Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import T5EncoderModel,T5TokenizerFast | |
| from diffusers import FluxTransformer2DModel | |
| from torch import nn | |
| from typing import List | |
| from diffusers import FlowMatchEulerDiscreteScheduler | |
| import copy | |
| import torch.nn.functional as F | |
| import numpy as np | |
| from tqdm import tqdm | |
| from math import pi | |
| import inspect | |
| from typing import Optional,Union,List | |
| class StableAudioPositionalEmbedding(nn.Module): | |
| """Used for continuous time | |
| Adapted from stable audio open. | |
| """ | |
| def __init__(self, dim: int): | |
| super().__init__() | |
| assert (dim % 2) == 0 | |
| half_dim = dim // 2 | |
| self.weights = nn.Parameter(torch.randn(half_dim)) | |
| def forward(self, times: torch.Tensor) -> torch.Tensor: | |
| times = times[..., None] | |
| freqs = times * self.weights[None] * 2 * pi | |
| fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1) | |
| fouriered = torch.cat((times, fouriered), dim=-1) | |
| return fouriered | |
| class DurationEmbedder(nn.Module): | |
| """ | |
| A simple linear projection model to map numbers to a latent space. | |
| Code is adapted from | |
| https://github.com/Stability-AI/stable-audio-tools | |
| Args: | |
| number_embedding_dim (`int`): | |
| Dimensionality of the number embeddings. | |
| min_value (`int`): | |
| The minimum value of the seconds number conditioning modules. | |
| max_value (`int`): | |
| The maximum value of the seconds number conditioning modules | |
| internal_dim (`int`): | |
| Dimensionality of the intermediate number hidden states. | |
| """ | |
| def __init__( | |
| self, | |
| number_embedding_dim, | |
| min_value, | |
| max_value, | |
| internal_dim: Optional[int] = 256, | |
| ): | |
| super().__init__() | |
| self.time_positional_embedding = nn.Sequential( | |
| StableAudioPositionalEmbedding(internal_dim), | |
| nn.Linear(in_features=internal_dim + 1, out_features=number_embedding_dim), | |
| ) | |
| self.number_embedding_dim = number_embedding_dim | |
| self.min_value = min_value | |
| self.max_value = max_value | |
| self.dtype = torch.float32 | |
| def forward( | |
| self, | |
| floats: torch.Tensor, | |
| ): | |
| floats = floats.clamp(self.min_value, self.max_value) | |
| normalized_floats = (floats - self.min_value) / (self.max_value - self.min_value) | |
| # Cast floats to same type as embedder | |
| embedder_dtype = next(self.time_positional_embedding.parameters()).dtype | |
| normalized_floats = normalized_floats.to(embedder_dtype) | |
| embedding = self.time_positional_embedding(normalized_floats) | |
| float_embeds = embedding.view(-1, 1, self.number_embedding_dim) | |
| return float_embeds | |
| def retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps: Optional[int] = None, | |
| device: Optional[Union[str, torch.device]] = None, | |
| timesteps: Optional[List[int]] = None, | |
| sigmas: Optional[List[float]] = None, | |
| **kwargs, | |
| ): | |
| if timesteps is not None and sigmas is not None: | |
| raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
| if timesteps is not None: | |
| accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accepts_timesteps: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" timestep schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| elif sigmas is not None: | |
| accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
| if not accept_sigmas: | |
| raise ValueError( | |
| f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
| f" sigmas schedules. Please check whether you are using the correct scheduler." | |
| ) | |
| scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| num_inference_steps = len(timesteps) | |
| else: | |
| scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
