,publication_year,cited_by_count,display_name",
"mailto": "[email protected]" # Polite pool
}
# Build filter string
filters = []
if use_fulltext:
# Full-text search (searches title + abstract + full text when available)
filters.append(f"fulltext.search:{query}")
else:
# Standard search (title + abstract only)
params["search"] = query
# Add country filter if specified
if country_code:
filters.append(f"authorships.countries:{country_code}")
# Add year range filter if specified
if year_min is not None:
filters.append(f"publication_year:>{year_min-1}") # Greater than or equal
if year_max is not None:
filters.append(f"publication_year:<{year_max+1}") # Less than or equal
# Combine filters with comma (AND operation)
if filters:
params["filter"] = ",".join(filters)
try:
response = requests.get(base_url, params=params, timeout=30)
response.raise_for_status()
data = response.json()
papers = data.get("results", [])
all_papers.extend(papers)
# If we got fewer papers than requested, no more pages available
if len(papers) < per_page:
break
# Rate limiting - be nice to OpenAlex
if page < num_pages:
time.sleep(0.1) # 100ms delay between requests
except Exception as e:
st.error(f"Error fetching papers (page {page}): {str(e)}")
break
return all_papers[:num_results] # Return exactly what was requested
def reconstruct_abstract(inverted_index):
"""
Reconstruct abstract from OpenAlex inverted index format
"""
if not inverted_index:
return ""
# Create list of (position, word) tuples
words_with_positions = []
for word, positions in inverted_index.items():
for pos in positions:
words_with_positions.append((pos, word))
# Sort by position and join
words_with_positions.sort(key=lambda x: x[0])
return " ".join([word for _, word in words_with_positions])
# LIMITED CACHE: Only store 200 recent author lookups
@st.cache_data(ttl=3600, max_entries=200)
def get_author_details(author_id):
"""
Fetch detailed author information from OpenAlex
Cache limited to 200 authors to prevent storage issues
"""
base_url = f"https://api.openalex.org/authors/{author_id}"
params = {
"mailto": "[email protected]"
}
try:
response = requests.get(base_url, params=params, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
return None
# LIMITED CACHE: Only store 200 recent author works lookups
@st.cache_data(ttl=3600, max_entries=200)
def get_author_works(author_id, max_works=20):
"""
Fetch author's recent works for validation
Returns up to max_works most recent papers by this author
"""
base_url = "https://api.openalex.org/works"
params = {
"filter": f"author.id:A{author_id}",
"per_page": max_works,
"sort": "cited_by_count:desc", # Get most cited papers
"select": "id,title,abstract_inverted_index,publication_year",
"mailto": "[email protected]"
}
try:
response = requests.get(base_url, params=params, timeout=10)
response.raise_for_status()
data = response.json()
return data.get("results", [])
except Exception as e:
return []
def validate_author_relevance(author_id, query_embedding, model, threshold=0.25, max_works=20):
"""
Validate if an author is actually relevant to the search query
by checking semantic similarity of their body of work
Returns: (is_valid, avg_similarity, num_works_checked)
"""
# Fetch author's works
works = get_author_works(author_id, max_works)
if not works:
return False, 0.0, 0
# Generate embeddings for author's works
work_texts = []
for work in works:
title = work.get('title', '') or work.get('display_name', '')
abstract = reconstruct_abstract(work.get('abstract_inverted_index', {}))
text = f"{title} {title} {abstract}"
if text.strip():
work_texts.append(text)
if not work_texts:
return False, 0.0, 0
# Calculate similarity to query
work_embeddings = model.encode(work_texts, convert_to_tensor=False, show_progress_bar=False)
similarities = calculate_semantic_similarity(query_embedding, work_embeddings)
avg_similarity = np.mean(similarities)
# Author is valid if their average work similarity exceeds threshold
is_valid = avg_similarity >= threshold
return is_valid, avg_similarity, len(work_texts)
def calculate_semantic_similarity(query_embedding, paper_embeddings):
"""
Calculate cosine similarity between query and papers
"""
# Normalize embeddings
query_norm = query_embedding / np.linalg.norm(query_embedding)
paper_norms = paper_embeddings / np.linalg.norm(paper_embeddings, axis=1, keepdims=True)
# Calculate cosine similarity
similarities = np.dot(paper_norms, query_norm)
return similarities
def rank_authors(papers, paper_scores, model, query_embedding, min_papers=2, validate_authors=True, validation_threshold=0.25):
"""
Extract authors from papers and rank them based on:
