Spaces:
Runtime error
Runtime error
| from typing import Literal | |
| import numpy as np | |
| import roma | |
| import scipy.interpolate | |
| import torch | |
| import torch.nn.functional as F | |
| DEFAULT_FOV_RAD = 0.9424777960769379 # 54 degrees by default | |
| def get_camera_dist( | |
| source_c2ws: torch.Tensor, # N x 3 x 4 | |
| target_c2ws: torch.Tensor, # M x 3 x 4 | |
| mode: str = "translation", | |
| ): | |
| if mode == "rotation": | |
| dists = torch.acos( | |
| ( | |
| ( | |
| torch.matmul( | |
| source_c2ws[:, None, :3, :3], | |
| target_c2ws[None, :, :3, :3].transpose(-1, -2), | |
| ) | |
| .diagonal(offset=0, dim1=-2, dim2=-1) | |
| .sum(-1) | |
| - 1 | |
| ) | |
| / 2 | |
| ).clamp(-1, 1) | |
| ) * (180 / torch.pi) | |
| elif mode == "translation": | |
| dists = torch.norm( | |
| source_c2ws[:, None, :3, 3] - target_c2ws[None, :, :3, 3], dim=-1 | |
| ) | |
| else: | |
| raise NotImplementedError( | |
| f"Mode {mode} is not implemented for finding nearest source indices." | |
| ) | |
| return dists | |
| def to_hom(X): | |
| # get homogeneous coordinates of the input | |
| X_hom = torch.cat([X, torch.ones_like(X[..., :1])], dim=-1) | |
| return X_hom | |
| def to_hom_pose(pose): | |
| # get homogeneous coordinates of the input pose | |
| if pose.shape[-2:] == (3, 4): | |
| pose_hom = torch.eye(4, device=pose.device)[None].repeat(pose.shape[0], 1, 1) | |
| pose_hom[:, :3, :] = pose | |
| return pose_hom | |
| return pose | |
| def get_default_intrinsics( | |
| fov_rad=DEFAULT_FOV_RAD, | |
| aspect_ratio=1.0, | |
| ): | |
| if not isinstance(fov_rad, torch.Tensor): | |
| fov_rad = torch.tensor( | |
| [fov_rad] if isinstance(fov_rad, (int, float)) else fov_rad | |
| ) | |
| if aspect_ratio >= 1.0: # W >= H | |
| focal_x = 0.5 / torch.tan(0.5 * fov_rad) | |
| focal_y = focal_x * aspect_ratio | |
| else: # W < H | |
| focal_y = 0.5 / torch.tan(0.5 * fov_rad) | |
| focal_x = focal_y / aspect_ratio | |
| intrinsics = focal_x.new_zeros((focal_x.shape[0], 3, 3)) | |
| intrinsics[:, torch.eye(3, device=focal_x.device, dtype=bool)] = torch.stack( | |
| [focal_x, focal_y, torch.ones_like(focal_x)], dim=-1 | |
| ) | |
| intrinsics[:, :, -1] = torch.tensor( | |
| [0.5, 0.5, 1.0], device=focal_x.device, dtype=focal_x.dtype | |
| ) | |
| return intrinsics | |
| def get_image_grid(img_h, img_w): | |
| # add 0.5 is VERY important especially when your img_h and img_w | |
| # is not very large (e.g., 72)!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | |
| y_range = torch.arange(img_h, dtype=torch.float32).add_(0.5) | |
| x_range = torch.arange(img_w, dtype=torch.float32).add_(0.5) | |
| Y, X = torch.meshgrid(y_range, x_range, indexing="ij") # [H,W] | |
| xy_grid = torch.stack([X, Y], dim=-1).view(-1, 2) # [HW,2] | |
| return to_hom(xy_grid) # [HW,3] | |
| def img2cam(X, cam_intr): | |
| return X @ cam_intr.inverse().transpose(-1, -2) | |
| def cam2world(X, pose): | |
| X_hom = to_hom(X) | |
| pose_inv = torch.linalg.inv(to_hom_pose(pose))[..., :3, :4] | |
| return X_hom @ pose_inv.transpose(-1, -2) | |
| def get_center_and_ray(img_h, img_w, pose, intr): # [HW,2] | |
