Spaces:
Sleeping
Sleeping
Merge branch #HuggingFaceFW-Dev/Tasks-Explorer' into 'HuggingFaceFW/Tasks-Explorer'
Browse files
app.py
CHANGED
|
@@ -7,6 +7,7 @@ import re
|
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime
|
|
|
|
| 10 |
|
| 11 |
import gradio as gr
|
| 12 |
import pandas as pd
|
|
@@ -54,7 +55,11 @@ def fetch_repo_structure(results_uri, split_checkpoints=False, oauth_token: gr.O
|
|
| 54 |
token = oauth_token.token
|
| 55 |
|
| 56 |
data_folder = DataFolder(results_uri, token=token)
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
if not runs:
|
| 60 |
return {}, gr.update(choices=[], value=None)
|
|
@@ -139,7 +144,9 @@ def fetch_run_results(results_uri, selected_run_checkpoint: list[str],
|
|
| 139 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
| 140 |
|
| 141 |
|
| 142 |
-
def render_table(df, selected_run_checkpoint: list[str],
|
|
|
|
|
|
|
| 143 |
if df is None or not selected_run_checkpoint or not metric_names:
|
| 144 |
return None, "0"
|
| 145 |
|
|
@@ -148,18 +155,24 @@ def render_table(df, selected_run_checkpoint: list[str], metric_names):
|
|
| 148 |
for metric_name in metric_names]
|
| 149 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
| 150 |
df = df.drop(columns=other_metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
df = shorten_column_names(df, selected_run_checkpoint, metric_names)
|
| 152 |
|
| 153 |
-
#
|
| 154 |
-
|
| 155 |
-
|
|
|
|
|
|
|
| 156 |
|
| 157 |
# Get column widths for better display
|
| 158 |
column_widths = get_column_widths(df)
|
| 159 |
return gr.Dataframe(
|
| 160 |
value=df,
|
| 161 |
column_widths=column_widths
|
| 162 |
-
), str(
|
| 163 |
|
| 164 |
def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool):
|
| 165 |
if not selected_runs:
|
|
@@ -301,7 +314,7 @@ def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, t
|
|
| 301 |
prepared_df = pd.DataFrame({
|
| 302 |
'prompt': df[prompt_column],
|
| 303 |
'choices': df['choices'].apply(tuple), # Convert lists to tuples
|
| 304 |
-
'gold': df['gold'].apply(lambda x: tuple(x) if
|
| 305 |
'gold_index': df['gold_index'],
|
| 306 |
**generative_columns,
|
| 307 |
})
|
|
@@ -348,6 +361,34 @@ def load_task_data(results_uri, selected_run_checkpoint: list[str], task_name, t
|
|
| 348 |
|
| 349 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
| 350 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 351 |
with gr.Blocks() as demo:
|
| 352 |
available_runs_checkpoints = gr.State({})
|
| 353 |
results_df_full = gr.State(None)
|
|
@@ -385,6 +426,8 @@ with gr.Blocks() as demo:
|
|
| 385 |
with gr.Column():
|
| 386 |
num_samples = gr.Text(interactive=False, label="# Samples")
|
| 387 |
prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example")
|
|
|
|
|
|
|
| 388 |
|
| 389 |
# Run selection
|
| 390 |
gr.on(
|
|
@@ -435,7 +478,7 @@ with gr.Blocks() as demo:
|
|
| 435 |
outputs=[results_df_full, metric_names]
|
| 436 |
).then(
|
| 437 |
fn=render_table,
|
| 438 |
-
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 439 |
outputs=[results_df, num_samples]
|
| 440 |
)
|
| 441 |
|
|
@@ -447,14 +490,14 @@ with gr.Blocks() as demo:
|
|
| 447 |
outputs=[results_df_full, metric_names]
|
| 448 |
).then(
|
| 449 |
fn=render_table,
|
| 450 |
-
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 451 |
outputs=[results_df, num_samples]
|
| 452 |
)
|
| 453 |
|
| 454 |
gr.on(
|
| 455 |
-
triggers=[metric_names.input],
|
| 456 |
fn=render_table,
|
| 457 |
-
inputs=[results_df_full, selected_run_checkpoint, metric_names],
|
| 458 |
outputs=[results_df, num_samples]
|
| 459 |
)
|
| 460 |
|
|
|
|
| 7 |
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
import numpy as np
|
| 9 |
from datetime import datetime
|
| 10 |
+
from typing import Any
|
| 11 |
|
| 12 |
import gradio as gr
|
| 13 |
import pandas as pd
|
|
|
|
| 55 |
token = oauth_token.token
|
| 56 |
|
| 57 |
data_folder = DataFolder(results_uri, token=token)
|
| 58 |
+
try:
|
| 59 |
+
runs = [f.removeprefix("details/") for f in data_folder.list_files("details", recursive=False, include_directories=True) if f != "details"]
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error fetching repo structure: {e}")
|
| 62 |
+
runs = []
|
| 63 |
|
| 64 |
if not runs:
|
| 65 |
return {}, gr.update(choices=[], value=None)
|
|
|
|
| 144 |
return gr.update(choices=task_names, value=task_names[0] if task_names else None), task_runs_dict
|
| 145 |
|
| 146 |
|
| 147 |
+
def render_table(df: pd.DataFrame | None, selected_run_checkpoint: list[str],
