Spaces:
Runtime error
Runtime error
nits
Browse files
app.py
CHANGED
|
@@ -1,25 +1,23 @@
|
|
| 1 |
-
|
| 2 |
-
import enum
|
| 3 |
-
from functools import partial
|
| 4 |
import json
|
| 5 |
import os
|
| 6 |
-
from pathlib import Path
|
| 7 |
import re
|
| 8 |
-
import heapq
|
| 9 |
import tempfile
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
from typing import Literal
|
| 11 |
-
import gradio as gr
|
| 12 |
|
| 13 |
-
|
| 14 |
-
from datatrove.io import get_datafolder
|
| 15 |
-
import plotly.graph_objects as go
|
| 16 |
-
from datatrove.utils.stats import MetricStats, MetricStatsDict
|
| 17 |
import plotly.express as px
|
|
|
|
| 18 |
import tenacity
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
METRICS_LOCATION_DEFAULT = os.getenv("METRICS_LOCATION_DEFAULT", "s3://fineweb-stats/summary/")
|
| 23 |
|
| 24 |
|
| 25 |
def find_folders(base_folder, path):
|
|
@@ -74,7 +72,7 @@ def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
|
|
| 74 |
return gr.update(choices=[], value=None)
|
| 75 |
|
| 76 |
if type == "intersection":
|
| 77 |
-
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
| 78 |
else:
|
| 79 |
new_choices = set.union(*(set(g) for g in GROUPS))
|
| 80 |
value = None
|
|
@@ -88,7 +86,8 @@ def fetch_groups(base_folder, datasets, old_groups, type="intersection"):
|
|
| 88 |
|
| 89 |
def fetch_metrics(base_folder, datasets, group, old_metrics, type="intersection"):
|
| 90 |
with ThreadPoolExecutor() as executor:
|
| 91 |
-
metrics = list(
|
|
|
|
| 92 |
if len(metrics) == 0:
|
| 93 |
return gr.update(choices=[], value=None)
|
| 94 |
|
|
@@ -106,7 +105,9 @@ def fetch_metrics(base_folder, datasets, group, old_metrics, type="intersection"
|
|
| 106 |
|
| 107 |
def reverse_search(base_folder, possible_datasets, grouping, metric_name):
|
| 108 |
with ThreadPoolExecutor() as executor:
|
| 109 |
-
found_datasets = list(executor.map(
|
|
|
|
|
|
|
| 110 |
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
|
| 111 |
return "\n".join(found_datasets)
|
| 112 |
|
|
@@ -116,16 +117,16 @@ def reverse_search_add(datasets, reverse_search_results):
|
|
| 116 |
return sorted(list(set(datasets + reverse_search_results.strip().split("\n"))))
|
| 117 |
|
| 118 |
|
| 119 |
-
|
| 120 |
def metric_exists(base_folder, path, metric_name, group_by):
|
| 121 |
base_folder = get_datafolder(base_folder)
|
| 122 |
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json")
|
| 123 |
|
|
|
|
| 124 |
@tenacity.retry(stop=tenacity.stop_after_attempt(5))
|
| 125 |
def load_metrics(base_folder, path, metric_name, group_by):
|
| 126 |
base_folder = get_datafolder(base_folder)
|
| 127 |
with base_folder.open(
|
| 128 |
-
|
| 129 |
) as f:
|
| 130 |
json_metric = json.load(f)
|
| 131 |
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malformed
|
|
@@ -149,6 +150,7 @@ def load_data(dataset_path, base_folder, grouping, metric_name):
|
|
| 149 |
metrics = load_metrics(base_folder, dataset_path, metric_name, grouping)
|
| 150 |
return metrics
|
| 151 |
|
|
|
|
| 152 |