| timesteps = scheduler.timesteps | |
| return timesteps, num_inference_steps | |
| class Voxify(nn.Module): | |
| def __init__(self,config,initialize_reference_model=False): | |
| super().__init__() | |
| self.num_layers = config.get('num_layers', 6) | |
| self.num_single_layers = config.get('num_single_layers', 18) | |
| self.in_channels = config.get('in_channels', 64) | |
| self.attention_head_dim = config.get('attention_head_dim', 128) | |
| self.joint_attention_dim = config.get('joint_attention_dim', 1024) | |
| self.num_attention_heads = config.get('num_attention_heads', 8) | |
| self.audio_seq_len = config.get('audio_seq_len', 645) | |
| self.max_duration = config.get('max_duration', 30) | |
| self.uncondition = config.get('uncondition', False) | |
| self.text_encoder_name = config.get('text_encoder_name', "google/flan-t5-large") | |
| self.noise_scheduler = FlowMatchEulerDiscreteScheduler(num_train_timesteps=1000) | |
| self.noise_scheduler_copy = copy.deepcopy(self.noise_scheduler) | |
| self.max_text_seq_len = 64 | |
| self.text_encoder = T5EncoderModel.from_pretrained(self.text_encoder_name) | |
| self.tokenizer = T5TokenizerFast.from_pretrained(self.text_encoder_name) | |
| self.text_embedding_dim = self.text_encoder.config.d_model | |
| self.fc = nn.Sequential(nn.Linear(self.text_embedding_dim,self.joint_attention_dim),nn.ReLU()) | |
| self.duration_emebdder = DurationEmbedder(self.text_embedding_dim,min_value=0,max_value=self.max_duration) | |
| self.transformer = FluxTransformer2DModel( | |
| in_channels=self.in_channels, | |
| num_layers=self.num_layers, | |
| num_single_layers=self.num_single_layers, | |
| attention_head_dim=self.attention_head_dim, | |
| num_attention_heads=self.num_attention_heads, | |
| joint_attention_dim=self.joint_attention_dim, | |
| pooled_projection_dim=self.text_embedding_dim, | |
| guidance_embeds=False) | |
| self.beta_dpo = 2000 ## this is used for dpo training | |
| def get_sigmas(self,timesteps, n_dim=3, dtype=torch.float32): | |
| device = self.text_encoder.device | |
| sigmas = self.noise_scheduler_copy.sigmas.to(device=device, dtype=dtype) | |
| schedule_timesteps = self.noise_scheduler_copy.timesteps.to(device) | |
| timesteps = timesteps.to(device) | |
| step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps] | |
| sigma = sigmas[step_indices].flatten() | |
| while len(sigma.shape) < n_dim: | |
| sigma = sigma.unsqueeze(-1) | |
| return sigma | |
| def encode_text_classifier_free(self, prompt: List[str], num_samples_per_prompt=1): | |
| device = self.text_encoder.device | |
| batch = self.tokenizer( | |
| prompt, max_length=self.tokenizer.model_max_length, padding=True, truncation=True, return_tensors="pt" | |
| ) | |
| input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
| with torch.no_grad(): | |
| prompt_embeds = self.text_encoder( | |
| input_ids=input_ids, attention_mask=attention_mask | |
| )[0] | |
| prompt_embeds = prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
| attention_mask = attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
| # get unconditional embeddings for classifier free guidance | |
| uncond_tokens = [""] | |
| max_length = prompt_embeds.shape[1] | |
| uncond_batch = self.tokenizer( | |
| uncond_tokens, max_length=max_length, padding='max_length', truncation=True, return_tensors="pt", | |
| ) | |
| uncond_input_ids = uncond_batch.input_ids.to(device) | |
| uncond_attention_mask = uncond_batch.attention_mask.to(device) | |
| with torch.no_grad(): | |
| negative_prompt_embeds = self.text_encoder( | |
| input_ids=uncond_input_ids, attention_mask=uncond_attention_mask | |
| )[0] | |
| negative_prompt_embeds = negative_prompt_embeds.repeat_interleave(num_samples_per_prompt, 0) | |
