Spaces:
Running
on
Zero
Running
on
Zero
| # Project EmbodiedGen | |
| # | |
| # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or | |
| # implied. See the License for the specific language governing | |
| # permissions and limitations under the License. | |
| import json | |
| import os | |
| import xml.etree.ElementTree as ET | |
| from collections import defaultdict | |
| from typing import Literal | |
| import mplib | |
| import numpy as np | |
| import sapien.core as sapien | |
| import sapien.physx as physx | |
| import torch | |
| from mani_skill.agents.base_agent import BaseAgent | |
| from mani_skill.envs.scene import ManiSkillScene | |
| from mani_skill.examples.motionplanning.panda.utils import ( | |
| compute_grasp_info_by_obb, | |
| ) | |
| from mani_skill.utils.geometry.trimesh_utils import get_component_mesh | |
| from PIL import Image, ImageColor | |
| from scipy.spatial.transform import Rotation as R | |
| from embodied_gen.data.utils import DiffrastRender | |
| from embodied_gen.utils.enum import LayoutInfo, Scene3DItemEnum | |
| from embodied_gen.utils.geometry import quaternion_multiply | |
| from embodied_gen.utils.log import logger | |
| COLORMAP = list(set(ImageColor.colormap.values())) | |
| COLOR_PALETTE = np.array( | |
| [ImageColor.getrgb(c) for c in COLORMAP], dtype=np.uint8 | |
| ) | |
| SIM_COORD_ALIGN = np.array( | |
| [ | |
| [1.0, 0.0, 0.0, 0.0], | |
| [0.0, -1.0, 0.0, 0.0], | |
| [0.0, 0.0, -1.0, 0.0], | |
| [0.0, 0.0, 0.0, 1.0], | |
| ] | |
| ) # Used to align SAPIEN, MuJoCo coordinate system with the world coordinate system | |
| __all__ = [ | |
| "SIM_COORD_ALIGN", | |
| "FrankaPandaGrasper", | |
| "load_assets_from_layout_file", | |
| "load_mani_skill_robot", | |
| "render_images", | |
| ] | |
| def load_actor_from_urdf( | |
| scene: sapien.Scene | ManiSkillScene, | |
| file_path: str, | |
| pose: sapien.Pose | None = None, | |
| env_idx: int = None, | |
| use_static: bool = False, | |
| update_mass: bool = False, | |
| scale: float | np.ndarray = 1.0, | |
| ) -> sapien.pysapien.Entity: | |
| def _get_local_pose(origin_tag: ET.Element | None) -> sapien.Pose: | |
| local_pose = sapien.Pose(p=[0, 0, 0], q=[1, 0, 0, 0]) | |
| if origin_tag is not None: | |
| xyz = list(map(float, origin_tag.get("xyz", "0 0 0").split())) | |
| rpy = list(map(float, origin_tag.get("rpy", "0 0 0").split())) | |
| qx, qy, qz, qw = R.from_euler("xyz", rpy, degrees=False).as_quat() | |
| local_pose = sapien.Pose(p=xyz, q=[qw, qx, qy, qz]) | |
| return local_pose | |
| tree = ET.parse(file_path) | |
| root = tree.getroot() | |
| node_name = root.get("name") | |
| file_dir = os.path.dirname(file_path) | |
| visual_mesh = root.find(".//visual/geometry/mesh") | |
| visual_file = visual_mesh.get("filename") | |
| visual_scale = visual_mesh.get("scale", "1.0 1.0 1.0") | |
| visual_scale = np.array([float(x) for x in visual_scale.split()]) | |
| visual_scale *= np.array(scale) | |
| collision_mesh = root.find(".//collision/geometry/mesh") | |
| collision_file = collision_mesh.get("filename") | |
| collision_scale = collision_mesh.get("scale", "1.0 1.0 1.0") | |
| collision_scale = np.array([float(x) for x in collision_scale.split()]) | |
| collision_scale *= np.array(scale) | |
| visual_pose = _get_local_pose(root.find(".//visual/origin")) | |
| collision_pose = _get_local_pose(root.find(".//collision/origin")) | |
| visual_file = os.path.join(file_dir, visual_file) | |
| collision_file = os.path.join(file_dir, collision_file) | |
| static_fric = root.find(".//collision/gazebo/mu1").text | |