| # given the intrinsic/extrinsic matrices, get the camera center and ray directions] | |
| # assert(opt.camera.model=="perspective") | |
| # compute center and ray | |
| grid_img = get_image_grid(img_h, img_w) # [HW,3] | |
| grid_3D_cam = img2cam(grid_img.to(intr.device), intr.float()) # [B,HW,3] | |
| center_3D_cam = torch.zeros_like(grid_3D_cam) # [B,HW,3] | |
| # transform from camera to world coordinates | |
| grid_3D = cam2world(grid_3D_cam, pose) # [B,HW,3] | |
| center_3D = cam2world(center_3D_cam, pose) # [B,HW,3] | |
| ray = grid_3D - center_3D # [B,HW,3] | |
| return center_3D, ray, grid_3D_cam | |
| def get_plucker_coordinates( | |
| extrinsics_src, | |
| extrinsics, | |
| intrinsics=None, | |
| fov_rad=DEFAULT_FOV_RAD, | |
| target_size=[72, 72], | |
| ): | |
| if intrinsics is None: | |
| intrinsics = get_default_intrinsics(fov_rad).to(extrinsics.device) | |
| else: | |
| if not ( | |
| torch.all(intrinsics[:, :2, -1] >= 0) | |
| and torch.all(intrinsics[:, :2, -1] <= 1) | |
| ): | |
| intrinsics[:, :2] /= intrinsics.new_tensor(target_size).view(1, -1, 1) * 8 | |
| # you should ensure the intrisics are expressed in | |
| # resolution-independent normalized image coordinates just performing a | |
| # very simple verification here checking if principal points are | |
| # between 0 and 1 | |
| assert ( | |
| torch.all(intrinsics[:, :2, -1] >= 0) | |
| and torch.all(intrinsics[:, :2, -1] <= 1) | |
| ), "Intrinsics should be expressed in resolution-independent normalized image coordinates." | |
| c2w_src = torch.linalg.inv(extrinsics_src) | |
| # transform coordinates from the source camera's coordinate system to the coordinate system of the respective camera | |
| extrinsics_rel = torch.einsum( | |
| "vnm,vmp->vnp", extrinsics, c2w_src[None].repeat(extrinsics.shape[0], 1, 1) | |
| ) | |
| intrinsics[:, :2] *= extrinsics.new_tensor( | |
| [ | |
| target_size[1], # w | |
| target_size[0], # h | |
| ] | |
| ).view(1, -1, 1) | |
| centers, rays, grid_cam = get_center_and_ray( | |
| img_h=target_size[0], | |
| img_w=target_size[1], | |
| pose=extrinsics_rel[:, :3, :], | |
| intr=intrinsics, | |
| ) | |
| rays = torch.nn.functional.normalize(rays, dim=-1) | |
| plucker = torch.cat((rays, torch.cross(centers, rays, dim=-1)), dim=-1) | |
| plucker = plucker.permute(0, 2, 1).reshape(plucker.shape[0], -1, *target_size) | |
| return plucker | |
| def rt_to_mat4( | |
| R: torch.Tensor, t: torch.Tensor, s: torch.Tensor | None = None | |
| ) -> torch.Tensor: | |
| """ | |
| Args: | |
| R (torch.Tensor): (..., 3, 3). | |
| t (torch.Tensor): (..., 3). | |
| s (torch.Tensor): (...,). | |
| Returns: | |
| torch.Tensor: (..., 4, 4) | |
| """ | |
| mat34 = torch.cat([R, t[..., None]], dim=-1) | |
| if s is None: | |
| bottom = ( | |
| mat34.new_tensor([[0.0, 0.0, 0.0, 1.0]]) | |
| .reshape((1,) * (mat34.dim() - 2) + (1, 4)) | |
| .expand(mat34.shape[:-2] + (1, 4)) | |
| ) | |
| else: | |
| bottom = F.pad(1.0 / s[..., None, None], (3, 0), value=0.0) | |
| mat4 = torch.cat([mat34, bottom], dim=-2) | |
| return mat4 | |
| def get_preset_pose_fov( | |
| option: Literal[ | |
| "orbit", | |
| "spiral", | |
| "lemniscate", | |
| "zoom-in", | |
