Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -12,7 +12,6 @@ import matplotlib.patches as patches
|
|
| 12 |
|
| 13 |
import random
|
| 14 |
import numpy as np
|
| 15 |
-
import cv2
|
| 16 |
|
| 17 |
import subprocess
|
| 18 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
@@ -22,7 +21,7 @@ model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).t
|
|
| 22 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 23 |
|
| 24 |
|
| 25 |
-
DESCRIPTION = "# [Florence-2
|
| 26 |
|
| 27 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 28 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
@@ -68,6 +67,7 @@ def plot_bbox(image, data):
|
|
| 68 |
return fig
|
| 69 |
|
| 70 |
def draw_polygons(image, prediction, fill_mask=False):
|
|
|
|
| 71 |
draw = ImageDraw.Draw(image)
|
| 72 |
scale = 1
|
| 73 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
|
@@ -86,6 +86,15 @@ def draw_polygons(image, prediction, fill_mask=False):
|
|
| 86 |
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
| 87 |
return image
|
| 88 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
def draw_ocr_bboxes(image, prediction):
|
| 90 |
scale = 1
|
| 91 |
draw = ImageDraw.Draw(image)
|
|
@@ -100,98 +109,118 @@ def draw_ocr_bboxes(image, prediction):
|
|
| 100 |
fill=color)
|
| 101 |
return image
|
| 102 |
|
| 103 |
-
def
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
with gr.Row():
|
| 170 |
-
|
| 171 |
-
label=
|
| 172 |
-
choices=
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
import random
|
| 14 |
import numpy as np
|
|
|
|
| 15 |
|
| 16 |
import subprocess
|
| 17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
|
|
|
| 21 |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 22 |
|
| 23 |
|
| 24 |
+
DESCRIPTION = "# [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)"
|
| 25 |
|
| 26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
|
|
| 67 |
return fig
|
| 68 |
|
| 69 |
def draw_polygons(image, prediction, fill_mask=False):
|
| 70 |
+
|
| 71 |
draw = ImageDraw.Draw(image)
|
| 72 |
scale = 1
|
| 73 |
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
|
|
|
| 86 |
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
| 87 |
return image
|
| 88 |
|
| 89 |
+
def convert_to_od_format(data):
|
| 90 |
+
bboxes = data.get('bboxes', [])
|
| 91 |
+
labels = data.get('bboxes_labels', [])
|
| 92 |
+
od_results = {
|
| 93 |
+
'bboxes': bboxes,
|
| 94 |
+
'labels': labels
|
| 95 |
+
}
|
| 96 |
+
return od_results
|
| 97 |
+
|
| 98 |
def draw_ocr_bboxes(image, prediction):
|
| 99 |
scale = 1
|
| 100 |
draw = ImageDraw.Draw(image)
|
|
|
|
| 109 |
fill=color)
|
| 110 |
return image
|
| 111 |
|
| 112 |
+
def process_image(image, task_prompt, text_input=None):
|
| 113 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 114 |
+
if task_prompt == 'Caption':
|
| 115 |
+
task_prompt = '<CAPTION>'
|
| 116 |
+
result = run_example(task_prompt, image)
|
| 117 |
+
return result, None
|
| 118 |
+
elif task_prompt == 'Detailed Caption':
|
| 119 |
+
task_prompt = '<DETAILED_CAPTION>'
|
| 120 |
+
result = run_example(task_prompt, image)
|
| 121 |
+
return result, None
|
| 122 |
+
elif task_prompt == 'More Detailed Caption':
|
| 123 |
+
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 124 |
+
result = run_example(task_prompt, image)
|
| 125 |
+
return result, None
|
| 126 |
+
elif task_prompt == 'Object Detection':
|
| 127 |
+
task_prompt = '<OD>'
|
| 128 |
+
results = run_example(task_prompt, image)
|
| 129 |
+
fig = plot_bbox(image, results['<OD>'])
|
| 130 |
+
return results, fig_to_pil(fig)
|
| 131 |
+
elif task_prompt == 'Dense Region Caption':
|
| 132 |
+
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 133 |
+
results = run_example(task_prompt, image)
|
| 134 |
+
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 135 |
+
return results, fig_to_pil(fig)
|
| 136 |
+
elif task_prompt == 'Region Proposal':
|
| 137 |
+
task_prompt = '<REGION_PROPOSAL>'
|
| 138 |
+
results = run_example(task_prompt, image)