| dynamic_fric = root.find(".//collision/gazebo/mu2").text | |
| material = physx.PhysxMaterial( | |
| static_friction=np.clip(float(static_fric), 0.1, 0.7), | |
| dynamic_friction=np.clip(float(dynamic_fric), 0.1, 0.6), | |
| restitution=0.05, | |
| ) | |
| builder = scene.create_actor_builder() | |
| body_type = "static" if use_static else "dynamic" | |
| builder.set_physx_body_type(body_type) | |
| builder.add_multiple_convex_collisions_from_file( | |
| collision_file, | |
| material=material, | |
| scale=collision_scale, | |
| # decomposition="coacd", | |
| # decomposition_params=dict( | |
| # threshold=0.05, max_convex_hull=64, verbose=False | |
| # ), | |
| pose=collision_pose, | |
| ) | |
| builder.add_visual_from_file( | |
| visual_file, | |
| scale=visual_scale, | |
| pose=visual_pose, | |
| ) | |
| if pose is None: | |
| pose = sapien.Pose(p=[0, 0, 0], q=[1, 0, 0, 0]) | |
| builder.set_initial_pose(pose) | |
| if isinstance(scene, ManiSkillScene) and env_idx is not None: | |
| builder.set_scene_idxs([env_idx]) | |
| actor = builder.build( | |
| name=node_name if env_idx is None else f"{node_name}-{env_idx}" | |
| ) | |
| if update_mass and hasattr(actor.components[1], "mass"): | |
| node_mass = float(root.find(".//inertial/mass").get("value")) | |
| actor.components[1].set_mass(node_mass) | |
| return actor | |
| def load_assets_from_layout_file( | |
| scene: ManiSkillScene | sapien.Scene, | |
| layout: str, | |
| z_offset: float = 0.0, | |
| init_quat: list[float] = [0, 0, 0, 1], | |
| env_idx: int = None, | |
| ) -> dict[str, sapien.pysapien.Entity]: | |
| """Load assets from `EmbodiedGen` layout-gen output and create actors in the scene. | |
| Args: | |
| scene (sapien.Scene | ManiSkillScene): The SAPIEN or ManiSkill scene to load assets into. | |
| layout (str): The layout file path. | |
| z_offset (float): Offset to apply to the Z-coordinate of non-context objects. | |
| init_quat (List[float]): Initial quaternion (x, y, z, w) for orientation adjustment. | |
| env_idx (int): Environment index for multi-environment setup. | |
| """ | |
| asset_root = os.path.dirname(layout) | |
| layout = LayoutInfo.from_dict(json.load(open(layout, "r"))) | |
| actors = dict() | |
| for node in layout.assets: | |
| file_dir = layout.assets[node] | |
| file_name = f"{node.replace(' ', '_')}.urdf" | |
| urdf_file = os.path.join(asset_root, file_dir, file_name) | |
| if layout.objs_mapping[node] == Scene3DItemEnum.BACKGROUND.value: | |
| continue | |
| position = layout.position[node].copy() | |
| if layout.objs_mapping[node] != Scene3DItemEnum.CONTEXT.value: | |
| position[2] += z_offset | |
| use_static = ( | |
| layout.relation.get(Scene3DItemEnum.CONTEXT.value, None) == node | |
| ) | |
| # Combine initial quaternion with object quaternion | |
| x, y, z, qx, qy, qz, qw = position | |
| qx, qy, qz, qw = quaternion_multiply([qx, qy, qz, qw], init_quat) | |
| actor = load_actor_from_urdf( | |
| scene, | |
| urdf_file, | |
| sapien.Pose(p=[x, y, z], q=[qw, qx, qy, qz]), | |
| env_idx, | |
| use_static=use_static, | |
| update_mass=False, | |
| ) | |
| actors[node] = actor | |
| return actors | |
| def load_mani_skill_robot( | |
| scene: sapien.Scene | ManiSkillScene, | |
| layout: LayoutInfo | str, | |
| control_freq: int = 20, | |
| robot_init_qpos_noise: float = 0.0, | |
| control_mode: str = "pd_joint_pos", | |
| backend_str: tuple[str, str] = ("cpu", "gpu"), | |
| ) -> BaseAgent: | |
| from mani_skill.agents import REGISTERED_AGENTS | |
