Spaces:
Running
Running
| import gradio as gr | |
| import yt_dlp | |
| import numpy as np | |
| import librosa | |
| import soundfile as sf | |
| import os | |
| import zipfile | |
| from argparse import ArgumentParser | |
| # Function to download audio from YouTube and save it as a WAV file | |
| def download_youtube_audio(url, audio_name): | |
| ydl_opts = { | |
| 'format': 'bestaudio/best', | |
| 'postprocessors': [{ | |
| 'key': 'FFmpegExtractAudio', | |
| 'preferredcodec': 'wav', | |
| }], | |
| "outtmpl": f'youtubeaudio/{audio_name}', # Output template | |
| } | |
| with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
| ydl.download([url]) | |
| return f'youtubeaudio/{audio_name}.wav' | |
| # Function to calculate RMS | |
| def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"): | |
| padding = (int(frame_length // 2), int(frame_length // 2)) | |
| y = np.pad(y, padding, mode=pad_mode) | |
| axis = -1 | |
| out_strides = y.strides + tuple([y.strides[axis]]) | |
| x_shape_trimmed = list(y.shape) | |
| x_shape_trimmed[axis] -= frame_length - 1 | |
| out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) | |
| xw = np.lib.stride_tricks.as_strided( | |
| y, shape=out_shape, strides=out_strides | |
| ) | |
| if axis < 0: | |
| target_axis = axis - 1 | |
| else: | |
| target_axis = axis + 1 | |
| xw = np.moveaxis(xw, -1, target_axis) | |
| slices = [slice(None)] * xw.ndim | |
| slices[axis] = slice(0, None, hop_length) | |
| x = xw[tuple(slices)] | |
| power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) | |
| return np.sqrt(power) | |
| # Slicer class | |
| class Slicer: | |
| def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000): | |
| if not min_length >= min_interval >= hop_size: | |
| raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size') | |
| if not max_sil_kept >= hop_size: | |
| raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size') | |
| min_interval = sr * min_interval / 1000 | |
| self.threshold = 10 ** (threshold / 20.) | |
| self.hop_size = round(sr * hop_size / 1000) | |
| self.win_size = min(round(min_interval), 4 * self.hop_size) | |
| self.min_length = round(sr * min_length / 1000 / self.hop_size) | |
| self.min_interval = round(min_interval / self.hop_size) | |
| self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) | |
| def _apply_slice(self, waveform, begin, end): | |
| if len(waveform.shape) > 1: | |
| return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)] | |
| else: | |
| return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)] | |
| def slice(self, waveform): | |
| if len(waveform.shape) > 1: | |
| samples = waveform.mean(axis=0) | |
| else: | |
| samples = waveform | |
| if samples.shape[0] <= self.min_length: | |
| return [waveform] | |
| rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0) | |
| sil_tags = [] | |
| silence_start = None | |
| clip_start = 0 | |
| for i, rms in enumerate(rms_list): | |
| if rms < self.threshold: | |
| if silence_start is None: | |
| silence_start = i | |
| continue | |
| if silence_start is None: | |
| continue | |
| is_leading_silence = silence_start == 0 and i > self.max_sil_kept | |
| need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length | |
| if not is_leading_silence and not need_slice_middle: | |
| silence_start = None | |
| continue | |
| if i - silence_start <= self.max_sil_kept: | |
| pos = rms_list[silence_start: i + 1].argmin() + silence_start | |
| if silence_start == 0: | |
| sil_tags.append((0, pos)) | |
| else: | |
| sil_tags.append((pos, pos)) | |
| clip_start = pos | |
| elif i - silence_start <= self.max_sil_kept * 2: | |
| pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin() | |
| pos += i - self.max_sil_kept | |
| pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start | |
| pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| clip_start = pos_r | |
| else: | |
| sil_tags.append((min(pos_l, pos), max(pos_r, pos))) | |