| "zoom-out", | |
| "dolly zoom-in", | |
| "dolly zoom-out", | |
| "move-forward", | |
| "move-backward", | |
| "move-up", | |
| "move-down", | |
| "move-left", | |
| "move-right", | |
| "roll", | |
| ], | |
| num_frames: int, | |
| start_w2c: torch.Tensor, | |
| look_at: torch.Tensor, | |
| up_direction: torch.Tensor | None = None, | |
| fov: float = DEFAULT_FOV_RAD, | |
| spiral_radii: list[float] = [0.5, 0.5, 0.2], | |
| zoom_factor: float | None = None, | |
| ): | |
| poses = fovs = None | |
| if option == "orbit": | |
| poses = torch.linalg.inv( | |
| get_arc_horizontal_w2cs( | |
| start_w2c, | |
| look_at, | |
| up_direction, | |
| num_frames=num_frames, | |
| endpoint=False, | |
| ) | |
| ).numpy() | |
| fovs = np.full((num_frames,), fov) | |
| elif option == "spiral": | |
| poses = generate_spiral_path( | |
| torch.linalg.inv(start_w2c)[None].numpy() @ np.diagflat([1, -1, -1, 1]), | |
| np.array([1, 5]), | |
| n_frames=num_frames, | |
| n_rots=2, | |
| zrate=0.5, | |
| radii=spiral_radii, | |
| endpoint=False, | |
| ) @ np.diagflat([1, -1, -1, 1]) | |
| poses = np.concatenate( | |
| [ | |
| poses, | |
| np.array([0.0, 0.0, 0.0, 1.0])[None, None].repeat(len(poses), 0), | |
| ], | |
| 1, | |
| ) | |
| # We want the spiral trajectory to always start from start_w2c. Thus we | |
| # apply the relative pose to get the final trajectory. | |
| poses = ( | |
| np.linalg.inv(start_w2c.numpy())[None] @ np.linalg.inv(poses[:1]) @ poses | |
| ) | |
| fovs = np.full((num_frames,), fov) | |
| elif option == "lemniscate": | |
| poses = torch.linalg.inv( | |
| get_lemniscate_w2cs( | |
| start_w2c, | |
| look_at, | |
| up_direction, | |
| num_frames, | |
| degree=60.0, | |
| endpoint=False, | |
| ) | |
| ).numpy() | |
| fovs = np.full((num_frames,), fov) | |
| elif option == "roll": | |
| poses = torch.linalg.inv( | |
| get_roll_w2cs( | |
| start_w2c, | |
| look_at, | |
| None, | |
| num_frames, | |
| degree=360.0, | |
| endpoint=False, | |
| ) | |
| ).numpy() | |
| fovs = np.full((num_frames,), fov) | |
| elif option in [ | |
| "dolly zoom-in", | |
| "dolly zoom-out", | |
| "zoom-in", | |
| "zoom-out", | |
| ]: | |
| if option.startswith("dolly"): | |
| direction = "backward" if option == "dolly zoom-in" else "forward" | |
| poses = torch.linalg.inv( | |
| get_moving_w2cs( | |
| start_w2c, | |
| look_at, | |
| up_direction, | |
| num_frames, | |
| endpoint=True, | |
| direction=direction, | |
| ) | |
| ).numpy() | |
| else: | |
| poses = torch.linalg.inv(start_w2c)[None].repeat(num_frames, 1, 1).numpy() | |
| fov_rad_start = fov | |
| if zoom_factor is None: | |
| zoom_factor = 0.28 if option.endswith("zoom-in") else 1.5 | |
| fov_rad_end = zoom_factor * fov | |
| fovs = ( | |
| np.linspace(0, 1, num_frames) * (fov_rad_end - fov_rad_start) | |
| + fov_rad_start | |
| ) | |
| elif option in [ | |
| "move-forward", | |
| "move-backward", | |
| "move-up", | |
| "move-down", | |
| "move-left", | |
| "move-right", | |
| ]: | |
| poses = torch.linalg.inv( | |
| get_moving_w2cs( | |
| start_w2c, | |
| look_at, | |
| up_direction, | |
| num_frames, | |
| endpoint=True, | |
| direction=option.removeprefix("move-"), | |