def prepare_for_group_plotting(metric, top_k, direction: PARTITION_OPTIONS, regex: str | None, rounding: int):
|
| 153 |
regex_compiled = re.compile(regex) if regex else None
|
| 154 |
metric = {key: value for key, value in metric.items() if not regex or regex_compiled.match(key)}
|
|
@@ -162,7 +164,6 @@ def prepare_for_group_plotting(metric, top_k, direction: PARTITION_OPTIONS, rege
|
|
| 162 |
else:
|
| 163 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
| 164 |
|
| 165 |
-
|
| 166 |
means = [means[key] for key in keys]
|
| 167 |
stds = [metric[key].standard_deviation for key in keys]
|
| 168 |
return keys, means, stds
|
|
@@ -181,13 +182,13 @@ def set_alpha(color, alpha):
|
|
| 181 |
|
| 182 |
|
| 183 |
def plot_scatter(
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
):
|
| 192 |
fig = go.Figure()
|
| 193 |
|
|
@@ -225,15 +226,15 @@ def plot_scatter(
|
|
| 225 |
|
| 226 |
|
| 227 |
def plot_bars(
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
):
|
| 238 |
fig = go.Figure()
|
| 239 |
x = []
|
|
@@ -243,9 +244,9 @@ def plot_bars(
|
|
| 243 |
x, y, stds = prepare_for_group_plotting(histogram, top_k, direction, regex, rounding)
|
| 244 |
|
| 245 |
fig.add_trace(go.Bar(
|
| 246 |
-
x=x,
|
| 247 |
-
y=y,
|
| 248 |
-
name=f"{name} Mean",
|
| 249 |
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
|
| 250 |
error_y=dict(type='data', array=stds, visible=True)
|
| 251 |
))
|
|
@@ -266,18 +267,18 @@ def plot_bars(
|
|
| 266 |
|
| 267 |
|
| 268 |
def update_graph(
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
):
|
| 282 |
if len(datasets) <= 0 or not metric_name or not grouping:
|
| 283 |
return None
|
|
@@ -296,9 +297,12 @@ def update_graph(
|
|
| 296 |
)
|
| 297 |
|
| 298 |
data = {path: result for path, result in zip(datasets, data)}
|
| 299 |
-
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x,
|
|
|
|
|
|
|
| 300 |
|
| 301 |
-
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y,
|
|
|
|
| 302 |
if rounding is None or top_k is None:
|
| 303 |
return None
|
| 304 |
graph_fc = (
|
|
@@ -306,8 +310,8 @@ def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direc
|
|
| 306 |
if grouping == "histogram"
|
| 307 |
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
|
| 308 |
)
|
| 309 |
-
return graph_fc(data=data, metric_name=metric_name, progress=progress, log_scale_x=log_scale_x,
|
| 310 |
-
|
| 311 |
|
| 312 |
|
| 313 |
# Create the Gradio interface
|
|
@@ -376,7 +380,6 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 376 |
multiselect=False,
|
| 377 |
)
|
| 378 |
|
| 379 |
-
|
| 380 |
update_button = gr.Button("Update Graph", variant="primary")
|
| 381 |
|
| 382 |
with gr.Row():
|
|
@@ -414,7 +417,7 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 414 |
value=100,
|
| 415 |
interactive=True,
|
| 416 |
)
|
| 417 |
-
|
| 418 |
direction_checkbox = gr.Radio(
|
| 419 |
label="Partition",
|
| 420 |
choices=[
|
|
@@ -423,14 +426,14 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 423 |
"Most frequent (n_docs)",
|
| 424 |
],
|
| 425 |
value="Most frequent (n_docs)",
|
| 426 |
-
|
| 427 |
# Define the graph output
|
