Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ import torch
|
|
| 5 |
# Load the Hugging Face model and tokenizer
|
| 6 |
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,
|
| 9 |
|
| 10 |
# Define custom system content
|
| 11 |
custom_system_content = """
|
|
@@ -15,7 +15,7 @@ Please provide thoughtful and concise responses.
|
|
| 15 |
|
| 16 |
# Function to generate chatbot responses
|
| 17 |
def chatbot_response(user_input):
|
| 18 |
-
inputs = tokenizer(custom_system_content + user_input, return_tensors="pt")
|
| 19 |
outputs = model.generate(**inputs, max_length=256)
|
| 20 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 21 |
return response[len(custom_system_content):]
|
|
@@ -28,7 +28,7 @@ with gr.Blocks() as demo:
|
|
| 28 |
with gr.Row():
|
| 29 |
with gr.Column():
|
| 30 |
user_input = gr.Textbox(label="Your message", placeholder="Type your message here...")
|
| 31 |
-
chatbot_output = gr.
|
| 32 |
|
| 33 |
with gr.Column():
|
| 34 |
submit_btn = gr.Button("Send")
|
|
|
|
| 5 |
# Load the Hugging Face model and tokenizer
|
| 6 |
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
| 7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16)
|
| 9 |
|
| 10 |
# Define custom system content
|
| 11 |
custom_system_content = """
|
|
|
|
| 15 |
|
| 16 |
# Function to generate chatbot responses
|
| 17 |
def chatbot_response(user_input):
|
| 18 |
+
inputs = tokenizer(custom_system_content + user_input, return_tensors="pt")
|
| 19 |
outputs = model.generate(**inputs, max_length=256)
|
| 20 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 21 |
return response[len(custom_system_content):]
|
|
|
|
| 28 |
with gr.Row():
|
| 29 |
with gr.Column():
|
| 30 |
user_input = gr.Textbox(label="Your message", placeholder="Type your message here...")
|
| 31 |
+
chatbot_output = gr.Chatbot(label="Chatbot Response", placeholder="Chatbot will respond here...")
|
| 32 |
|
| 33 |
with gr.Column():
|
| 34 |
submit_btn = gr.Button("Send")
|