| ) | |
| ).numpy() | |
| fovs = np.full((num_frames,), fov) | |
| else: | |
| raise ValueError(f"Unknown preset option {option}.") | |
| return poses, fovs | |
| def get_lookat(origins: torch.Tensor, viewdirs: torch.Tensor) -> torch.Tensor: | |
| """Triangulate a set of rays to find a single lookat point. | |
| Args: | |
| origins (torch.Tensor): A (N, 3) array of ray origins. | |
| viewdirs (torch.Tensor): A (N, 3) array of ray view directions. | |
| Returns: | |
| torch.Tensor: A (3,) lookat point. | |
| """ | |
| viewdirs = torch.nn.functional.normalize(viewdirs, dim=-1) | |
| eye = torch.eye(3, device=origins.device, dtype=origins.dtype)[None] | |
| # Calculate projection matrix I - rr^T | |
| I_min_cov = eye - (viewdirs[..., None] * viewdirs[..., None, :]) | |
| # Compute sum of projections | |
| sum_proj = I_min_cov.matmul(origins[..., None]).sum(dim=-3) | |
| # Solve for the intersection point using least squares | |
| lookat = torch.linalg.lstsq(I_min_cov.sum(dim=-3), sum_proj).solution[..., 0] | |
| # Check NaNs. | |
| assert not torch.any(torch.isnan(lookat)) | |
| return lookat | |
| def get_lookat_w2cs( | |
| positions: torch.Tensor, | |
| lookat: torch.Tensor, | |
| up: torch.Tensor, | |
| face_off: bool = False, | |
| ): | |
| """ | |
| Args: | |
| positions: (N, 3) tensor of camera positions | |
| lookat: (3,) tensor of lookat point | |
| up: (3,) or (N, 3) tensor of up vector | |
| Returns: | |
| w2cs: (N, 3, 3) tensor of world to camera rotation matrices | |
| """ | |
| forward_vectors = F.normalize(lookat - positions, dim=-1) | |
| if face_off: | |
| forward_vectors = -forward_vectors | |
| if up.dim() == 1: | |
| up = up[None] | |
| right_vectors = F.normalize(torch.cross(forward_vectors, up, dim=-1), dim=-1) | |
| down_vectors = F.normalize( | |
| torch.cross(forward_vectors, right_vectors, dim=-1), dim=-1 | |
| ) | |
| Rs = torch.stack([right_vectors, down_vectors, forward_vectors], dim=-1) | |
| w2cs = torch.linalg.inv(rt_to_mat4(Rs, positions)) | |
| return w2cs | |
| def get_arc_horizontal_w2cs( | |
| ref_w2c: torch.Tensor, | |
| lookat: torch.Tensor, | |
| up: torch.Tensor | None, | |
| num_frames: int, | |
| clockwise: bool = True, | |
| face_off: bool = False, | |
| endpoint: bool = False, | |
| degree: float = 360.0, | |
| ref_up_shift: float = 0.0, | |
| ref_radius_scale: float = 1.0, | |
| **_, | |
| ) -> torch.Tensor: | |
| ref_c2w = torch.linalg.inv(ref_w2c) | |
| ref_position = ref_c2w[:3, 3] | |
| if up is None: | |
| up = -ref_c2w[:3, 1] | |
| assert up is not None | |
| ref_position += up * ref_up_shift | |
| ref_position *= ref_radius_scale | |
| thetas = ( | |
| torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device) | |
| if endpoint | |
| else torch.linspace( | |
| 0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device | |
| )[:-1] | |
| ) | |
| if not clockwise: | |
| thetas = -thetas | |
| positions = ( | |
| torch.einsum( | |
| "nij,j->ni", | |
| roma.rotvec_to_rotmat(thetas[:, None] * up[None]), | |
| ref_position - lookat, | |
| ) | |
| + lookat | |
| ) | |
| return get_lookat_w2cs(positions, lookat, up, face_off=face_off) | |
| def get_lemniscate_w2cs( | |