| 428 |
with gr.Row():
|
| 429 |
graph_output = gr.Plot(label="Graph")
|
| 430 |
-
|
| 431 |
with gr.Row():
|
| 432 |
reverse_search_headline = gr.Markdown(value="# Reverse metrics search")
|
| 433 |
-
|
| 434 |
with gr.Row():
|
| 435 |
with gr.Column(scale=1):
|
| 436 |
# Define the dropdown for grouping
|
|
@@ -445,7 +448,7 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 445 |
label="Stat name",
|
| 446 |
multiselect=False,
|
| 447 |
)
|
| 448 |
-
|
| 449 |
with gr.Column(scale=1):
|
| 450 |
reverse_search_button = gr.Button("Search")
|
| 451 |
reverse_search_add_button = gr.Button("Add to selection")
|
|
@@ -457,7 +460,6 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 457 |
placeholder="Found datasets containing the group/metric name. You can modify the selection after search by removing unwanted lines and clicking Add to selection"
|
| 458 |
)
|
| 459 |
|
| 460 |
-
|
| 461 |
update_button.click(
|
| 462 |
fn=update_graph,
|
| 463 |
inputs=[
|
|
@@ -476,25 +478,24 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 476 |
outputs=[graph_output, exported_data, export_data_json],
|
| 477 |
)
|
| 478 |
|
| 479 |
-
for inp in [normalization_checkbox, rounding, group_regex, direction_checkbox, top_select, log_scale_x_checkbox,
|
|
|
|
| 480 |
inp.change(
|
| 481 |
fn=plot_data,
|
| 482 |
inputs=[
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
| 497 |
-
|
| 498 |
|
| 499 |
datasets_selected.change(
|
| 500 |
fn=fetch_groups,
|
|
@@ -526,13 +527,13 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 526 |
outputs=datasets_selected,
|
| 527 |
)
|
| 528 |
|
| 529 |
-
|
| 530 |
datasets_refetch.click(
|
| 531 |
fn=fetch_datasets,
|
| 532 |
inputs=[base_folder],
|
| 533 |
outputs=[datasets, datasets_selected, reverse_grouping_dropdown],
|
| 534 |
)
|
| 535 |
|
|
|
|
| 536 |
def update_datasets_with_regex(regex, selected_runs, all_runs):
|
| 537 |
if not regex:
|
| 538 |
return
|
|
@@ -542,12 +543,14 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 542 |
dst_union = new_dsts.union(selected_runs or [])
|
| 543 |
return gr.update(value=sorted(list(dst_union)))
|
| 544 |
|
|
|
|
| 545 |
regex_button.click(
|
| 546 |
fn=update_datasets_with_regex,
|
| 547 |
inputs=[regex_select, datasets_selected, datasets],
|
| 548 |
outputs=datasets_selected,
|
| 549 |
)
|
| 550 |
|
|
|
|
| 551 |
def update_grouping_options(grouping):
|
| 552 |
if grouping == "histogram":
|
| 553 |
return {
|
|
@@ -560,13 +563,13 @@ The data might not be 100% representative, due to the sampling and optimistic me
|
|
| 560 |
group_choices: gr.Column(visible=True),
|
| 561 |
}
|
| 562 |
|
|
|
|
| 563 |
grouping_dropdown.select(
|
| 564 |
fn=update_grouping_options,
|
| 565 |
inputs=[grouping_dropdown],
|
| 566 |
outputs=[normalization_checkbox, group_choices],
|
| 567 |
)
|
| 568 |
|
| 569 |
-
|
| 570 |
# Launch the application
|
| 571 |
if __name__ == "__main__":
|
| 572 |
demo.launch()
|
|
|
|
| 1 |
+
import heapq
|
|
|
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
|
|
|
| 4 |
import re
|
|
|
|
| 5 |
import tempfile
|
| 6 |
+