- Semantic relevance (average of their paper scores)
- H-index
- Total citations
If validate_authors=True, checks each author's body of work for relevance
"""
author_data = defaultdict(lambda: {
'name': '',
'id': '',
'paper_scores': [],
'paper_ids': [],
'total_citations': 0,
'works_count': 0,
'h_index': 0,
'institution': '',
'validation_score': 0.0,
'validated': False
})
# Collect author information from papers
for paper, score in zip(papers, paper_scores):
for authorship in paper.get('authorships', []):
author = authorship.get('author', {})
author_id = author.get('id', '').split('/')[-1] if author.get('id') else None
if author_id and author_id.startswith('A'):
author_data[author_id]['name'] = author.get('display_name', 'Unknown')
author_data[author_id]['id'] = author_id
author_data[author_id]['paper_scores'].append(score)
author_data[author_id]['paper_ids'].append(paper.get('id', ''))
# Get institution
institutions = authorship.get('institutions', [])
if institutions and not author_data[author_id]['institution']:
author_data[author_id]['institution'] = institutions[0].get('display_name', '')
# Filter authors with minimum paper count
filtered_authors = {
aid: data for aid, data in author_data.items()
if len(data['paper_scores']) >= min_papers
}
# Fetch detailed metrics for each author
with st.spinner(f"Fetching metrics for {len(filtered_authors)} authors..."):
progress_bar = st.progress(0)
for idx, (author_id, data) in enumerate(filtered_authors.items()):
author_details = get_author_details(author_id)
if author_details:
data['h_index'] = author_details.get('summary_stats', {}).get('h_index', 0)
data['total_citations'] = author_details.get('cited_by_count', 0)
data['works_count'] = author_details.get('works_count', 0)
progress_bar.progress((idx + 1) / len(filtered_authors))
time.sleep(0.1) # Rate limiting
progress_bar.empty()
# Validate authors if requested
if validate_authors:
with st.spinner(f"Validating author relevance (checking their body of work)..."):
progress_bar = st.progress(0)
validated_count = 0
for idx, (author_id, data) in enumerate(filtered_authors.items()):
is_valid, val_score, num_works = validate_author_relevance(
author_id, query_embedding, model, validation_threshold
)
data['validated'] = is_valid
data['validation_score'] = val_score
data['num_works_checked'] = num_works
if is_valid:
validated_count += 1
progress_bar.progress((idx + 1) / len(filtered_authors))
time.sleep(0.1) # Rate limiting
progress_bar.empty()
st.success(f"β
{validated_count}/{len(filtered_authors)} authors validated as relevant to your query")
# Filter to only validated authors
filtered_authors = {
aid: data for aid, data in filtered_authors.items()
if data['validated']
}
# Calculate composite score for ranking
ranked_authors = []
for author_id, data in filtered_authors.items():
avg_relevance = np.mean(data['paper_scores'])
# Normalize metrics (using log scale for citations)
normalized_h_index = data['h_index'] / 100.0 # Assume max h-index of 100
normalized_citations = np.log1p(data['total_citations']) / 15.0 # Log scale
# Weighted composite score
if validate_authors:
# Include validation score in composite
composite_score = (
0.4 * avg_relevance + # 40% relevance in initial papers
0.3 * data['validation_score'] + # 30% validation (their body of work)
0.2 * min(normalized_h_index, 1.0) + # 20% h-index
0.1 * min(normalized_citations, 1.0) # 10% citations
)
else:
# Original scoring without validation
composite_score = (
0.5 * avg_relevance + # 50% relevance
0.3 * min(normalized_h_index, 1.0) + # 30% h-index
0.2 * min(normalized_citations, 1.0) # 20% citations
)
ranked_authors.append({
'name': data['name'],
'id': author_id,
'h_index': data['h_index'],
'total_citations': data['total_citations'],
'works_count': data['works_count'],
'num_relevant_papers': len(data['paper_scores']),
'avg_relevance_score': avg_relevance,
'validation_score': data['validation_score'],
'validated': data['validated'],
'composite_score': composite_score,
'institution': data['institution'],
'openalex_url': f"https://openalex.org/A{author_id}"
})
# Sort by composite score
ranked_authors.sort(key=lambda x: x['composite_score'], reverse=True)
return ranked_authors
# Define country codes
COUNTRIES = {
"All Countries": None,
"Australia": "AU",
"Canada": "CA",
"China": "CN",
"France": "FR",
"Germany": "DE",
"India": "IN",
"Japan": "JP",
"United Kingdom": "GB",
"United States": "US",
}
def main():
# Header
st.title("π¬ OpenAlex Semantic Search")
st.markdown("""
Search for research papers and discover top researchers using semantic similarity matching.