| ref_w2c: torch.Tensor, | |
| lookat: torch.Tensor, | |
| up: torch.Tensor | None, | |
| num_frames: int, | |
| degree: float, | |
| endpoint: bool = False, | |
| **_, | |
| ) -> torch.Tensor: | |
| ref_c2w = torch.linalg.inv(ref_w2c) | |
| a = torch.linalg.norm(ref_c2w[:3, 3] - lookat) * np.tan(degree / 360 * np.pi) | |
| # Lemniscate curve in camera space. Starting at the origin. | |
| thetas = ( | |
| torch.linspace(0, 2 * torch.pi, num_frames, device=ref_w2c.device) | |
| if endpoint | |
| else torch.linspace(0, 2 * torch.pi, num_frames + 1, device=ref_w2c.device)[:-1] | |
| ) + torch.pi / 2 | |
| positions = torch.stack( | |
| [ | |
| a * torch.cos(thetas) / (1 + torch.sin(thetas) ** 2), | |
| a * torch.cos(thetas) * torch.sin(thetas) / (1 + torch.sin(thetas) ** 2), | |
| torch.zeros(num_frames, device=ref_w2c.device), | |
| ], | |
| dim=-1, | |
| ) | |
| # Transform to world space. | |
| positions = torch.einsum( | |
| "ij,nj->ni", ref_c2w[:3], F.pad(positions, (0, 1), value=1.0) | |
| ) | |
| if up is None: | |
| up = -ref_c2w[:3, 1] | |
| assert up is not None | |
| return get_lookat_w2cs(positions, lookat, up) | |
| def get_moving_w2cs( | |
| ref_w2c: torch.Tensor, | |
| lookat: torch.Tensor, | |
| up: torch.Tensor | None, | |
| num_frames: int, | |
| endpoint: bool = False, | |
| direction: str = "forward", | |
| tilt_xy: torch.Tensor = None, | |
| ): | |
| """ | |
| Args: | |
| ref_w2c: (4, 4) tensor of the reference wolrd-to-camera matrix | |
| lookat: (3,) tensor of lookat point | |
| up: (3,) tensor of up vector | |
| Returns: | |
| w2cs: (N, 3, 3) tensor of world to camera rotation matrices | |
| """ | |
| ref_c2w = torch.linalg.inv(ref_w2c) | |
| ref_position = ref_c2w[:3, -1] | |
| if up is None: | |
| up = -ref_c2w[:3, 1] | |
| direction_vectors = { | |
| "forward": (lookat - ref_position).clone(), | |
| "backward": -(lookat - ref_position).clone(), | |
| "up": up.clone(), | |
| "down": -up.clone(), | |
| "right": torch.cross((lookat - ref_position), up, dim=0), | |
| "left": -torch.cross((lookat - ref_position), up, dim=0), | |
| } | |
| if direction not in direction_vectors: | |
| raise ValueError( | |
| f"Invalid direction: {direction}. Must be one of {list(direction_vectors.keys())}" | |
| ) | |
| positions = ref_position + ( | |
| F.normalize(direction_vectors[direction], dim=0) | |
| * ( | |
| torch.linspace(0, 0.99, num_frames, device=ref_w2c.device) | |
| if endpoint | |
| else torch.linspace(0, 1, num_frames + 1, device=ref_w2c.device)[:-1] | |
| )[:, None] | |
| ) | |
| if tilt_xy is not None: | |
| positions[:, :2] += tilt_xy | |
| return get_lookat_w2cs(positions, lookat, up) | |
| def get_roll_w2cs( | |
| ref_w2c: torch.Tensor, | |
| lookat: torch.Tensor, | |
| up: torch.Tensor | None, | |
| num_frames: int, | |
| endpoint: bool = False, | |
| degree: float = 360.0, | |
| **_, | |
| ) -> torch.Tensor: | |
| ref_c2w = torch.linalg.inv(ref_w2c) | |
| ref_position = ref_c2w[:3, 3] | |
| if up is None: | |
| up = -ref_c2w[:3, 1] # Infer the up vector from the reference. | |
| # Create vertical angles | |
| thetas = ( | |
| torch.linspace(0.0, torch.pi * degree / 180, num_frames, device=ref_w2c.device) | |