from collections import defaultdict
|
| 7 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 8 |
+
from functools import partial
|
| 9 |
+
from pathlib import Path
|
| 10 |
from typing import Literal
|
|
|
|
| 11 |
|
| 12 |
+
import gradio as gr
|
|
|
|
|
|
|
|
|
|
| 13 |
import plotly.express as px
|
| 14 |
+
import plotly.graph_objects as go
|
| 15 |
import tenacity
|
| 16 |
+
from datatrove.io import get_datafolder
|
| 17 |
+
from datatrove.utils.stats import MetricStatsDict
|
| 18 |
|
| 19 |
+
PARTITION_OPTIONS = Literal["Top", "Bottom", "Most frequent (n_docs)"]
|
| 20 |
+
METRICS_LOCATION_DEFAULT = os.getenv("METRICS_LOCATION_DEFAULT", "hf://datasets/HuggingFaceFW-Dev/summary-stats-files")
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def find_folders(base_folder, path):
|
|
|
|
| 72 |
return gr.update(choices=[], value=None)
|
| 73 |
|
| 74 |
if type == "intersection":
|
| 75 |
+
new_choices = set.intersection(*(set(g) for g in GROUPS))
|
| 76 |
else:
|
| 77 |
new_choices = set.union(*(set(g) for g in GROUPS))
|
| 78 |
value = None
|
|
|
|
| 86 |
|
| 87 |
def fetch_metrics(base_folder, datasets, group, old_metrics, type="intersection"):
|
| 88 |
with ThreadPoolExecutor() as executor:
|
| 89 |
+
metrics = list(
|
| 90 |
+
executor.map(lambda run: [Path(x).name for x in find_folders(base_folder, f"{run}/{group}")], datasets))
|
| 91 |
if len(metrics) == 0:
|
| 92 |
return gr.update(choices=[], value=None)
|
| 93 |
|
|
|
|
| 105 |
|
| 106 |
def reverse_search(base_folder, possible_datasets, grouping, metric_name):
|
| 107 |
with ThreadPoolExecutor() as executor:
|
| 108 |
+
found_datasets = list(executor.map(
|
| 109 |
+
lambda dataset: dataset if metric_exists(base_folder, dataset, metric_name, grouping) else None,
|
| 110 |
+
possible_datasets))
|
| 111 |
found_datasets = [dataset for dataset in found_datasets if dataset is not None]
|
| 112 |
return "\n".join(found_datasets)
|
| 113 |
|
|
|
|
| 117 |
return sorted(list(set(datasets + reverse_search_results.strip().split("\n"))))
|
| 118 |
|
| 119 |
|
|
|
|
| 120 |
def metric_exists(base_folder, path, metric_name, group_by):
|
| 121 |
base_folder = get_datafolder(base_folder)
|
| 122 |
return base_folder.exists(f"{path}/{group_by}/{metric_name}/metric.json")
|
| 123 |
|
| 124 |
+
|
| 125 |
@tenacity.retry(stop=tenacity.stop_after_attempt(5))
|
| 126 |
def load_metrics(base_folder, path, metric_name, group_by):
|
| 127 |
base_folder = get_datafolder(base_folder)
|
| 128 |
with base_folder.open(
|
| 129 |
+
f"{path}/{group_by}/{metric_name}/metric.json",
|
| 130 |
) as f:
|
| 131 |
json_metric = json.load(f)
|
| 132 |
# No idea why this is necessary, but it is, otheriwse the Metric StatsDict is malformed
|
|
|
|
| 150 |
metrics = load_metrics(base_folder, dataset_path, metric_name, grouping)
|
| 151 |
return metrics
|
| 152 |
|
| 153 |
+
|
| 154 |
def prepare_for_group_plotting(metric, top_k, direction: PARTITION_OPTIONS, regex: str | None, rounding: int):
|
| 155 |
regex_compiled = re.compile(regex) if regex else None
|
| 156 |