This tool uses **SPECTER** (Scientific Paper Embeddings using Citation-informed TransformERs),
a model specifically trained on scientific papers for better relevance matching.
""")
# Sidebar configuration
st.sidebar.header("βοΈ Search Configuration")
# Search mode selection
search_mode = st.sidebar.radio(
"Search Mode",
["Quick Search", "Deep Search"],
help="Quick: 50-100 papers (~30s) | Deep: 500-1,000 papers (2-5 min)"
)
# Number of papers based on mode
if search_mode == "Quick Search":
num_papers = st.sidebar.slider(
"Number of papers to analyze",
min_value=20,
max_value=100,
value=50,
step=10,
help="More papers = more comprehensive but slower"
)
else: # Deep Search - LIMIT TO 1000 to prevent storage issues
num_papers = st.sidebar.slider(
"Number of papers to analyze",
min_value=100,
max_value=1000, # REDUCED from 5000
value=500,
step=100,
help="β οΈ Limited to 1000 papers to prevent storage issues. Deep search takes 2-5 minutes."
)
# Country filter
selected_country = st.sidebar.selectbox(
"Filter by author country (optional)",
options=list(COUNTRIES.keys()),
help="Only include papers where at least one author is from this country"
)
country_code = COUNTRIES[selected_country]
# Year range filter
st.sidebar.subheader("π
Year Range")
current_year = 2025
use_year_filter = st.sidebar.checkbox(
"Limit by publication year",
value=False,
help="Filter papers by publication year range"
)
if use_year_filter:
year_col1, year_col2 = st.sidebar.columns(2)
with year_col1:
year_min = st.number_input(
"From",
min_value=1900,
max_value=current_year,
value=2015,
step=1
)
with year_col2:
year_max = st.number_input(
"To",
min_value=1900,
max_value=current_year,
value=current_year,
step=1
)
else:
year_min = None
year_max = None
# Full-text search option
use_fulltext = st.sidebar.checkbox(
"Include full text (when available)",
value=False,
help="Search within full paper text (not just title/abstract). ~10-15% of papers have full text available. Slightly slower."
)
# Author validation
st.sidebar.subheader("π€ Author Validation")
validate_authors = st.sidebar.checkbox(
"Validate authors' body of work",
value=True,
help="Check each author's recent papers to confirm they're actually working in this area. More accurate but slower."
)
if validate_authors:
validation_threshold = st.sidebar.slider(
"Validation threshold",
min_value=0.15,
max_value=0.50,
value=0.25,
step=0.05,
help="Minimum average similarity score for author's works. Higher = stricter filter."