| if endpoint | |
| else torch.linspace( | |
| 0.0, torch.pi * degree / 180, num_frames + 1, device=ref_w2c.device | |
| )[:-1] | |
| )[:, None] | |
| lookat_vector = F.normalize(lookat[None].float(), dim=-1) | |
| up = up[None] | |
| up = ( | |
| up * torch.cos(thetas) | |
| + torch.cross(lookat_vector, up) * torch.sin(thetas) | |
| + lookat_vector | |
| * torch.einsum("ij,ij->i", lookat_vector, up)[:, None] | |
| * (1 - torch.cos(thetas)) | |
| ) | |
| # Normalize the camera orientation | |
| return get_lookat_w2cs(ref_position[None].repeat(num_frames, 1), lookat, up) | |
| def normalize(x): | |
| """Normalization helper function.""" | |
| return x / np.linalg.norm(x) | |
| def viewmatrix(lookdir, up, position, subtract_position=False): | |
| """Construct lookat view matrix.""" | |
| vec2 = normalize((lookdir - position) if subtract_position else lookdir) | |
| vec0 = normalize(np.cross(up, vec2)) | |
| vec1 = normalize(np.cross(vec2, vec0)) | |
| m = np.stack([vec0, vec1, vec2, position], axis=1) | |
| return m | |
| def poses_avg(poses): | |
| """New pose using average position, z-axis, and up vector of input poses.""" | |
| position = poses[:, :3, 3].mean(0) | |
| z_axis = poses[:, :3, 2].mean(0) | |
| up = poses[:, :3, 1].mean(0) | |
| cam2world = viewmatrix(z_axis, up, position) | |
| return cam2world | |
| def generate_spiral_path( | |
| poses, bounds, n_frames=120, n_rots=2, zrate=0.5, endpoint=False, radii=None | |
| ): | |
| """Calculates a forward facing spiral path for rendering.""" | |
| # Find a reasonable 'focus depth' for this dataset as a weighted average | |
| # of near and far bounds in disparity space. | |
| close_depth, inf_depth = bounds.min() * 0.9, bounds.max() * 5.0 | |
| dt = 0.75 | |
| focal = 1 / ((1 - dt) / close_depth + dt / inf_depth) | |
| # Get radii for spiral path using 90th percentile of camera positions. | |
| positions = poses[:, :3, 3] | |
| if radii is None: | |
| radii = np.percentile(np.abs(positions), 90, 0) | |
| radii = np.concatenate([radii, [1.0]]) | |
| # Generate poses for spiral path. | |
| render_poses = [] | |
| cam2world = poses_avg(poses) | |
| up = poses[:, :3, 1].mean(0) | |
| for theta in np.linspace(0.0, 2.0 * np.pi * n_rots, n_frames, endpoint=endpoint): | |
| t = radii * [np.cos(theta), -np.sin(theta), -np.sin(theta * zrate), 1.0] | |
| position = cam2world @ t | |
| lookat = cam2world @ [0, 0, -focal, 1.0] | |
| z_axis = position - lookat | |
| render_poses.append(viewmatrix(z_axis, up, position)) | |
| render_poses = np.stack(render_poses, axis=0) | |
| return render_poses | |
| def generate_interpolated_path( | |
| poses: np.ndarray, | |
| n_interp: int, | |
| spline_degree: int = 5, | |
| smoothness: float = 0.03, | |
| rot_weight: float = 0.1, | |
| endpoint: bool = False, | |
| ): | |
| """Creates a smooth spline path between input keyframe camera poses. | |
| Spline is calculated with poses in format (position, lookat-point, up-point). | |
| Args: | |
| poses: (n, 3, 4) array of input pose keyframes. | |
| n_interp: returned path will have n_interp * (n - 1) total poses. | |