| uncond_attention_mask = uncond_attention_mask.repeat_interleave(num_samples_per_prompt, 0) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # We concatenate the unconditional and text embeddings into a single batch to avoid doing two forward passes | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| prompt_mask = torch.cat([uncond_attention_mask, attention_mask]) | |
| boolean_prompt_mask = (prompt_mask == 1).to(device) | |
| return prompt_embeds, boolean_prompt_mask | |
| def encode_text(self, prompt): | |
| device = self.text_encoder.device | |
| batch = self.tokenizer( | |
| prompt, max_length=self.max_text_seq_len, padding=True, truncation=True, return_tensors="pt") | |
| input_ids, attention_mask = batch.input_ids.to(device), batch.attention_mask.to(device) | |
| encoder_hidden_states = self.text_encoder( | |
| input_ids=input_ids, attention_mask=attention_mask)[0] | |
| boolean_encoder_mask = (attention_mask == 1).to(device) | |
| return encoder_hidden_states, boolean_encoder_mask | |
| def encode_duration(self,duration): | |
| return self.duration_emebdder(duration) | |
| def inference_flow(self, prompt, | |
| num_inference_steps=50, | |
| timesteps=None, | |
| guidance_scale=3, | |
| duration=10, | |
| disable_progress=False, | |
| num_samples_per_prompt=1): | |
| '''Only tested for single inference. Haven't test for batch inference''' | |
| bsz = num_samples_per_prompt | |
| device = self.transformer.device | |
| scheduler = self.noise_scheduler | |
| if not isinstance(prompt,list): | |
| prompt = [prompt] | |
| if not isinstance(duration,torch.Tensor): | |
| duration = torch.tensor([duration],device=device) | |
| classifier_free_guidance = guidance_scale > 1.0 | |
| duration_hidden_states = self.encode_duration(duration) | |
| if classifier_free_guidance: | |
| bsz = 2 * num_samples_per_prompt | |
| encoder_hidden_states, boolean_encoder_mask = self.encode_text_classifier_free(prompt, num_samples_per_prompt=num_samples_per_prompt) | |
| duration_hidden_states = duration_hidden_states.repeat(bsz,1,1) | |
| else: | |
| encoder_hidden_states, boolean_encoder_mask = self.encode_text(prompt,num_samples_per_prompt=num_samples_per_prompt) | |
| mask_expanded = boolean_encoder_mask.unsqueeze(-1).expand_as(encoder_hidden_states) | |
| masked_data = torch.where(mask_expanded, encoder_hidden_states, torch.tensor(float('nan'))) | |
| pooled = torch.nanmean(masked_data, dim=1) | |
| pooled_projection = self.fc(pooled) | |
| encoder_hidden_states = torch.cat([encoder_hidden_states,duration_hidden_states],dim=1) ## (bs,seq_len,dim) | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| scheduler, | |
| num_inference_steps, | |
| device, | |
| timesteps, | |
| sigmas | |
| ) | |
| latents = torch.randn(num_samples_per_prompt,self.audio_seq_len,64) | |
| weight_dtype = latents.dtype | |
| progress_bar = tqdm(range(num_inference_steps), disable=disable_progress) | |
| txt_ids = torch.zeros(bsz,encoder_hidden_states.shape[1],3).to(device) | |
| audio_ids = torch.arange(self.audio_seq_len).unsqueeze(0).unsqueeze(-1).repeat(bsz,1,3).to(device) | |
| timesteps = timesteps.to(device) | |
| latents = latents.to(device) | |
| encoder_hidden_states = encoder_hidden_states.to(device) | |
| for i, t in enumerate(timesteps): | |
| latents_input = torch.cat([latents] * 2) if classifier_free_guidance else latents | |
| noise_pred = self.transformer( | |
| hidden_states=latents_input, | |
| # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing) | |
| timestep=torch.tensor([t/1000],device=device), | |
| guidance = None, | |
| pooled_projections=pooled_projection, | |
| encoder_hidden_states=encoder_hidden_states, | |
| txt_ids=txt_ids, | |
| img_ids=audio_ids, | |
| return_dict=False, | |
| )[0] | |
| if classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| latents = scheduler.step(noise_pred, t, latents).prev_sample | |
| return latents |