|
| 148 |
+
metric_names: list[str], filter_different: bool = False,
|
| 149 |
+
n_samples: int = 100):
|
| 150 |
if df is None or not selected_run_checkpoint or not metric_names:
|
| 151 |
return None, "0"
|
| 152 |
|
|
|
|
| 155 |
for metric_name in metric_names]
|
| 156 |
other_metrics = [col for col in df.columns if col.startswith(f"metric_") and col not in kept_metrics]
|
| 157 |
df = df.drop(columns=other_metrics)
|
| 158 |
+
|
| 159 |
+
if filter_different:
|
| 160 |
+
df = df[df.apply(lambda row: has_different_values(row, selected_run_checkpoint, metric_names), axis=1)]
|
| 161 |
+
|
| 162 |
df = shorten_column_names(df, selected_run_checkpoint, metric_names)
|
| 163 |
|
| 164 |
+
# Get total number of samples before limiting
|
| 165 |
+
total_samples = len(df)
|
| 166 |
+
|
| 167 |
+
# Take first n_samples instead of random sampling
|
| 168 |
+
df = df.head(n_samples)
|
| 169 |
|
| 170 |
# Get column widths for better display
|
| 171 |
column_widths = get_column_widths(df)
|
| 172 |
return gr.Dataframe(
|
| 173 |
value=df,
|
| 174 |
column_widths=column_widths
|
| 175 |
+
), str(total_samples)
|
| 176 |
|
| 177 |
def update_selected_run_checkpoint(selected_runs: list[str] | None, selected_checkpoint: list[str] | None, split_checkpoints: bool):
|
| 178 |
if not selected_runs:
|
|
|
|
| 314 |
prepared_df = pd.DataFrame({
|
| 315 |
'prompt': df[prompt_column],
|
| 316 |
'choices': df['choices'].apply(tuple), # Convert lists to tuples
|
| 317 |
+
'gold': df['gold'].apply(lambda x: tuple(x) if is_arary_like(x) else x), # Convert lists to tuples
|
| 318 |
'gold_index': df['gold_index'],
|
| 319 |
**generative_columns,
|
| 320 |
})
|
|
|
|
| 361 |
|
| 362 |
return combined_df, gr.update(choices=available_metrics, value=chosen_metrics)
|
| 363 |
|
| 364 |
+
def has_different_values(row: pd.Series, selected_run_checkpoint: list[str], metric_names: list[str]) -> bool:
|
| 365 |
+
"""Check if a row has different values across runs for any metric or generation."""
|
| 366 |
+
# Check generations
|
| 367 |
+
generation_cols = [f"generation_{run}" for run in selected_run_checkpoint]
|
| 368 |
+
generation_cols = [col for col in generation_cols if col in row.index]
|
| 369 |
+
if generation_cols:
|
| 370 |
+
generations = row[generation_cols].dropna()
|
| 371 |
+
# Convert lists to tuples for comparison and handle string values
|
| 372 |
+
unique_generations = set()
|
| 373 |
+
for gen in generations:
|
| 374 |
+
if isinstance(gen, list):
|
| 375 |
+
unique_generations.add(tuple(gen))
|
| 376 |
+
else:
|
| 377 |
+
unique_generations.add(gen)
|
| 378 |
+
if len(unique_generations) > 1:
|
| 379 |
+
return True
|
| 380 |
+
|
| 381 |
+
# Check metrics
|
| 382 |
+
for metric in metric_names:
|
| 383 |
+
metric_cols = [f"metric_{metric}_{run}" for run in selected_run_checkpoint]
|
| 384 |
+
metric_cols = [col for col in metric_cols if col in row.index]
|
| 385 |
+
if metric_cols:
|
| 386 |
+
metrics = row[metric_cols].dropna()
|
| 387 |
+
if len(metrics.unique()) > 1:
|
| 388 |
+
return True
|
| 389 |
+
|
| 390 |
+
return False
|
| 391 |
+
|
| 392 |
with gr.Blocks() as demo:
|
| 393 |
available_runs_checkpoints = gr.State({})
|
| 394 |
results_df_full = gr.State(None)
|
|
|
|
| 426 |
with gr.Column():
|
| 427 |
num_samples = gr.Text(interactive=False, label="# Samples")
|
| 428 |
prompt_column = gr.Radio(choices=["full_prompt", "example"], label="Prompt display", value="example")
|
| 429 |
+
filter_different = gr.Checkbox(label="Show only samples with differences", value=False)
|
| 430 |
+
n_samples_input = gr.Number(value=100, label="Number of samples to show", minimum=1, maximum=1000, step=1)
|
| 431 |
|
| 432 |
# Run selection
|
| 433 |
gr.on(
|
|
|
|
| 478 |
outputs=[results_df_full, metric_names]
|
| 479 |
).then(
|
| 480 |
fn=render_table,
|
| 481 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
|
| 482 |
outputs=[results_df, num_samples]
|
| 483 |
)
|
| 484 |
|
|
|
|
| 490 |
outputs=[results_df_full, metric_names]
|
| 491 |
).then(
|
| 492 |
fn=render_table,
|
| 493 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
|
| 494 |
outputs=[results_df, num_samples]
|
| 495 |
)
|
| 496 |
|
| 497 |
gr.on(
|
| 498 |
+
triggers=[metric_names.input, filter_different.change, n_samples_input.change],
|
| 499 |
fn=render_table,
|
| 500 |
+
inputs=[results_df_full, selected_run_checkpoint, metric_names, filter_different, n_samples_input],
|
| 501 |
outputs=[results_df, num_samples]
|
| 502 |
)
|
| 503 |
|