)
else:
validation_threshold = 0.25
# Minimum papers per author
min_papers_per_author = st.sidebar.slider(
"Minimum papers per author",
min_value=1,
max_value=5,
value=2,
help="Filters out authors who appear in fewer than N papers"
)
# Display settings
st.sidebar.header("π Display Settings")
top_papers_display = st.sidebar.slider("Number of top papers to show", 5, 50, 10)
top_authors_display = st.sidebar.slider("Number of top authors to show", 5, 50, 10)
# Storage usage info
st.sidebar.markdown("---")
st.sidebar.info("πΎ Cache limited to prevent storage issues:\n- Max 50 searches stored\n- Max 200 authors cached\n- Max 1000 papers in Deep Search")
# Main search interface
st.header("π Search Query")
query = st.text_input(
"Enter your search query:",
placeholder="e.g., 'graph neural networks for protein structure prediction'",
help="Enter keywords or a description of what you're looking for"
)
search_button = st.button("π Search", type="primary")
if search_button and query:
# Display search parameters
year_range_text = f"Years: **{year_min}-{year_max}**" if use_year_filter else "Years: **All**"
validation_text = f"Validation: **On (threshold {validation_threshold})**" if validate_authors else "Validation: **Off**"
st.info(f"π Searching: **{query}** | Mode: **{search_mode}** | Papers: **{num_papers}** | {year_range_text} | Country: **{selected_country}** | Full-text: **{'Yes' if use_fulltext else 'No'}** | {validation_text} | Min papers/author: **{min_papers_per_author}**")
# Load model
with st.spinner("Loading semantic model..."):
model = load_model()
# Search papers
search_key = f"{query}_{num_papers}_{country_code}_{use_fulltext}_{year_min}_{year_max}"
if search_mode == "Deep Search":
progress_text = f"π Deep search in progress: Fetching up to {num_papers} papers from OpenAlex..."
progress_bar = st.progress(0, text=progress_text)
year_filter_text = f" from {year_min}-{year_max}" if use_year_filter else ""
with st.spinner(f"Searching OpenAlex for papers about '{query}'{year_filter_text}{' from ' + selected_country if country_code else ''}{' (including full text)' if use_fulltext else ''}..."):
papers = search_openalex_papers(query, num_papers, country_code, use_fulltext, year_min, year_max)
if search_mode == "Deep Search":
progress_bar.progress(33, text="π Papers fetched! Now generating embeddings...")
if not papers:
st.warning("No papers found. Try different search terms.")
return
st.success(f"Found {len(papers)} papers!")
# Show debug info in expander
with st.expander("π Search Details", expanded=False):
st.write(f"**Search Mode:** {search_mode}")
st.write(f"**Query:** {query}")
st.write(f"**Full-text search:** {'Enabled' if use_fulltext else 'Disabled'}")
st.write(f"**Year range:** {year_min}-{year_max}" if use_year_filter else "**Year range:** All years")
st.write(f"**Papers requested:** {num_papers}")
st.write(f"**Papers fetched:** {len(papers)}")
st.write(f"**Country filter:** {selected_country} ({country_code or 'None'})")
st.write(f"**Author validation:** {'Enabled (threshold: ' + str(validation_threshold) + ')' if validate_authors else 'Disabled'}")
st.write(f"**First paper:** {papers[0].get('display_name', 'N/A')[:100]}...")
st.write(f"**Last paper:** {papers[-1].get('display_name', 'N/A')[:100]}...")
# Prepare papers for semantic search
if search_mode == "Deep Search":
progress_bar.progress(50, text="π§ Generating semantic embeddings...")
with st.spinner("Analyzing papers with semantic search..."):
paper_texts = []
valid_papers = []
for paper in papers:
title = paper.get('display_name', '') or paper.get('title', '')
abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
# Combine title and abstract (title weighted more)
text = f"{title} {title} {abstract}" # Title appears twice for emphasis
if text.strip():
paper_texts.append(text)
valid_papers.append(paper)
if not paper_texts:
st.error("No valid paper content found.")
return
# Generate embeddings
query_embedding = model.encode(query, convert_to_tensor=False)
if search_mode == "Deep Search":
progress_bar.progress(66, text=f"π’ Computing similarity for {len(paper_texts)} papers...")
paper_embeddings = model.encode(paper_texts, convert_to_tensor=False, show_progress_bar=False)
# Calculate similarities
similarities = calculate_semantic_similarity(query_embedding, paper_embeddings)
# Sort papers by similarity
sorted_indices = np.argsort(similarities)[::-1]
sorted_papers = [valid_papers[i] for i in sorted_indices]
sorted_scores = [similarities[i] for i in sorted_indices]
if search_mode == "Deep Search":
progress_bar.progress(100, text="β
Complete!")