| spline_degree: polynomial degree of B-spline. | |
| smoothness: parameter for spline smoothing, 0 forces exact interpolation. | |
| rot_weight: relative weighting of rotation/translation in spline solve. | |
| Returns: | |
| Array of new camera poses with shape (n_interp * (n - 1), 3, 4). | |
| """ | |
| def poses_to_points(poses, dist): | |
| """Converts from pose matrices to (position, lookat, up) format.""" | |
| pos = poses[:, :3, -1] | |
| lookat = poses[:, :3, -1] - dist * poses[:, :3, 2] | |
| up = poses[:, :3, -1] + dist * poses[:, :3, 1] | |
| return np.stack([pos, lookat, up], 1) | |
| def points_to_poses(points): | |
| """Converts from (position, lookat, up) format to pose matrices.""" | |
| return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points]) | |
| def interp(points, n, k, s): | |
| """Runs multidimensional B-spline interpolation on the input points.""" | |
| sh = points.shape | |
| pts = np.reshape(points, (sh[0], -1)) | |
| k = min(k, sh[0] - 1) | |
| tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s) | |
| u = np.linspace(0, 1, n, endpoint=endpoint) | |
| new_points = np.array(scipy.interpolate.splev(u, tck)) | |
| new_points = np.reshape(new_points.T, (n, sh[1], sh[2])) | |
| return new_points | |
| points = poses_to_points(poses, dist=rot_weight) | |
| new_points = interp( | |
| points, n_interp * (points.shape[0] - 1), k=spline_degree, s=smoothness | |
| ) | |
| return points_to_poses(new_points) | |
| def similarity_from_cameras(c2w, strict_scaling=False, center_method="focus"): | |
| """ | |
| reference: nerf-factory | |
| Get a similarity transform to normalize dataset | |
| from c2w (OpenCV convention) cameras | |
| :param c2w: (N, 4) | |
| :return T (4,4) , scale (float) | |
| """ | |
| t = c2w[:, :3, 3] | |
| R = c2w[:, :3, :3] | |
| # (1) Rotate the world so that z+ is the up axis | |
| # we estimate the up axis by averaging the camera up axes | |
| ups = np.sum(R * np.array([0, -1.0, 0]), axis=-1) | |
| world_up = np.mean(ups, axis=0) | |
| world_up /= np.linalg.norm(world_up) | |
| up_camspace = np.array([0.0, -1.0, 0.0]) | |
| c = (up_camspace * world_up).sum() | |
| cross = np.cross(world_up, up_camspace) | |
| skew = np.array( | |
| [ | |
| [0.0, -cross[2], cross[1]], | |
| [cross[2], 0.0, -cross[0]], | |
| [-cross[1], cross[0], 0.0], | |
| ] | |
| ) | |
| if c > -1: | |
| R_align = np.eye(3) + skew + (skew @ skew) * 1 / (1 + c) | |
| else: | |
| # In the unlikely case the original data has y+ up axis, | |
| # rotate 180-deg about x axis | |
| R_align = np.array([[-1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) | |
| # R_align = np.eye(3) # DEBUG | |
| R = R_align @ R | |
| fwds = np.sum(R * np.array([0, 0.0, 1.0]), axis=-1) | |
| t = (R_align @ t[..., None])[..., 0] | |
| # (2) Recenter the scene. | |
| if center_method == "focus": | |
| # find the closest point to the origin for each camera's center ray | |
| nearest = t + (fwds * -t).sum(-1)[:, None] * fwds | |
| translate = -np.median(nearest, axis=0) | |
| elif center_method == "poses": | |
| # use center of the camera positions | |
| translate = -np.median(t, axis=0) | |
| else: | |