| from mani_skill.envs.scene import ManiSkillScene | |
| from mani_skill.envs.utils.system.backend import ( | |
| parse_sim_and_render_backend, | |
| ) | |
| if isinstance(layout, str) and layout.endswith(".json"): | |
| layout = LayoutInfo.from_dict(json.load(open(layout, "r"))) | |
| robot_name = layout.relation[Scene3DItemEnum.ROBOT.value] | |
| x, y, z, qx, qy, qz, qw = layout.position[robot_name] | |
| delta_z = 0.002 # Add small offset to avoid collision. | |
| pose = sapien.Pose([x, y, z + delta_z], [qw, qx, qy, qz]) | |
| if robot_name not in REGISTERED_AGENTS: | |
| logger.warning( | |
| f"Robot `{robot_name}` not registered, chosen from {REGISTERED_AGENTS.keys()}, use `panda` instead." | |
| ) | |
| robot_name = "panda" | |
| ROBOT_CLS = REGISTERED_AGENTS[robot_name].agent_cls | |
| backend = parse_sim_and_render_backend(*backend_str) | |
| if isinstance(scene, sapien.Scene): | |
| scene = ManiSkillScene([scene], device=backend_str[0], backend=backend) | |
| robot = ROBOT_CLS( | |
| scene=scene, | |
| control_freq=control_freq, | |
| control_mode=control_mode, | |
| initial_pose=pose, | |
| ) | |
| # Set robot init joint rad agree(joint0 to joint6 w 2 finger). | |
| qpos = np.array( | |
| [ | |
| 0.0, | |
| np.pi / 8, | |
| 0, | |
| -np.pi * 3 / 8, | |
| 0, | |
| np.pi * 3 / 4, | |
| np.pi / 4, | |
| 0.04, | |
| 0.04, | |
| ] | |
| ) | |
| qpos = ( | |
| np.random.normal( | |
| 0, robot_init_qpos_noise, (len(scene.sub_scenes), len(qpos)) | |
| ) | |
| + qpos | |
| ) | |
| qpos[:, -2:] = 0.04 | |
| robot.reset(qpos) | |
| robot.init_qpos = robot.robot.qpos | |
| robot.controller.controllers["gripper"].reset() | |
| return robot | |
| def render_images( | |
| camera: sapien.render.RenderCameraComponent, | |
| render_keys: list[ | |
| Literal[ | |
| "Color", | |
| "Segmentation", | |
| "Normal", | |
| "Mask", | |
| "Depth", | |
| "Foreground", | |
| ] | |
| ] = None, | |
| ) -> dict[str, Image.Image]: | |
| """Render images from a given sapien camera. | |
| Args: | |
| camera (sapien.render.RenderCameraComponent): The camera to render from. | |
| render_keys (List[str]): Types of images to render (e.g., Color, Segmentation). | |
| Returns: | |
| Dict[str, Image.Image]: Dictionary of rendered images. | |
| """ | |
| if render_keys is None: | |
| render_keys = [ | |
| "Color", | |
| "Segmentation", | |
| "Normal", | |
| "Mask", | |
| "Depth", | |
| "Foreground", | |
| ] | |
| results: dict[str, Image.Image] = {} | |
| if "Color" in render_keys: | |
| color = camera.get_picture("Color") | |
| color_rgb = (np.clip(color[..., :3], 0, 1) * 255).astype(np.uint8) | |
| results["Color"] = Image.fromarray(color_rgb) | |
| if "Mask" in render_keys: | |
| alpha = (np.clip(color[..., 3], 0, 1) * 255).astype(np.uint8) | |
| results["Mask"] = Image.fromarray(alpha) | |
| if "Segmentation" in render_keys: | |
| seg_labels = camera.get_picture("Segmentation") | |
| label0 = seg_labels[..., 0].astype(np.uint8) | |
| seg_color = COLOR_PALETTE[label0] | |
| results["Segmentation"] = Image.fromarray(seg_color) | |
| if "Foreground" in render_keys: | |
| seg_labels = camera.get_picture("Segmentation") | |
| label0 = seg_labels[..., 0] | |
| mask = np.where((label0 > 1), 255, 0).astype(np.uint8) | |
| color = camera.get_picture("Color") | |
| color_rgb = (np.clip(color[..., :3], 0, 1) * 255).astype(np.uint8) | |
| foreground = np.concatenate([color_rgb, mask[..., None]], axis=-1) | |
| results["Foreground"] = Image.fromarray(foreground) | |
| if "Normal" in render_keys: | |
| normal = camera.get_picture("Normal")[..., :3] | |