time.sleep(0.5)
progress_bar.empty()
# Display top papers
st.header(f"π Top {top_papers_display} Most Relevant Papers")
for idx, (paper, score) in enumerate(zip(sorted_papers[:top_papers_display], sorted_scores[:top_papers_display])):
with st.expander(f"**{idx+1}. {paper.get('display_name', 'Untitled')}** (Relevance: {score:.3f})"):
col1, col2 = st.columns([3, 1])
with col1:
abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
if abstract:
st.markdown(f"**Abstract:** {abstract[:500]}{'...' if len(abstract) > 500 else ''}")
else:
st.markdown("*No abstract available*")
# Authors
authors = [a.get('author', {}).get('display_name', 'Unknown')
for a in paper.get('authorships', [])]
if authors:
st.markdown(f"**Authors:** {', '.join(authors[:5])}{'...' if len(authors) > 5 else ''}")
with col2:
st.metric("Year", paper.get('publication_year', 'N/A'))
st.metric("Citations", paper.get('cited_by_count', 0))
paper_id = paper.get('id', '').split('/')[-1]
if paper_id:
st.markdown(f"[View on OpenAlex](https://openalex.org/{paper_id})")
# Rank authors
st.header(f"π¨βπ¬ Top {top_authors_display} Researchers")
ranked_authors = rank_authors(
sorted_papers,
sorted_scores,
model,
query_embedding,
min_papers=min_papers_per_author,
validate_authors=validate_authors,
validation_threshold=validation_threshold
)
if not ranked_authors:
st.warning(f"No authors found with at least {min_papers_per_author} relevant papers.")
return
# Display authors in a table
st.markdown(f"Found {len(ranked_authors)} researchers with at least {min_papers_per_author} relevant papers.")
for idx, author in enumerate(ranked_authors[:top_authors_display], 1):
with st.container():
col1, col2, col3, col4 = st.columns([3, 1, 1, 1])
with col1:
st.markdown(f"**{idx}. [{author['name']}]({author['openalex_url']})**")
if author['institution']:
st.caption(author['institution'])
with col2:
st.metric("H-Index", author['h_index'])
with col3:
st.metric("Citations", f"{author['total_citations']:,}")
with col4:
if validate_authors:
st.metric("Body Relevance", f"{author['validation_score']:.3f}")
else:
st.metric("Relevance", f"{author['avg_relevance_score']:.3f}")
caption_text = f"Total works: {author['works_count']} | Relevant papers: {author['num_relevant_papers']}"
if validate_authors:
caption_text += f" | Paper relevance: {author['avg_relevance_score']:.3f}"
st.caption(caption_text)
st.divider()
# Download results
st.header("π₯ Download Results")
# Prepare CSV data for authors
import io
import csv
csv_buffer = io.StringIO()
csv_writer = csv.writer(csv_buffer)
# Write header
header = [
'Rank', 'Name', 'Institution', 'H-Index', 'Total Citations',
'Total Works', 'Relevant Papers', 'Avg Relevance Score', 'Composite Score', 'OpenAlex URL'
]
if validate_authors:
header.insert(-1, 'Body of Work Validation Score')
csv_writer.writerow(header)
# Write data
for idx, author in enumerate(ranked_authors, 1):
row = [
idx,
author['name'],
author['institution'],
author['h_index'],
author['total_citations'],
author['works_count'],
author['num_relevant_papers'],
f"{author['avg_relevance_score']:.4f}",
f"{author['composite_score']:.4f}",
]
if validate_authors:
row.append(f"{author['validation_score']:.4f}")
row.append(author['openalex_url'])
csv_writer.writerow(row)
csv_data = csv_buffer.getvalue()
st.download_button(
label="Download Author Rankings (CSV)",
data=csv_data,
file_name=f"openalex_authors_{query.replace(' ', '_')[:30]}.csv",
mime="text/csv"
)
if __name__ == "__main__":
main() |