| clip_start = max(pos_r, pos) | |
| else: | |
| pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start | |
| pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept | |
| if silence_start == 0: | |
| sil_tags.append((0, pos_r)) | |
| else: | |
| sil_tags.append((pos_l, pos_r)) | |
| clip_start = pos_r | |
| silence_start = None | |
| total_frames = rms_list.shape[0] | |
| if silence_start is not None and total_frames - silence_start >= self.min_interval: | |
| silence_end = min(total_frames, silence_start + self.max_sil_kept) | |
| pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start | |
| sil_tags.append((pos, total_frames + 1)) | |
| if len(sil_tags) == 0: | |
| return [waveform] | |
| else: | |
| chunks = [] | |
| if sil_tags[0][0] > 0: | |
| chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0])) | |
| for i in range(len(sil_tags) - 1): | |
| chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0])) | |
| if sil_tags[-1][1] < total_frames: | |
| chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames)) | |
| return chunks | |
| # Function to slice and save audio chunks | |
| def slice_audio(file_path, audio_name): | |
| audio, sr = librosa.load(file_path, sr=None, mono=False) | |
| os.makedirs(f'dataset/{audio_name}', exist_ok=True) | |
| slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500) | |
| chunks = slicer.slice(audio) | |
| for i, chunk in enumerate(chunks): | |
| if len(chunk.shape) > 1: | |
| chunk = chunk.T | |
| sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr) | |
| return f"dataset/{audio_name}" | |
| # Function to zip the dataset directory | |
| def zip_directory(directory_path, audio_name): | |
| zip_file = f"dataset/{audio_name}.zip" | |
| os.makedirs(os.path.dirname(zip_file), exist_ok=True) # Ensure the directory exists | |
| with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf: | |
| for root, dirs, files in os.walk(directory_path): | |
| for file in files: | |
| file_path = os.path.join(root, file) | |
| arcname = os.path.relpath(file_path, start=directory_path) | |
| zipf.write(file_path, arcname) | |
| return zip_file | |
| # Gradio interface | |
| def process_audio(url, audio_name): | |
| file_path = download_youtube_audio(url, audio_name) | |
| dataset_path = slice_audio(file_path, audio_name) | |
| zip_file = zip_directory(dataset_path, audio_name) | |
| return zip_file, print(f"{zip_file} successfully processed") | |
| if __name__ == '__main__': | |
| parser = ArgumentParser() | |
| parser.add_argument("--colab", action="store_true", dest="share_enabled", default=False, help="Enable sharing") | |
| args = parser.parse_args() | |
| thme = gr.themes.Soft( | |
| primary_hue="blue", | |
| secondary_hue="blue") | |
| with gr.Blocks(theme=thme) as demo: | |
| gr.Markdown("# <div style='text-align: center;'> RVC DATASET MAKER</div>") | |
| gr.Markdown(" <div style='text-align: center;'> only work for vocal only audio!</div>") | |
| if config.iscolab: | |
| pass | |
| else: | |
| gr.Markdown("<div style='text-align: center;'> please `❤` this spaces 🤗 if helpfull</dif>") | |
| with gr.Tabs(): | |
| with gr.TabItem("make dataset"): | |
| with gr.Row(): | |
| url_input = gr.Textbox(label="YouTube URL", placeholder="https://youtu.be/ZdoiTX1f1tU?si=hZ96tryqaPIYfwg1") | |
| with gr.Row(): | |
| audio_name_input = gr.Textbox(label="Audio Name", placeholder="Amy") | |
| with gr.Row(): | |
| result_output = gr.File(label="Download Sliced Audio Zip") | |
| result_process = gr.Textbox(label="Sliced Audio output") | |
| with gr.Row(): | |
| run_button = gr.Button("Slice 👾 Audio") | |
| run_button.click(fn=process_audio, inputs=[url_input, audio_name_input], outputs=[result_output, result_process]) | |
| with gr.Tabs(): | |
| gr.Markdown(f"### <div style='text-align: center;'>made with ❤ by <a href='https://huggingface.co/Hev832'>Hev832</a></div>") | |
| demo.launch( | |
| debug=True, | |
| share=True, | |
| ) | |