| normal_img = (((normal + 1) / 2) * 255).astype(np.uint8) | |
| results["Normal"] = Image.fromarray(normal_img) | |
| if "Depth" in render_keys: | |
| position_map = camera.get_picture("Position") | |
| depth = -position_map[..., 2] | |
| alpha = torch.tensor(color[..., 3], dtype=torch.float32) | |
| norm_depth = DiffrastRender.normalize_map_by_mask( | |
| torch.tensor(depth), alpha | |
| ) | |
| depth_img = (norm_depth * 255).to(torch.uint8).numpy() | |
| results["Depth"] = Image.fromarray(depth_img) | |
| return results | |
| class SapienSceneManager: | |
| """A class to manage SAPIEN simulator.""" | |
| def __init__( | |
| self, sim_freq: int, ray_tracing: bool, device: str = "cuda" | |
| ) -> None: | |
| self.sim_freq = sim_freq | |
| self.ray_tracing = ray_tracing | |
| self.device = device | |
| self.renderer = sapien.SapienRenderer() | |
| self.scene = self._setup_scene() | |
| self.cameras: list[sapien.render.RenderCameraComponent] = [] | |
| self.actors: dict[str, sapien.pysapien.Entity] = {} | |
| def _setup_scene(self) -> sapien.Scene: | |
| """Set up the SAPIEN scene with lighting and ground.""" | |
| # Ray tracing settings | |
| if self.ray_tracing: | |
| sapien.render.set_camera_shader_dir("rt") | |
| sapien.render.set_ray_tracing_samples_per_pixel(64) | |
| sapien.render.set_ray_tracing_path_depth(10) | |
| sapien.render.set_ray_tracing_denoiser("oidn") | |
| scene = sapien.Scene() | |
| scene.set_timestep(1 / self.sim_freq) | |
| # Add lighting | |
| scene.set_ambient_light([0.2, 0.2, 0.2]) | |
| scene.add_directional_light( | |
| direction=[0, 1, -1], | |
| color=[1.5, 1.45, 1.4], | |
| shadow=True, | |
| shadow_map_size=2048, | |
| ) | |
| scene.add_directional_light( | |
| direction=[0, -0.5, 1], color=[0.8, 0.8, 0.85], shadow=False | |
| ) | |
| scene.add_directional_light( | |
| direction=[0, -1, 1], color=[1.0, 1.0, 1.0], shadow=False | |
| ) | |
| ground_material = self.renderer.create_material() | |
| ground_material.base_color = [0.5, 0.5, 0.5, 1] # rgba, gray | |
| ground_material.roughness = 0.7 | |
| ground_material.metallic = 0.0 | |
| scene.add_ground(0, render_material=ground_material) | |
| return scene | |
| def step_action( | |
| self, | |
| agent: BaseAgent, | |
| action: torch.Tensor, | |
| cameras: list[sapien.render.RenderCameraComponent], | |
| render_keys: list[str], | |
| sim_steps_per_control: int = 1, | |
| ) -> dict: | |
| agent.set_action(action) | |
| frames = defaultdict(list) | |
| for _ in range(sim_steps_per_control): | |
| self.scene.step() | |
| self.scene.update_render() | |
| for camera in cameras: | |
| camera.take_picture() | |
| images = render_images(camera, render_keys=render_keys) | |
| frames[camera.name].append(images) | |
| return frames | |
| def create_camera( | |
| self, | |
| cam_name: str, | |
| pose: sapien.Pose, | |
| image_hw: tuple[int, int], | |
| fovy_deg: float, | |
| ) -> sapien.render.RenderCameraComponent: | |
| """Create a single camera in the scene. | |
| Args: | |
| cam_name (str): Name of the camera. | |
| pose (sapien.Pose): Camera pose p=(x, y, z), q=(w, x, y, z) | |
| image_hw (Tuple[int, int]): Image resolution (height, width) for cameras. | |
| fovy_deg (float): Field of view in degrees for cameras. | |
| Returns: | |
| sapien.render.RenderCameraComponent: The created camera. | |
| """ | |
| cam_actor = self.scene.create_actor_builder().build_kinematic() | |
| cam_actor.set_pose(pose) | |
| camera = self.scene.add_mounted_camera( | |
| name=cam_name, | |
| mount=cam_actor, | |