| raise ValueError(f"Unknown center_method {center_method}") | |
| transform = np.eye(4) | |
| transform[:3, 3] = translate | |
| transform[:3, :3] = R_align | |
| # (3) Rescale the scene using camera distances | |
| scale_fn = np.max if strict_scaling else np.median | |
| inv_scale = scale_fn(np.linalg.norm(t + translate, axis=-1)) | |
| if inv_scale == 0: | |
| inv_scale = 1.0 | |
| scale = 1.0 / inv_scale | |
| transform[:3, :] *= scale | |
| return transform | |
| def align_principle_axes(point_cloud): | |
| # Compute centroid | |
| centroid = np.median(point_cloud, axis=0) | |
| # Translate point cloud to centroid | |
| translated_point_cloud = point_cloud - centroid | |
| # Compute covariance matrix | |
| covariance_matrix = np.cov(translated_point_cloud, rowvar=False) | |
| # Compute eigenvectors and eigenvalues | |
| eigenvalues, eigenvectors = np.linalg.eigh(covariance_matrix) | |
| # Sort eigenvectors by eigenvalues (descending order) so that the z-axis | |
| # is the principal axis with the smallest eigenvalue. | |
| sort_indices = eigenvalues.argsort()[::-1] | |
| eigenvectors = eigenvectors[:, sort_indices] | |
| # Check orientation of eigenvectors. If the determinant of the eigenvectors is | |
| # negative, then we need to flip the sign of one of the eigenvectors. | |
| if np.linalg.det(eigenvectors) < 0: | |
| eigenvectors[:, 0] *= -1 | |
| # Create rotation matrix | |
| rotation_matrix = eigenvectors.T | |
| # Create SE(3) matrix (4x4 transformation matrix) | |
| transform = np.eye(4) | |
| transform[:3, :3] = rotation_matrix | |
| transform[:3, 3] = -rotation_matrix @ centroid | |
| return transform | |
| def transform_points(matrix, points): | |
| """Transform points using a SE(4) matrix. | |
| Args: | |
| matrix: 4x4 SE(4) matrix | |
| points: Nx3 array of points | |
| Returns: | |
| Nx3 array of transformed points | |
| """ | |
| assert matrix.shape == (4, 4) | |
| assert len(points.shape) == 2 and points.shape[1] == 3 | |
| return points @ matrix[:3, :3].T + matrix[:3, 3] | |
| def transform_cameras(matrix, camtoworlds): | |
| """Transform cameras using a SE(4) matrix. | |
| Args: | |
| matrix: 4x4 SE(4) matrix | |
| camtoworlds: Nx4x4 array of camera-to-world matrices | |
| Returns: | |
| Nx4x4 array of transformed camera-to-world matrices | |
| """ | |
| assert matrix.shape == (4, 4) | |
| assert len(camtoworlds.shape) == 3 and camtoworlds.shape[1:] == (4, 4) | |
| camtoworlds = np.einsum("nij, ki -> nkj", camtoworlds, matrix) | |
| scaling = np.linalg.norm(camtoworlds[:, 0, :3], axis=1) | |
| camtoworlds[:, :3, :3] = camtoworlds[:, :3, :3] / scaling[:, None, None] | |
| return camtoworlds | |
| def normalize_scene(camtoworlds, points=None, camera_center_method="focus"): | |
| T1 = similarity_from_cameras(camtoworlds, center_method=camera_center_method) | |
| camtoworlds = transform_cameras(T1, camtoworlds) | |
| if points is not None: | |
| points = transform_points(T1, points) | |
| T2 = align_principle_axes(points) | |
| camtoworlds = transform_cameras(T2, camtoworlds) | |
| points = transform_points(T2, points) | |
| return camtoworlds, points, T2 @ T1 | |
| else: | |
| return camtoworlds, T1 | |