metric = {key: value for key, value in metric.items() if not regex or regex_compiled.match(key)}
|
|
|
|
| 164 |
else:
|
| 165 |
keys = heapq.nsmallest(top_k, means, key=means.get)
|
| 166 |
|
|
|
|
| 167 |
means = [means[key] for key in keys]
|
| 168 |
stds = [metric[key].standard_deviation for key in keys]
|
| 169 |
return keys, means, stds
|
|
|
|
| 182 |
|
| 183 |
|
| 184 |
def plot_scatter(
|
| 185 |
+
data: dict[str, dict[float, float]],
|
| 186 |
+
metric_name: str,
|
| 187 |
+
log_scale_x: bool,
|
| 188 |
+
log_scale_y: bool,
|
| 189 |
+
normalization: bool,
|
| 190 |
+
rounding: int,
|
| 191 |
+
progress: gr.Progress,
|
| 192 |
):
|
| 193 |
fig = go.Figure()
|
| 194 |
|
|
|
|
| 226 |
|
| 227 |
|
| 228 |
def plot_bars(
|
| 229 |
+
data: dict[str, list[dict[str, float]]],
|
| 230 |
+
metric_name: str,
|
| 231 |
+
top_k: int,
|
| 232 |
+
direction: PARTITION_OPTIONS,
|
| 233 |
+
regex: str | None,
|
| 234 |
+
rounding: int,
|
| 235 |
+
log_scale_x: bool,
|
| 236 |
+
log_scale_y: bool,
|
| 237 |
+
progress: gr.Progress,
|
| 238 |
):
|
| 239 |
fig = go.Figure()
|
| 240 |
x = []
|
|
|
|
| 244 |
x, y, stds = prepare_for_group_plotting(histogram, top_k, direction, regex, rounding)
|
| 245 |
|
| 246 |
fig.add_trace(go.Bar(
|
| 247 |
+
x=x,
|
| 248 |
+
y=y,
|
| 249 |
+
name=f"{name} Mean",
|
| 250 |
marker=dict(color=set_alpha(px.colors.qualitative.Plotly[i % len(px.colors.qualitative.Plotly)], 0.5)),
|
| 251 |
error_y=dict(type='data', array=stds, visible=True)
|
| 252 |
))
|
|
|
|
| 267 |
|
| 268 |
|
| 269 |
def update_graph(
|
| 270 |
+
base_folder,
|
| 271 |
+
datasets,
|
| 272 |
+
metric_name,
|
| 273 |
+
grouping,
|
| 274 |
+
log_scale_x,
|
| 275 |
+
log_scale_y,
|
| 276 |
+
rounding,
|
| 277 |
+
normalization,
|
| 278 |
+
top_k,
|
| 279 |
+
direction,
|
| 280 |
+
regex,
|
| 281 |
+
progress=gr.Progress(),
|
| 282 |
):
|
| 283 |
if len(datasets) <= 0 or not metric_name or not grouping:
|
| 284 |
return None
|
|
|
|
| 297 |
)
|
| 298 |
|
| 299 |
data = {path: result for path, result in zip(datasets, data)}
|
| 300 |
+
return plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x,
|
| 301 |
+
log_scale_y, progress), data, export_data(data, metric_name)
|
| 302 |
+
|
| 303 |
|
| 304 |
+
def plot_data(data, metric_name, normalization, rounding, grouping, top_k, direction, regex, log_scale_x, log_scale_y,
|
| 305 |
+
progress=gr.Progress()):
|
| 306 |
if rounding is None or top_k is None:
|
| 307 |
return None
|
| 308 |
graph_fc = (
|
|
|
|
| 310 |
if grouping == "histogram"
|
| 311 |
else partial(plot_bars, top_k=top_k, direction=direction, regex=regex, rounding=rounding)
|
| 312 |
)
|
| 313 |
+
return graph_fc(data=data, metric_name=metric_name, progress=progress, log_scale_x=log_scale_x,
|
| 314 |
+
log_scale_y=log_scale_y)
|
| 315 |
|
| 316 |
|
| 317 |
# Create the Gradio interface
|
|
|
|
| 380 |
multiselect=False,
|
| 381 |
)
|
| 382 |
|
|
|
|
| 383 |
update_button = gr.Button("Update Graph", variant="primary")
|
| 384 |
|
| 385 |
with gr.Row():
|
|
|
|
| 417 |
value=100,
|
| 418 |
interactive=True,
|
| 419 |
)
|
| 420 |
+
|