| pose=sapien.Pose(p=[0, 0, 0], q=[1, 0, 0, 0]), | |
| width=image_hw[1], | |
| height=image_hw[0], | |
| fovy=np.deg2rad(fovy_deg), | |
| near=0.01, | |
| far=100, | |
| ) | |
| self.cameras.append(camera) | |
| return camera | |
| def initialize_circular_cameras( | |
| self, | |
| num_cameras: int, | |
| radius: float, | |
| height: float, | |
| target_pt: list[float], | |
| image_hw: tuple[int, int], | |
| fovy_deg: float, | |
| ) -> list[sapien.render.RenderCameraComponent]: | |
| """Initialize multiple cameras arranged in a circle. | |
| Args: | |
| num_cameras (int): Number of cameras to create. | |
| radius (float): Radius of the camera circle. | |
| height (float): Fixed Z-coordinate of the cameras. | |
| target_pt (list[float]): 3D point (x, y, z) that cameras look at. | |
| image_hw (Tuple[int, int]): Image resolution (height, width) for cameras. | |
| fovy_deg (float): Field of view in degrees for cameras. | |
| Returns: | |
| List[sapien.render.RenderCameraComponent]: List of created cameras. | |
| """ | |
| angle_step = 2 * np.pi / num_cameras | |
| world_up_vec = np.array([0.0, 0.0, 1.0]) | |
| target_pt = np.array(target_pt) | |
| for i in range(num_cameras): | |
| angle = i * angle_step | |
| cam_x = radius * np.cos(angle) | |
| cam_y = radius * np.sin(angle) | |
| cam_z = height | |
| eye_pos = [cam_x, cam_y, cam_z] | |
| forward_vec = target_pt - eye_pos | |
| forward_vec = forward_vec / np.linalg.norm(forward_vec) | |
| temp_right_vec = np.cross(forward_vec, world_up_vec) | |
| if np.linalg.norm(temp_right_vec) < 1e-6: | |
| temp_right_vec = np.array([1.0, 0.0, 0.0]) | |
| if np.abs(np.dot(temp_right_vec, forward_vec)) > 0.99: | |
| temp_right_vec = np.array([0.0, 1.0, 0.0]) | |
| right_vec = temp_right_vec / np.linalg.norm(temp_right_vec) | |
| up_vec = np.cross(right_vec, forward_vec) | |
| rotation_matrix = np.array([forward_vec, -right_vec, up_vec]).T | |
| rot = R.from_matrix(rotation_matrix) | |
| scipy_quat = rot.as_quat() # (x, y, z, w) | |
| quat = [ | |
| scipy_quat[3], | |
| scipy_quat[0], | |
| scipy_quat[1], | |
| scipy_quat[2], | |
| ] # (w, x, y, z) | |
| self.create_camera( | |
| f"camera_{i}", | |
| sapien.Pose(p=eye_pos, q=quat), | |
| image_hw, | |
| fovy_deg, | |
| ) | |
| return self.cameras | |
| class FrankaPandaGrasper(object): | |
| def __init__( | |
| self, | |
| agent: BaseAgent, | |
| control_freq: float, | |
| joint_vel_limits: float = 2.0, | |
| joint_acc_limits: float = 1.0, | |
| finger_length: float = 0.025, | |
| ) -> None: | |
| self.agent = agent | |
| self.robot = agent.robot | |
| self.control_freq = control_freq | |
| self.control_timestep = 1 / control_freq | |
| self.joint_vel_limits = joint_vel_limits | |
| self.joint_acc_limits = joint_acc_limits | |
| self.finger_length = finger_length | |
| self.planners = self._setup_planner() | |
| def _setup_planner(self) -> mplib.Planner: | |
| planners = [] | |
| for pose in self.robot.pose: | |
| link_names = [link.get_name() for link in self.robot.get_links()] | |
| joint_names = [ | |
| joint.get_name() for joint in self.robot.get_active_joints() | |
| ] | |
| planner = mplib.Planner( | |
| urdf=self.agent.urdf_path, | |
| srdf=self.agent.urdf_path.replace(".urdf", ".srdf"), | |
| user_link_names=link_names, | |
| user_joint_names=joint_names, | |
| move_group="panda_hand_tcp", | |
| joint_vel_limits=np.ones(7) * self.joint_vel_limits, | |
| joint_acc_limits=np.ones(7) * self.joint_acc_limits, | |
| ) | |
| planner.set_base_pose(pose.raw_pose[0].tolist()) | |