|
| 139 |
+
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 140 |
+
return results, fig_to_pil(fig)
|
| 141 |
+
elif task_prompt == 'Caption to Phrase Grounding':
|
| 142 |
+
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 143 |
+
results = run_example(task_prompt, image, text_input)
|
| 144 |
+
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 145 |
+
return results, fig_to_pil(fig)
|
| 146 |
+
elif task_prompt == 'Referring Expression Segmentation':
|
| 147 |
+
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 148 |
+
results = run_example(task_prompt, image, text_input)
|
| 149 |
+
output_image = copy.deepcopy(image)
|
| 150 |
+
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 151 |
+
return results, output_image
|
| 152 |
+
elif task_prompt == 'Region to Segmentation':
|
| 153 |
+
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 154 |
+
results = run_example(task_prompt, image, text_input)
|
| 155 |
+
output_image = copy.deepcopy(image)
|
| 156 |
+
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 157 |
+
return results, output_image
|
| 158 |
+
elif task_prompt == 'Open Vocabulary Detection':
|
| 159 |
+
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 160 |
+
results = run_example(task_prompt, image, text_input)
|
| 161 |
+
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 162 |
+
fig = plot_bbox(image, bbox_results)
|
| 163 |
+
return results, fig_to_pil(fig)
|
| 164 |
+
elif task_prompt == 'Region to Category':
|
| 165 |
+
task_prompt = '<REGION_TO_CATEGORY>'
|
| 166 |
+
results = run_example(task_prompt, image, text_input)
|
| 167 |
+
return results, None
|
| 168 |
+
elif task_prompt == 'Region to Description':
|
| 169 |
+
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 170 |
+
results = run_example(task_prompt, image, text_input)
|
| 171 |
+
return results, None
|
| 172 |
+
elif task_prompt == 'OCR':
|
| 173 |
+
task_prompt = '<OCR>'
|
| 174 |
+
result = run_example(task_prompt, image)
|
| 175 |
+
return result, None
|
| 176 |
+
elif task_prompt == 'OCR with Region':
|
| 177 |
+
task_prompt = '<OCR_WITH_REGION>'
|
| 178 |
+
results = run_example(task_prompt, image)
|
| 179 |
+
output_image = copy.deepcopy(image)
|
| 180 |
+
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 181 |
+
return results, output_image
|
| 182 |
+
else:
|
| 183 |
+
return "", None # Return empty string and None for unknown task prompts
|
| 184 |
+
|
| 185 |
+
css = """
|
| 186 |
+
#output {
|
| 187 |
+
height: 500px;
|
| 188 |
+
overflow: auto;
|
| 189 |
+
border: 1px solid #ccc;
|
| 190 |
+
}
|
| 191 |
+
"""
|
| 192 |
+
|
| 193 |
+
with gr.Blocks(css=css) as demo:
|
| 194 |
+
gr.Markdown(DESCRIPTION)
|
| 195 |
+
with gr.Tab(label="Florence-2 Image Captioning"):
|
| 196 |
with gr.Row():
|
| 197 |
+
with gr.Column():
|
| 198 |
+
input_img = gr.Image(label="Input Picture")
|
| 199 |
+
task_prompt = gr.Dropdown(choices=[
|
| 200 |
+
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 201 |
+
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
| 202 |
+
'Referring Expression Segmentation', 'Region to Segmentation',
|
| 203 |
+
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
| 204 |
+
'OCR', 'OCR with Region'
|
| 205 |
+
], label="Task Prompt", value= 'Caption')
|
| 206 |
+
text_input = gr.Textbox(label="Text Input (optional)")
|
| 207 |
+
submit_btn = gr.Button(value="Submit")
|
| 208 |
+
with gr.Column():
|
| 209 |
+
output_text = gr.Textbox(label="Output Text")
|
| 210 |
+
output_img = gr.Image(label="Output Image")
|
| 211 |
+
|
| 212 |
+
gr.Examples(
|
| 213 |
+
examples=[
|
| 214 |
+
["image1.jpg", 'Object Detection'],
|
| 215 |
+
["image2.jpg", 'OCR with Region']
|
| 216 |
+
],
|
| 217 |
+
inputs=[input_img, task_prompt],
|
| 218 |
+
outputs=[output_text, output_img],
|
| 219 |
+
fn=process_image,
|
| 220 |
+
cache_examples=True,
|
| 221 |
+
label='Try examples'
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
| 225 |
+
|
| 226 |
+
demo.launch(debug=True)
|