| 421 |
direction_checkbox = gr.Radio(
|
| 422 |
label="Partition",
|
| 423 |
choices=[
|
|
|
|
| 426 |
"Most frequent (n_docs)",
|
| 427 |
],
|
| 428 |
value="Most frequent (n_docs)",
|
| 429 |
+
)
|
| 430 |
# Define the graph output
|
| 431 |
with gr.Row():
|
| 432 |
graph_output = gr.Plot(label="Graph")
|
| 433 |
+
|
| 434 |
with gr.Row():
|
| 435 |
reverse_search_headline = gr.Markdown(value="# Reverse metrics search")
|
| 436 |
+
|
| 437 |
with gr.Row():
|
| 438 |
with gr.Column(scale=1):
|
| 439 |
# Define the dropdown for grouping
|
|
|
|
| 448 |
label="Stat name",
|
| 449 |
multiselect=False,
|
| 450 |
)
|
| 451 |
+
|
| 452 |
with gr.Column(scale=1):
|
| 453 |
reverse_search_button = gr.Button("Search")
|
| 454 |
reverse_search_add_button = gr.Button("Add to selection")
|
|
|
|
| 460 |
placeholder="Found datasets containing the group/metric name. You can modify the selection after search by removing unwanted lines and clicking Add to selection"
|
| 461 |
)
|
| 462 |
|
|
|
|
| 463 |
update_button.click(
|
| 464 |
fn=update_graph,
|
| 465 |
inputs=[
|
|
|
|
| 478 |
outputs=[graph_output, exported_data, export_data_json],
|
| 479 |
)
|
| 480 |
|
| 481 |
+
for inp in [normalization_checkbox, rounding, group_regex, direction_checkbox, top_select, log_scale_x_checkbox,
|
| 482 |
+
log_scale_y_checkbox]:
|
| 483 |
inp.change(
|
| 484 |
fn=plot_data,
|
| 485 |
inputs=[
|
| 486 |
+
exported_data,
|
| 487 |
+
metric_name_dropdown,
|
| 488 |
+
normalization_checkbox,
|
| 489 |
+
rounding,
|
| 490 |
+
grouping_dropdown,
|
| 491 |
+
top_select,
|
| 492 |
+
direction_checkbox,
|
| 493 |
+
group_regex,
|
| 494 |
+
log_scale_x_checkbox,
|
| 495 |
+
log_scale_y_checkbox,
|
| 496 |
+
],
|
| 497 |
+
outputs=[graph_output],
|
| 498 |
+
)
|
|
|
|
|
|
|
| 499 |
|
| 500 |
datasets_selected.change(
|
| 501 |
fn=fetch_groups,
|
|
|
|
| 527 |
outputs=datasets_selected,
|
| 528 |
)
|
| 529 |
|
|
|
|
| 530 |
datasets_refetch.click(
|
| 531 |
fn=fetch_datasets,
|
| 532 |
inputs=[base_folder],
|
| 533 |
outputs=[datasets, datasets_selected, reverse_grouping_dropdown],
|
| 534 |
)
|
| 535 |
|
| 536 |
+
|
| 537 |
def update_datasets_with_regex(regex, selected_runs, all_runs):
|
| 538 |
if not regex:
|
| 539 |
return
|
|
|
|
| 543 |
dst_union = new_dsts.union(selected_runs or [])
|
| 544 |
return gr.update(value=sorted(list(dst_union)))
|
| 545 |
|
| 546 |
+
|
| 547 |
regex_button.click(
|
| 548 |
fn=update_datasets_with_regex,
|
| 549 |
inputs=[regex_select, datasets_selected, datasets],
|
| 550 |
outputs=datasets_selected,
|
| 551 |
)
|
| 552 |
|
| 553 |
+
|
| 554 |
def update_grouping_options(grouping):
|
| 555 |
if grouping == "histogram":
|
| 556 |
return {
|
|
|
|
| 563 |
group_choices: gr.Column(visible=True),
|
| 564 |
}
|
| 565 |
|
| 566 |
+
|
| 567 |
grouping_dropdown.select(
|
| 568 |
fn=update_grouping_options,
|
| 569 |
inputs=[grouping_dropdown],
|
| 570 |
outputs=[normalization_checkbox, group_choices],
|
| 571 |
)
|
| 572 |
|
|
|
|
| 573 |
# Launch the application
|
| 574 |
if __name__ == "__main__":
|
| 575 |
demo.launch()
|