Spaces:
Sleeping
Sleeping
File size: 14,330 Bytes
0888b9e d8d5f96 0888b9e d8d5f96 5b1baf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import streamlit as st
import requests
from sentence_transformers import SentenceTransformer
import numpy as np
from collections import defaultdict
import time
# Page config
st.set_page_config(
page_title="OpenAlex Semantic Search",
page_icon="π¬",
layout="wide"
)
# Cache the model loading
@st.cache_resource
def load_model():
"""Load the sentence transformer model"""
return SentenceTransformer('all-MiniLM-L6-v2')
@st.cache_data(ttl=3600)
def search_openalex_papers(query, num_results=50):
"""
Search OpenAlex for papers related to the query
"""
base_url = "https://api.openalex.org/works"
params = {
"search": query,
"per_page": num_results,
"select": "id,title,abstract_inverted_index,authorships,publication_year,cited_by_count,display_name",
"mailto": "[email protected]" # Polite pool
}
try:
response = requests.get(base_url, params=params, timeout=30)
response.raise_for_status()
data = response.json()
return data.get("results", [])
except Exception as e:
st.error(f"Error fetching papers: {str(e)}")
return []
def reconstruct_abstract(inverted_index):
"""
Reconstruct abstract from OpenAlex inverted index format
"""
if not inverted_index:
return ""
# Create list of (position, word) tuples
words_with_positions = []
for word, positions in inverted_index.items():
for pos in positions:
words_with_positions.append((pos, word))
# Sort by position and join
words_with_positions.sort(key=lambda x: x[0])
return " ".join([word for _, word in words_with_positions])
@st.cache_data(ttl=3600)
def get_author_details(author_id):
"""
Fetch detailed author information from OpenAlex
"""
base_url = f"https://api.openalex.org/authors/{author_id}"
params = {
"mailto": "[email protected]"
}
try:
response = requests.get(base_url, params=params, timeout=10)
response.raise_for_status()
return response.json()
except Exception as e:
return None
def calculate_semantic_similarity(query_embedding, paper_embeddings):
"""
Calculate cosine similarity between query and papers
"""
# Normalize embeddings
query_norm = query_embedding / np.linalg.norm(query_embedding)
paper_norms = paper_embeddings / np.linalg.norm(paper_embeddings, axis=1, keepdims=True)
# Calculate cosine similarity
similarities = np.dot(paper_norms, query_norm)
return similarities
def rank_authors(papers, paper_scores, model, query_embedding, min_papers=2):
"""
Extract authors from papers and rank them based on:
- Semantic relevance (average of their paper scores)
- H-index
- Total citations
"""
author_data = defaultdict(lambda: {
'name': '',
'id': '',
'paper_scores': [],
'paper_ids': [],
'total_citations': 0,
'works_count': 0,
'h_index': 0,
'institution': ''
})
# Collect author information from papers
for paper, score in zip(papers, paper_scores):
for authorship in paper.get('authorships', []):
author = authorship.get('author', {})
author_id = author.get('id', '').split('/')[-1] if author.get('id') else None
if author_id and author_id.startswith('A'):
author_data[author_id]['name'] = author.get('display_name', 'Unknown')
author_data[author_id]['id'] = author_id
author_data[author_id]['paper_scores'].append(score)
author_data[author_id]['paper_ids'].append(paper.get('id', ''))
# Get institution
institutions = authorship.get('institutions', [])
if institutions and not author_data[author_id]['institution']:
author_data[author_id]['institution'] = institutions[0].get('display_name', '')
# Filter authors with minimum paper count
filtered_authors = {
aid: data for aid, data in author_data.items()
if len(data['paper_scores']) >= min_papers
}
# Fetch detailed metrics for each author
with st.spinner(f"Fetching metrics for {len(filtered_authors)} authors..."):
progress_bar = st.progress(0)
for idx, (author_id, data) in enumerate(filtered_authors.items()):
author_details = get_author_details(author_id)
if author_details:
data['h_index'] = author_details.get('summary_stats', {}).get('h_index', 0)
data['total_citations'] = author_details.get('cited_by_count', 0)
data['works_count'] = author_details.get('works_count', 0)
progress_bar.progress((idx + 1) / len(filtered_authors))
time.sleep(0.1) # Rate limiting
progress_bar.empty()
# Calculate composite score for ranking
ranked_authors = []
for author_id, data in filtered_authors.items():
avg_relevance = np.mean(data['paper_scores'])
# Normalize metrics (using log scale for citations)
normalized_h_index = data['h_index'] / 100.0 # Assume max h-index of 100
normalized_citations = np.log1p(data['total_citations']) / 15.0 # Log scale
# Composite score: weighted combination
composite_score = (
0.5 * avg_relevance + # 50% semantic relevance
0.3 * normalized_h_index + # 30% h-index
0.2 * normalized_citations # 20% citations
)
ranked_authors.append({
'author_id': author_id,
'name': data['name'],
'institution': data['institution'],
'h_index': data['h_index'],
'total_citations': data['total_citations'],
'works_count': data['works_count'],
'num_relevant_papers': len(data['paper_scores']),
'avg_relevance_score': avg_relevance,
'composite_score': composite_score,
'openalex_url': f"https://openalex.org/{author_id}"
})
# Sort by composite score
ranked_authors.sort(key=lambda x: x['composite_score'], reverse=True)
return ranked_authors
def main():
st.title("π¬ OpenAlex Semantic Search")
st.markdown("""
Search for academic papers and discover top researchers using semantic search powered by OpenAlex.