| planners.append(planner) | |
| return planners | |
| def control_gripper( | |
| self, | |
| gripper_state: Literal[-1, 1], | |
| n_step: int = 10, | |
| ) -> np.ndarray: | |
| qpos = self.robot.get_qpos()[0, :-2].cpu().numpy() | |
| actions = [] | |
| for _ in range(n_step): | |
| action = np.hstack([qpos, gripper_state])[None, ...] | |
| actions.append(action) | |
| return np.concatenate(actions, axis=0) | |
| def move_to_pose( | |
| self, | |
| pose: sapien.Pose, | |
| control_timestep: float, | |
| gripper_state: Literal[-1, 1], | |
| use_point_cloud: bool = False, | |
| n_max_step: int = 100, | |
| action_key: str = "position", | |
| env_idx: int = 0, | |
| ) -> np.ndarray: | |
| result = self.planners[env_idx].plan_qpos_to_pose( | |
| np.concatenate([pose.p, pose.q]), | |
| self.robot.get_qpos().cpu().numpy()[0], | |
| time_step=control_timestep, | |
| use_point_cloud=use_point_cloud, | |
| ) | |
| if result["status"] != "Success": | |
| result = self.planners[env_idx].plan_screw( | |
| np.concatenate([pose.p, pose.q]), | |
| self.robot.get_qpos().cpu().numpy()[0], | |
| time_step=control_timestep, | |
| use_point_cloud=use_point_cloud, | |
| ) | |
| if result["status"] != "Success": | |
| return | |
| sample_ratio = (len(result[action_key]) // n_max_step) + 1 | |
| result[action_key] = result[action_key][::sample_ratio] | |
| n_step = len(result[action_key]) | |
| actions = [] | |
| for i in range(n_step): | |
| qpos = result[action_key][i] | |
| action = np.hstack([qpos, gripper_state])[None, ...] | |
| actions.append(action) | |
| return np.concatenate(actions, axis=0) | |
| def compute_grasp_action( | |
| self, | |
| actor: sapien.pysapien.Entity, | |
| reach_target_only: bool = True, | |
| offset: tuple[float, float, float] = [0, 0, -0.05], | |
| env_idx: int = 0, | |
| ) -> np.ndarray: | |
| physx_rigid = actor.components[1] | |
| mesh = get_component_mesh(physx_rigid, to_world_frame=True) | |
| obb = mesh.bounding_box_oriented | |
| approaching = np.array([0, 0, -1]) | |
| tcp_pose = self.agent.tcp.pose[env_idx] | |
| target_closing = ( | |
| tcp_pose.to_transformation_matrix()[0, :3, 1].cpu().numpy() | |
| ) | |
| grasp_info = compute_grasp_info_by_obb( | |
| obb, | |
| approaching=approaching, | |
| target_closing=target_closing, | |
| depth=self.finger_length, | |
| ) | |
| closing, center = grasp_info["closing"], grasp_info["center"] | |
| raw_tcp_pose = tcp_pose.sp | |
| grasp_pose = self.agent.build_grasp_pose(approaching, closing, center) | |
| reach_pose = grasp_pose * sapien.Pose(p=offset) | |
| grasp_pose = grasp_pose * sapien.Pose(p=[0, 0, 0.01]) | |
| actions = [] | |
| reach_actions = self.move_to_pose( | |
| reach_pose, | |
| self.control_timestep, | |
| gripper_state=1, | |
| env_idx=env_idx, | |
| ) | |
| actions.append(reach_actions) | |
| if reach_actions is None: | |
| logger.warning( | |
| f"Failed to reach the grasp pose for node `{actor.name}`, skipping grasping." | |
| ) | |
| return None | |
| if not reach_target_only: | |
| grasp_actions = self.move_to_pose( | |
| grasp_pose, | |
| self.control_timestep, | |
| gripper_state=1, | |
| env_idx=env_idx, | |
| ) | |
| actions.append(grasp_actions) | |
| close_actions = self.control_gripper( | |
| gripper_state=-1, | |
| env_idx=env_idx, | |
| ) | |
| actions.append(close_actions) | |
| back_actions = self.move_to_pose( | |
| raw_tcp_pose, | |
| self.control_timestep, | |
| gripper_state=-1, | |
| env_idx=env_idx, | |
| ) | |
| actions.append(back_actions) | |
| return np.concatenate(actions, axis=0) | |