**How it works:**
1. Enter your search terms (e.g., "machine learning for drug discovery")
2. The app finds relevant papers using semantic similarity
3. Authors are ranked by relevance, h-index, and citation metrics
""")
# Sidebar controls
st.sidebar.header("Search Settings")
num_papers = st.sidebar.slider(
"Number of papers to fetch",
min_value=20,
max_value=100,
value=50,
step=10
)
top_papers_display = st.sidebar.slider(
"Top papers to display",
min_value=5,
max_value=30,
value=10,
step=5
)
top_authors_display = st.sidebar.slider(
"Top authors to display",
min_value=5,
max_value=50,
value=20,
step=5
)
min_papers_per_author = st.sidebar.slider(
"Minimum papers per author",
min_value=1,
max_value=5,
value=2,
step=1,
help="Minimum number of relevant papers an author must have to be included"
)
# Main search input
query = st.text_input(
"Enter your search query:",
placeholder="e.g., 'graph neural networks for protein structure prediction'",
help="Enter keywords or a description of what you're looking for"
)
search_button = st.button("π Search", type="primary")
if search_button and query:
# Load model
with st.spinner("Loading semantic model..."):
model = load_model()
# Search papers
with st.spinner(f"Searching OpenAlex for papers about '{query}'..."):
papers = search_openalex_papers(query, num_papers)
if not papers:
st.warning("No papers found. Try different search terms.")
return
st.success(f"Found {len(papers)} papers!")
# Prepare papers for semantic search
with st.spinner("Analyzing papers with semantic search..."):
paper_texts = []
valid_papers = []
for paper in papers:
title = paper.get('display_name', '') or paper.get('title', '')
abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
# Combine title and abstract (title weighted more)
text = f"{title} {title} {abstract}" # Title appears twice for emphasis
if text.strip():
paper_texts.append(text)
valid_papers.append(paper)
if not paper_texts:
st.error("No valid paper content found.")
return
# Generate embeddings
query_embedding = model.encode(query, convert_to_tensor=False)
paper_embeddings = model.encode(paper_texts, convert_to_tensor=False, show_progress_bar=True)
# Calculate similarities
similarities = calculate_semantic_similarity(query_embedding, paper_embeddings)
# Sort papers by similarity
sorted_indices = np.argsort(similarities)[::-1]
sorted_papers = [valid_papers[i] for i in sorted_indices]
sorted_scores = [similarities[i] for i in sorted_indices]
# Display top papers
st.header(f"π Top {top_papers_display} Most Relevant Papers")
for idx, (paper, score) in enumerate(zip(sorted_papers[:top_papers_display], sorted_scores[:top_papers_display])):
with st.expander(f"**{idx+1}. {paper.get('display_name', 'Untitled')}** (Relevance: {score:.3f})"):
col1, col2 = st.columns([3, 1])
with col1:
abstract = reconstruct_abstract(paper.get('abstract_inverted_index', {}))
if abstract:
st.markdown(f"**Abstract:** {abstract[:500]}{'...' if len(abstract) > 500 else ''}")
else:
st.markdown("*No abstract available*")
# Authors
authors = [a.get('author', {}).get('display_name', 'Unknown')
for a in paper.get('authorships', [])]
if authors:
st.markdown(f"**Authors:** {', '.join(authors[:5])}{'...' if len(authors) > 5 else ''}")
with col2:
st.metric("Year", paper.get('publication_year', 'N/A'))
st.metric("Citations", paper.get('cited_by_count', 0))
paper_id = paper.get('id', '').split('/')[-1]
if paper_id:
st.markdown(f"[View on OpenAlex](https://openalex.org/{paper_id})")
# Rank authors
st.header(f"π¨βπ¬ Top {top_authors_display} Researchers")
ranked_authors = rank_authors(
sorted_papers,
sorted_scores,
model,
query_embedding,
min_papers=min_papers_per_author
)
if not ranked_authors:
st.warning(f"No authors found with at least {min_papers_per_author} relevant papers.")
return
# Display authors in a table
st.markdown(f"Found {len(ranked_authors)} researchers with at least {min_papers_per_author} relevant papers.")
for idx, author in enumerate(ranked_authors[:top_authors_display], 1):
with st.container():
col1, col2, col3, col4 = st.columns([3, 1, 1, 1])
with col1:
st.markdown(f"**{idx}. [{author['name']}]({author['openalex_url']})**")
if author['institution']:
st.caption(author['institution'])
with col2:
st.metric("H-Index", author['h_index'])
with col3:
st.metric("Citations", f"{author['total_citations']:,}")
with col4:
st.metric("Relevance", f"{author['avg_relevance_score']:.3f}")
st.caption(f"Total works: {author['works_count']} | Relevant papers: {author['num_relevant_papers']}")
st.divider()
# Download results
st.header("π₯ Download Results")
# Prepare CSV data for authors
import io
import csv
csv_buffer = io.StringIO()
csv_writer = csv.writer(csv_buffer)
# Write header
csv_writer.writerow([
'Rank', 'Name', 'Institution', 'H-Index', 'Total Citations',
'Total Works', 'Relevant Papers', 'Avg Relevance Score', 'Composite Score', 'OpenAlex URL'
])
# Write data
for idx, author in enumerate(ranked_authors, 1):
csv_writer.writerow([
idx,
author['name'],
author['institution'],
author['h_index'],
author['total_citations'],
author['works_count'],
author['num_relevant_papers'],
f"{author['avg_relevance_score']:.4f}",
f"{author['composite_score']:.4f}",
author['openalex_url']
])
csv_data = csv_buffer.getvalue()
st.download_button(
label="Download Author Rankings (CSV)",
data=csv_data,
file_name=f"openalex_authors_{query.replace(' ', '_')[:30]}.csv",
mime="text/csv"
)
if __name__ == "__main__":
main() |